Реферат гуморальная регуляция, ее факторы, механизмы действия гормонов на клетки-мишени, регуляция секреции гормонов. Эндокринная и репродуктивная системы




Особенно важную роль в гуморальном взаимодействии органов, тканей и клеток играют те из них, которые имеют специализированную способность вырабатывать вещества, изменяющие состояние организма, функцию и структуру органов и тканей. Эти вещества называют гормонами, а выделяющие их органы - эндокринными железами или железами внутренней секреции. Они названы так потому, что в отличие от желез внешней секреции не имеют выводных протоков и выделяют образующиеся в них вещества непосредственно в кровь.

К железам внутренней секреции относятся гипофиз, щитовидная железа, околощитовидные железы, островковый аппарат поджелудочной железы, кора и мозговое вещество надпочечников, половые железы и плацента, эпифиз.

Гормоны обладают дистантным действием, поступая в кровяное русло, они оказывают влияние на весь организм, а также на органы и ткани, расположенные вдали от той железы, где они образуются.

Выделяют четыре типа влияния гормонов на организм:
1) метаболическое (действие на обмен веществ);
2) морфогенетическое (стимуляция формообразовательных процессов, дифферениировки, роста и пр.);
3) кинетическое (включающее определенную деятельность исполнительных органов);
4) корригирующее (изменяющее интенсивность функции органов и тканей).

Характерным свойством гормонов является их высокая физиологическая активность. Это означает, что очень малое количество гормона может иызвать изменения функций организма. Гормоны быстро разрушаются в тканях, в частности в печени, поэтому необходимо постоянное их выделение соответствующей железой.

Известные гормоны позвоночных могут быть разделены на три основных класса:
1) стероиды;
2) производные аминокислот;
3) белково-пептидные соединения.

Стероидные гормоны и гормоны-производные аминокислот не имеют видовой специфичности. Белково-пептидные гормоны обладают видовой специфичностью.

Отдельные фрагменты молекул гормонов несут различную функцию: фрагменты (гаптомеры), обеспечивающие поиск места действия гормона; актоны, обеспечивающие специфические влияния гормона на клетку; фрагменты,"регулирующие степень активности гормона и другие свойства его молекулы.

Гормоны транспортируются кровью как в свободном, так и в связанном с белками плазмы крови виде.

Важное значение имеет скорость поглощения гормонов клетками органов и тканей; скорость разрушения их печенью и другими органами и выведения их почками.

Регуляция функций эндокринных желез осуществляется несколькими способами:
1) прямое влияние на клетки железы концентрации в крови того вещества, уровень которого регулирует данный гормон;
2) опосредованное, нейрогуморальное влияние.

Например, усиление секреции инсулина при повышении концентрации глюкозы в крови, протекающей через поджелудочную железу.

Нервная регуляция физиологических функций осуществляется строго локально - через определенные синапсы, напоминая по точности эффекта телеграфную связь, где телеграмма доставляется точно по определенному адресу. В отличие от этого принцип влияния гормонов напоминает радиосвязь, когда посылаемый в эфир сигнал адресуется «всем, всем, всем»; в действительности же радиосигнал, посланный всем, доходит до адресата, лишь при наличии приемника, точно настроенного на волну данной станции. Подобно этому и в организме гормон хотя и достигает с током крови всех органов и тканей, но действует при этом лишь на те клетки, ткани и органы, которые обладают специфическими рецепторами, настроенными на восприятие именно данного гормона. Такие органы и ткани получили название органов и тканей-мишеней. Рецептор представляет собой специальный белок, определенная часть молекулы которого совпадает с гаптометром молекулы гормона. Это и обеспечивает прием сигнала, т.е. специфическое взаимодействие гормона с клеткой. Данные рецепторы могут располагаться внутри клетки, но могут быть встроены в поверхностную мембрану клетки. Гормоны, плохо проникающие внутрь клетки, фиксируются на мембране снаружи. В этом случае необходимо наличие внутриклеточных посредников - медиаторов, передающих влияние гормона на определенные внутриклеточные структуры. К ним относятся аденозинмонофосфат (АМФ), гуанозинмонофосфат (ГМФ), простогландины и кальций. Эти медиаторы обеспечивают быстрый специфический эффект гормонов.

Гормоны, сравнительно легко проникающие через мембрану клетки (стероидные, тиреоидные), оказывают непосредственное специфическое влияние на определенные внутриклеточные структуры. Их действие развертывается и осуществляется длительно, так как они, как правило, влияют на процессы синтеза определенных клеточных белков..

Полнотекстовый поиск:

Где искать:

везде
только в названии
только в тексте

Выводить:

описание
слова в тексте
только заголовок

Главная > Реферат >Биология

    Принципы гормональной регуляции (Гормоны, группы гормонов, влияние гормонов)

    Системные принципы гормональной регуляции физиологических функций

    Гормональная регуляция физиологических функций(пути поступления гормонов, роль гормонов)

    Системная деятельность гормонов (функции гормонов)

    Активирующие системы мозга (произвольное внимание, характеристика произвольного внимания,источники ресурсов внимания, таламус, ядра таламуса, локальная активация)

    Базальные ганглии: строение, расположение, функции

Принципы гормональной регуляции (1)

Гормоны - биологически активные вещества, вырабатываемые эндокринными железами или специализированными клетками, находящимися в различных органах (например, в поджелудочной железе, пищеварительном тракте).

Место действия органы-мишени или другие эндокринные железы, гормоны делят на две группы:

1. Эффекторные гормоны, действующие на клетки-эффекторы (например, инсулин, регулирующий обмен веществ в организме, повышает синтез гликогена в клетках печени, увеличивает транспорт глюкозы и других веществ через клеточную мембрану, повышает интенсивность синтеза белка).

2.Тропные гормоны, действующие на другие эндокринные железы и регулирующие их функции (например, адренокортикотропный гормон гипофиза - АКТГ регулирует выработку гормонов корой надпочечников).Виды влияния гормонов. Гормоны оказывают два вида влияния на органы, ткани и системы организма: функциональное (играют весьма важную роль в регуляции функций организма) и морфогенетическое - обеспечивают морфогенез (рост, физическое, половое и умственное развитие. Например, при недостатке тироксина страдает развитие ЦНС, следовательно, и умственное развитие).

1. Функциональное влияние гормонов бывает трех видов: пусковое, модулирующее и пермиссивное.

1) Пусковое влияние - это способность гормона запускать деятельность эффектора. Например, адреналин запускает распад гликогена в печени и выход глюкозы в кровь; вазопрессин (антидиуретический гормон - АДГ) включает реабсорбцию воды из собирательных трубок нефрона в интерстиций почки.

2) Модулирующее влияние гормона - изменение интенсивности протекания биохимических процессов в органах и тканях. Например, активация окислительных процессов тироксином, которые могут происходить и без него; стимуляция деятельности сердца адреналином, которая возможна и без адреналина. Модулирующим влиянием гормонов является также изменение

чувствительности ткани к действию других гормонов. Например, фолликулин усиливает действие прогестерона на слизистую оболочку матки, тиреоидные гормоны усиливают эффекты катехоламинов.

3) Пермиссивное влияние гормонов - способность одного гормона обеспечивать реализацию эффекта другого гормона. Например, инсулин необходим для проявления действия соматотропного гормона, фоллитропин необходим для реализации эффекта лютропина.

2. Морфогенетическое влияние гормонов (рост, физическое и половое развитие) подробно изучается другими дисциплинами (гистология, биохимия) и лишь частично - в курсе физиологии. Оба вида влияния гормонов (морфогенетическое и функциональное) реализуются с помощью метаболических процессов, запускаемых посредством клеточных ферментных систем.

Регуляция выработки гормонов осуществляется непосредственно нервной системой, но главным образом с помощью гормонов гипофиза, функция которого регулируется в свою очередь гормонами гипоталамуса –нейрогормонами. Для некоторых эндокринных желез основным механизмом регуляции является местная саморегуляция. Так, секреция инсулина и глюкагона панкреатическими островками (островки Лангерганса) регулируется уровнем глюкозы в крови. Если концентрация глюкозы в крови высокая, то по принципу обратной отрицательной связи стимулируется выработка инсулина, который снижает концентрацию глюкозы в крови с помощью увеличения утилизации ее клетками организма и увеличения отложения в виде гликогена в клетках печени, в результате чего снижается (нормализуется) концентрация глюкозы в крови. В случае снижения концентрации глюкозы в крови выработка инсулина уменьшается, выработка глюкагона клетками островков. Лангерганса возрастает (глюкагон увеличивает преобразование гликогена печени в глюкозу и выход ее в кровь). Секреция кальцийрегулирующих гормонов (паратирина и кальцитонина) также регулируется по принципу обратной отрицательной связи - за счет концентрации кальция в крови.

Системные принципы гормональной регуляции физиологических функций(2)

Гормональная регуляция - направленное изменение физиологических

функций, обусловленное действием гормонов и биологически активных веществ. Гормональная регуляция физиологических процессов является специализированной формой гуморальной регуляции. Гормоны ослабляют или усиливают действие нервной системы на течение физиологических процессов, а также действуют самостоятельно. Гормональные эффекты в реагирующих клетках развиваются с большим латентным периодом, протекают медленнее и более продолжительно, чем нервные регулирующие влияния.

Гормональная регуляция физиологических функций (3)

Гормоны обладают высокой биологической активностью, т.е. эффективны в чрезвычайно низких концентрациях, порядка 10~6-10~12 моль/л. Выработка гормонов одной и той же химической природы характеризуется множественной локализацией их синтеза в организме. Например, различают панкреатическую и мозговую формы инсулина; одни и те же регуляторные пептиды вырабатываются в ЦНС и желудочно-кишечном тракте. Поступление гормонов к реагирующим клеткам из мест их образования происходит по множественным путям: через циркулирующие жидкости, межклеточную жидкость, по межклеточным контактам. Путь, который проходят гормоны после секреции до органов и тканей, варьирует от сотен нанометров до десятков сантиметров. Один и тот же гормон может:

Передавать информацию локально в пределах ткани, где он образуется и распространяется здесь по межклеточным контактам;

Оказывать местное регуляторное влияние в близлежащих тканях гу-морально, через межклеточную жидкость;

Обладать дистантным действием на отдаленные от места выработки чувствительные органы и ткани через циркулирующие жидкости. Например, гипоталамический гормон аргинин-вазопрессин обладает короткодистантным действием в пределах ЦНС и оказывает дально-дистантное действие на почку, когда поступает в общий кровоток. Гормоны оказывают множественное генерализованное действие, так как, высвобождаясь в кровь из места образования, легко распространяются и вызывают согласованную во времени и пространстве реакцию органов, тканей, клеток, способных на них реагировать. Гормоны обладают тропным избирательным действием на клетки и органы-мишени, имеющие к ним соответствующие рецепторы. Гормоны характеризуются полиморфизмом действия; один и тот же гормон в разных тканях может воспроизводить противоположные эффекты. Каждый гормон может действовать разнонаправленно и в пределах одной и той же клетки в зависимости от его концентрации и функционального состояния клетки. По отношению друг к другу гормоны играют либо вспомогательную роль, либо подавляют действие другого гормона в клетках-мишенях, либо блокируют или стимулируют секрецию другого гормона. Гормональное обеспечение физиологических функций реализуется по принципу избыточности, т.е. биологически активных веществ выделяется значительно больше, чем требуется для изменения функции в данный момент. Избыток гормонов устраняется внутриклеточными ингибиторами и другими веществами плазмы крови и тканей, ограничивающими активность гормонов. Гормональная регуляция характеризуется высокой надежностью: существуют несколько механизмов распространения гормонов, несколько уровней регуляции образования гормонов и мест их синтеза, значительный резерв рецепторов.

Гормональная регуляция обеспечивает взаимосодействие функций, дублирование процессов, включение резервных функций.

Системная деятельность гормонов(4)

В деятельности функциональных систем гормоны выполняют информационные и регуляторные функции и обеспечивают интеграцию физиологических процессов, направленных на достижение полезных приспособительных результатов функциональных систем организма. Каждая функциональная система избирательно вовлекает гормоны различных химических классов и включает их в процессы саморегуляции. С участием гормонов происходит кодирование метаболических потребностей и их трансформация в мотивационное возбуждение мозга. Гормоны направленно изменяют состояние центров и способны влиять на активность рецепторов в афферентном звене нейроэндокринных реакций. Гормоны воздействуют на территориально разобщенные органы и клетки-мишени, синхронизируют ритмы их работы и определяют временную последовательность физиологических процессов; осуществляют прямые и обратные связи исполнительных органов с центрами их регуляции. Различные функциональные системы включают одни и те же гормоны в регуляцию разных приспособительных результатов на основе изменения физиологических и метаболических свойств желез внутренней секреции.

Активирующие системы мозга (5)

Чтобы понять активирующие системы мозга мы должны рассмотреть физиологические механизмы избирательного произвольного внимания. Произвольное внимание относится к контролируемым и осознаваемым процессам. Оно обладает ограниченной пропускной способностью и поэтому обеспечивает последовательную обработку информации. Непременной характеристикой произвольного внимания является умственное усилие, направленное на выделение и обработку той информации, которая диктуется задачами деятельности. По современным представлениям, умственное усилие, обеспечивающее мобилизацию произвольного внимания, связано с энергетическими ресурсами и активацией организма. Внимание играет роль фактора, регулирующего недифференцированные энергетические активационные возможности организма. Наибольшее значение здесь имеет то, что определяет распределение ресурсов. Это могут быть значимые и новые стимулы, вызывающие ориентировочную реакцию, которые привлекают к себе часть ресурсов. Тем не менее требования, предъявляемые к ресурсам внимания деятельностью оказывает решающее значение на их распределение. Существенным фактором управления ресурсами внимания является также мотивация: низкая мотивация привлекает мало ресурсов внимания к деятельности, высокая, напротив, может привести к тотальной мобилизации всех имеющихся ресурсов внимания. Что же является источником ресурсов внимания и определяет энергетические возможности индивида при мобилизации внимания? Физиологические основы внимания связаны с особым феноменом, получившим название реакции активации. Одним из наиболее выдающихся достижений нейрофизиологии в XX веке явилось открытие и систематическое изучение функций неспецифической системы мозга, которое началось с появления в 1949г. книги Г. Моруцци и Г. Мэгуна «Ретикулярная формация мозгового ствола и реакция активации в ЭЭГ». Ретикулярная формация наряду с лимбической системой образуют блок модулирующих систем мозга, основной функцией которых является регуляция функциональных состояний организма. Первоначально к неспецифической системе активации мозга относили в основном лишь сетевидные образования ствола мозга и их главной задачей считали диффузную генерализованную активацию коры больших полушарий. По современным представлениям, восходящая неспецифическая активирующая система не ограничивается нижним уровнем (ствол), а простирается до вышележащих мозговых структур, в частности, таламуса.

Таламус, входящий в состав промежуточного мозга, имеет ядерную структуру. Он состоит из специфических и неспецифических ядер. Специфические ядра обрабатывают всю поступающую в организм сенсорную информацию, поэтому таламус образно называют коллектором сенсорной информации. Специфические ядра таламуса связаны, главным образом, с первичными проекционными зонами анализаторов. Неспецифические ядра направляют свои восходящие пути в ассоциативные зоны коры больших полушарий. В 1955г. Г. Джаспером было сформулировано представление о диффузно-проекционной таламической системе. Опираясь на целый ряд фактов, он утверждал, что диффузная проекционная таламическая система (неспецифический таламус) в определенных пределах может управлять состоянием коры больших полушарий, оказывая на нее как возбуждающее, так и тормозное влияние.В экспериментах на животных было показано, что при раздражении неспецифического таламуса в коре головного мозга возникает реакция активации. Эту реакцию легко наблюдать при регистрации энцефалограммы, однако, активация коры при раздражении неспецифического таламуса имеет ряд отличий от активации, возникающей при раздражении ретикулярной формации ствола мозга. По современным представлениям переключение активирующих влияний с уровня ретикулярной формации ствола мозга на уровень таламической системы означает переход от генерализованной активации коры к локальной: первая отвечает за глобальные сдвиги общего уровня бодрствования; вторая отвечает за избирательное сосредоточение внимания. Таким образом, локальная активация - это избирательное вовлечение в активационный процесс корковых областей, обеспечивающее физиологические условия для функционирования избирательного внимания. Активирующие системы разных уровней (ретикулярная формация ствола мозга и таламус) тесно связаны с корой больших полушарий. Особое место в системе этих связей занимают фронтальные зоны коры - блок программирования, регуляции и контроля деятельности. Существует предположение, что возбуждение ретикулярной формации ствола мозга и неспецифического таламуса по прямым восходящим путям распространяется на передние отделы коры. При достижении определенного уровня возбуждения фронтальных зон по нисходящим путям, идущим в ретикулярную формацию и таламус, осуществляется тормозное влияние. Возможен и противоположный вариант: фронтальные доли избирательно активируют определенные ядра таламуса, а те, в свою очередь, создают очаги локальной активации в коре больших полушарий, соответственно задачам текущей деятельности. Фактически здесь имеет место быть контур саморегуляции: подкорковые структуры изначально активизируют фронтальную кору, а та, в свою очередь, регулирует уровень их активности. Поскольку все эти влияния имеют градуальный характер, т.е. изменяются постепенно, то с помощью двусторонних связей фронтальные зоны коры могут обеспечивать именно тот уровень возбуждения, который требуется в каждом конкретном случае и вовлечение в активационный процесс определенных корковых областей соответственно текущей задаче. Таким образом, фронтальная кора - важнейший регулятор состояния бодрствования в целом и внимания как избирательного процесса. Она модулирует в нужном направлении активность стволовой и таламической систем. Благодаря этому можно говорить о таком явлении как управляемая корковая активация. Более детальное изучение позволяет специализировать внимание, выделив его модально-специфические виды. Как относительно самостоятельные можно описать следующие виды внимания: сенсорное (зрительное, слуховое, тактильное), двигательное, эмоциональное и интеллектуальное. Клиника очаговых поражений показывает, что эти виды внимания могут страдать независимо друг от друга, и в их обеспечении принимают участие разные отделы мозга. В поддержании модально специфических видов внимания принимают активное участие зоны коры, непосредственно связанные с обеспечением соответствующих психических функций. Многочисленные экспериментальные данные свидетельствует о разном вкладе полушарий в обеспечение не только восприятия, но и избирательного внимания. По этим данным правое полушарие в основном обеспечивает общую мобилизационную готовность человека, поддерживает необходимый уровень бодрствования и сравнительно мало связано с особенностями конкретной деятельности. Левое в большей степени отвечает за специализированную организацию внимания в соответствии с особенностями задачи.

Базальные ганглии: строение, расположение, функции

Базальные ганглии расположены в основании больших полушарий и включают три парных образования: бледный шар (pallidum), филогенетически более позднее образование - полосатое тело (corpus striatum) и наиболее молодую часть - ограду (claustrum). Бледный шар состоит из наружного и внутреннего сегментов; полосатое тело включает хвостатое ядро (nucleus caudatus) и скорлупу (putamen).

Полосатое тело оказывает на бледный шар двоякое влияние - возбуждающее и тормозящее с преобладанием последнего, что осуществляется преимущественно через тонкие тормозные волокна (медиатор ГАМК). Влияет на кору большого мозга: раздражает полосатое тело вызывает синхронизацию ЭЭГ - появлением в ней высокоамплитудных ритмов, характерных для фазы медленного сна. Разрушение полосатого тела уменьшает время сна в цикле бодрствование - сон.

Бледный шар оказывает модулирующее влияние на двигательную кору, мозжечок, ретикулярную формацию, красное ядро. При стимуляции бледного шара у животных преобладают элементарные двигательные реакции в виде сокращения мышц конечностей, шеи и лица. Обнаружено влияние бледного шара на некоторые зоны гипоталамуса (центр голода и задний гипоталамус), отмечена активация пищевого поведения. Разрушение бледного шара сопровождается снижением двигательной активности: возникают адинамия, эмоциональная тупость, сонливость, затрудняется условнорефлекторная деятельность. В клинике симптомокомплекс поражения бледного шара и черного вещества носит название паркинсонизма, акинетико-ригидного синдрома, амиостатического синдрома, гипертонически-гипокинетического синдрома. Он связан с функциональным дефицитом бледного шара, изменением влияния паллидонигральной системы на ретикулярную формацию и нарушением импульсации в корково-подкорково-стволовых нейронных кругах. Ретикулярная формация - стволовой «контролер-регулировщик» потока восходящих и нисходящих импульсов; при нарушении связей ее с черным веществом не препятствует прохождению к мышце избыточных тонических сигналов, вследствие чего развивается мышечная ригидность, поддерживаемая непрерывным потоком афферентных импульсов к стриопаллидарной системе (порочный круг: пораженная паллидарная система шлет бесконтрольные тонические сигналы, повышающие мышечный тонус и усиливающие поток импульсов обратной афферентации, которая в свою очередь тонизирует стриопаллидум).

Функции ограды. Электрическое раздражение различных зон ограды вызывает разнообразные соматические, вегетативные и поведенческие реакции, например пищевые, ориентировочные и эмоциональные, сокращение мышц туловища, головы, жевательные и глотательные движения и др. Двустороннее разрушение ограды вызывает слабо выраженные нарушения рефлексов позы, вегетативных реакций и условных рефлексов. Таким образом, базальные ганглии - это прежде всего центры организации различных видов моторной активности организма, связанной с обучением. Базальные ганглии контролируют такие параметры движения, как сила, амплитуда, скорость и направление.

Список литературы:

    Лит.: Берзин Т., Биохимия гормонов, пер. с нем., М., 1964;

    Шульговский В.В., Физиологические основы психики. Ч. 2;

    Смирнов, Нейрофизиология и ВНД детей и подростков,2000;

    Батуев А.С., Физиология поведения. Нейробиологические;

ЧУО “Женский институт ЭНВИЛА”

Кафедра Психологии

КОНТРОЛЬНАЯ РАБОТА

по дисциплине

Физиология поведения 1

Вариант №1

Силкина Анастасия Сергеевна

факультета психологии

заочной формы обучения

тел. 248-04-59

моб. 276-53-09 (мтс)

ЧУО “Женский институт ЭНВИЛА”

Кафедра Психологии

КОНТРОЛЬНАЯ РАБОТА

по дисциплине

Общая психология 1

Тема “Понятие о психике”

Силкина Анастасия Сергеевна

студентки 1 курса группы Пс 113

факультета психологии

заочной формы обучения

тел. 248-04-59

моб. 276-53-09 (мтс)

ЧУО “Женский институт ЭНВИЛА”

Кафедра лингвистики и социально-гуманитарных дисциплин

КОНТРОЛЬНАЯ РАБОТА

по дисциплине

История Беларуси

Тема “Нападение фашистской Германии на СССР. Оккупация Беларуси”

Силкина Анастасия Сергеевна

студентки 1 курса группы Пс 113

факультета психологии

заочной формы обучения

тел. 248-04-59

моб. 276-53-09 (мтс)

ЧУО “Женский институт ЭНВИЛА”

Кафедра экономики и естественнонаучных дисциплин

КОНТРОЛЬНАЯ РАБОТА

по дисциплине

Основы высшей математики

Вариант №7

Силкина Анастасия Сергеевна

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

кафедра физиологии человека и животных

«Функциональная система. Гормональная регуляция функций »

МИНСК, 2008

Теория функциональной системы

Теория функциональной системы Петра Кузьмича Анохина разрабатывалась на протяжении второй половины XX века. Она возникла как закономерный этап развития рефлекторной теории.

Главным постулатом рефлекторной теории явился постулат о ведущем значении стимула, вызывающего через возбуждение соответствующей рефлекторной дуги рефлекторное действие. Наивысший расцвет рефлекторной теории – учение И.П. Павлова о высшей нервной деятельности. Однако в рамках рефлекторной теории трудно судить о механизмах целенаправленной деятельности организма, о поведении животных. И.П. Павлов успел ввести принцип системности в представления о регуляции функций нервной системой. Его ученик П.К.Анохин, а затем ученик П.К.Анохина академик Константин Викторович Судаков разработали современную теорию функциональной системы.

Изложение основных положений теории дается по К.В.Судакову.

1.Определяющим моментом деятельности различных функциональных систем, обеспечивающих гомеостазис и различные формы поведения животных и человека является не само действие (и тем более не стимул к этому действию – раздражитель), а полезный для системы и всего организма в целом результат этого действия.

2.Инициативная роль в формировании целенаправленного поведения принадлежит исходным потребностям, организующим специальные функциональные системы, включающие механизмы мотивациии на их основе мобилизующие генетически детерминированные или индивидуально приобретенные программы поведения.

3.Каждая функциональная система строится по принципу саморегуляции, в соответствии с которым всякое отключение результата деятельности функциональной системы от уровня, обеспечивающего нормальный метаболизм, само (отклонение) является стимулом к мобилизации соответствующих системных механизмов, направленных на достижение результата, удовлетворяющего соответствующие потребности.

4.Функциональные системы избирательно объединяют различные органы и ткани для обеспечения результативной деятельности организма.

5.В функциональных системах осуществляется постоянная оценка результата деятельности с помощью обратной афферентации.

6.Архитектоника функциональной системы гораздо сложнее, чем рефлекторная дуга. Рефлекторная дуга – только часть функциональной системы.

7.В центральной структуре функциональных систем наряду с линейным принципом распространения возбуждения складывается специальная интеграция опережающих возбуждений, программирующих свойства конечного результата деятельности.

По П.К.Анохину системой можно назвать только такой комплекс избирательно вовлеченных в нее компонентов, у которых взаимодействие и взаимоотношения принимают характер взаимосо действия компонентов, нацеленного на получение фокусированного полезного результата. Результат является неотъемлимым и решающим компонентом системы, инструментом, создающим упорядоченное содействие между всеми компонентами.

С точки зрения академика Анохина функциональные системы (пищеварения, выделения, кровообращения) – это динамические саморегулирующиеся организации всех составляющих элементов, деятельность которых подчинена получению жизненно важных для организма приспособительных результатов.

Условно К.В.Судаков выделяет три группы приспособительных результатов.

1. Ведущие показатели внутренней среды, определяющие нормальный метаболизм тканей (сохранение констант внутренней среды, гомеостазис);

2. Результаты поведенческой деятельности, удовлетворяющие основные биологические потребности (взаимодействие особи со средой обитания, поиск пищи);

3. Результаты стадной деятельности животных, удовлетворяющие потребности сообщества (сохранение вида);

Для человека характерна и четвертая группа результатов:

4. Результаты социальной деятельности человека, удовлетворяющие его социальные потребности, обусловленные его положением в определенной общественно-экономической формации.

Поскольку в целом организме существует множество полезных приспособительных результатов, обеспечивающих различные стороны его обмена веществ, организм существует благодаря совокупной деятельности многих функциональных систем. Существует понятие об иерархии функциональных систем, из-за существовании иерархии результатов.

Узлы и компоненты функциональной системы

1.Полезный приспособительный результат как ведущий фактор функциональной системы.

2.Рецептор результата.

3.Обратная афферентация от рецептора к центральным образованиям функциональной системы.

4.Центральная архитектура – избирательное объединение нервных элементов различных уровней.

5.Исполнительные соматические, вегетативные, эндокринные компоненты, включая целенаправленное поведение.

Компоненты.

А) Афферентный синтез. Этот компонент функциональной системы связан с действием обстановочных и пусковых раздражителей (что в данный момент доминирует). Кроме того, учитывается доминирующая в этот момент мотивация. Используются механизмы генетической и индивидуальной памяти. В этой стадии целенаправленного рефлекторного акта на отдельных нейронах ЦНС, прежде всего коры больших полушарий, осуществляются различные виды конвергентных возбуждений (от зрительного, слухового и др. анализаторов). Происходит решение извечного вопроса «что делать?»

Б) Принятие решения. Выбор линии поведения.

В) Формирование акцептора результата действия. Акцептор результата действия как идеальная модель потребного результата строится на механизмах памяти.

Г) Эфферентный синтез. Включение интеграции соматических и вегетативных компонентов, обеспечивающих возбуждение.

Д) Целенаправленное действие. По мере его реализации потоки афферентных импульсов от соответствующих рецепторов достигают центров ЦНС.

Е)Санкционирующая стадия. Оценка обратной афферентации. Если результат достигнут, совпадает с ожидаемым и прогнозируемым в акцепторе результата действия, поведенческий акт заканчивается. Возникает положительная эмоция. Если нет, будет рассогласование работы системы и отрицательная эмоция.

По сравнению с рефлекторной теорией теория функциональной системы выдвигает ряд новых принципиальных положений. Устраняется примат исключительности внешних стимулов в поведении. Поведение организма определяется внутренними мотивациями, потребностями, опытом, действием обстановочных раздражителей, которые создают предпусковую интеграцию, только вскрываемую внешними стимулами. Системное возбуждение, формирующееся целенаправленное поведение разворачивается не линейно, а с опережением реальных результатов поведенческой деятельности. Это дает возможность сравнивать достигнутые результаты с прогнозируемыми, что способствует коррекции поведения. Целенаправленный акт не заканчивается действием (что постулировано в рефлекторной теории), а завершается полезным приспособительным результатом, удовлетворяющим доминирующую потребность.

Гормональная регуляция функций

Гуморальная регуляция функций обеспечивается с участием внутренней среды как посредника и может быть неспецифической (собственно гуморальной, за счет продуктов метаболизма) и специфической, гормональной.

Гормонами называются вещества высокой физиологической активности, выделяемые в кровоток специализированными клетками эндокринных желез и способные в чрезвычайно низких концентрациях вызывать значительные регуляторные влияния на обмен веществ.

Пример каскадного эффекта.

Гипоталамус выделяет 0,1 мкг кортикотропин-релизинг-фактора. Тот действует на клетки аденогипофиза, которые выделяют АКТГ уже в дозе 1 мкг. АКТГ влияет на клетки корковой зоны надпочечников, и те секретируют 40 мкг кортикостероида. 1:10:40.

Для гормонов существуют требования на соответствие .

Для того, чтобы исследователь доказал, что обнаруженное им вещество является гормоном, он должен прежде всего доказать, что:

Для него имеется структура-мишень (орган или группа клеток)

Для него имеется специфический рецептор

Связывание с рецептором носит дозо-зависимый характер

Имеются блокаторы-антагонисты рецепторов

Подавление синтеза вещества-кандидата или блокада рецепторов приводит к отсутствию гормонального эффекта.

Для гормонов характерны:

а) высокая биологическая активность

б) специфичность действия

в) дистантность действия.

По химическому строению гормоны могут быть белками (полипептидами), например, инсулин; производными аминокислот (адреналин, тироксин); стероидами (тестостерон). В крови они транспортируются в неактивном состоянии, в комплексе с белками (транскортин, тестостеронсвязывающий глобулин и т.д.). Гормоны интенсивно инактивируются, прежде всего в печени.

Эндокринные железы находятся в тесном взаимодействии с нервной системой, образуя общий интеграционный механизм регуляции. Регулирующее влияние ЦНС на активность желез внутренней секреции осуществляется через гипоталамус, либо прямо (на клетки мозгового вещества надпочечников). Гипоталамус интегрирует все центральные влияния на эндокринные железы.

Механизмы действия гормонов. Гормоны могут влиять на клетки организма и прямо, и опосредованно, через нервную систему.

Прямое влияние.

1.Гормоны изменяют проницаемость клеточных мембран. Это прежде всего характерно для белковых и пептидных гормонов. Имеющиеся на поверхности клеток рецепторы, после связывания гормона-лиганда, изменяют проницаемость мембраны для глюкозы или аминокислот. Инсулин и соматотропин.

2.Воздействие на внутриклеточные ферментные системы. Вторичные посредники, например, циклические нуклеотиды, могут синтезироваться после рецепции гормона клеткой. Адреналин стимулирует аденилатциклазу, которая трансформирует АМФ в циклический АМФ. Мишенью гормонов могут быть и фосфодиэстеразы, разрушающие циклические нуклеотиды. Через цАМФ действуют в клетках АКТГ, адреналин, глюкагон, паратгормон. Специфичность действия, при этом, обеспечивается специфичностью рецептора, локализованного на клеточной мембране и сопряженного с аденилатциклазой.

3.Гормоны проявляют свое действие на уровне генетического аппарата клетки. Половые гормоны и гормоны коры надпочечников проникают в клетку и далее в виде комплекса с рецептирующей молекулой поступают в ядро. Изменяют синтез информационной РНК. Цепочка гормон–ген–фермент.

Влияние через нервную систему определяется тем, что нейроны и нейронные сети находятся под контролем гормонов. Гормоны регулируют ионный состав внутренней среды, обменные процессы.

Эндокринные железы могу взаимодействовать.

1.По принципу отрицательной обратной связи (например, увеличение в крови концентрации тироксина тормозит выработку тиреотропина).

2.Синергизм гормональных влияний проявляется в однонаправленном действии нескольких гормонов (адреналин и глюкагон увеличивают распад гликогена и концентрацию глюкозы в крови).

3.Антагонизм гормональных влияний. Действие разных гормонов разнонаправленно влияет на один и тот же процесс. Инсулин и глюкагон как функциональные антагонисты в регуляции уровня глюкозы в крови.

Гипоталамо-гипофизарная система

Гипофиз, питуитарная железа, занимает особое положение в эндокриной системе. В тесном функциональном единстве с гипоталамусом гипофиз обеспечивает управление эндокринными функциями организма. Разделяется на нейрогипофиз (задняя доля) и аденогипофиз (передняя доля), а также промежуточную долю.

Различают гипоталамо-заднегипофизарную систему, в которой вырабатывается вазопрессин и окситоцин , и гипоталамо-аденогипофизарную систему, в которой происходит выработка либеринов и статинов, гормонов, стимулирующих либо угнетающих секрецию гормонов гипофиза.

Гипоталамо-нейрогипофизарная система посредством крупных нейросекреторных клеток, сосредоточенных в супраоптическом и паравентрикулярном гипоталамических ядрах, осуществляет контроль некоторых висцеральных функций организма. Отростки этих клеток, по которым транспортируется нейросекрет, образуют гипоталамо-гипофизарный тракт, оканчивающийся в нейрогипофизе. Гормон гипофиза вазопрессин преимущественно выделяется из окончаний аксонов нейросекреторных клеток супраоптического ядра. Он уменьшает объем выделяющейся мочи и повышает осмотическую ее концентрацию, что дало основание называть его также антидиуретическим гормоном (АДГ). Вазопрессина много в крови верблюдов и мало у морских свинок, что обусловлено экологическими условиями их существования.

Окситоцин синтезируется нейронами в паравентрикулярном ядре, выделяется в нейрогипофизе. Имеет мишенью гладкую мускулатуру матки, стимулирует родовую деятельность.

Вазопрессин и окситоцин в химическом отношении являются нанопептидами, идентичны по 7 аминокислотным остаткам. В клетках мишенях идентифицированы рецепторы к ним.

Гипоталамо-аденогипофизарная система . Основное ее назначение – осуществление связи между гипоталамусом и гипофизом. В мелких нейросекреторных клетках гипоталамуса, локализованных в гипофизотропной зоне, происходит выработка либеринов (релизинг-факторов) и статинов, пептидов, контролирующих функции железистых клеток аденогипофиза. Нейросекреторные клетки очень похожи на нейроны. Они имеют аксоны и дендриты, нейрофибриллы, они способны проводить и генерировать нервные импульсы (обладают потенциалзависимыми катионными каналами). В нейросекреторных клетках хорошо развиты эндоплазматический ретикулум и аппарат Гольджи. От тел нейросекреторных клеток отходят длинные аксоны, составляющие гипоталамо-аденогипофизарный тракт, оканчивающийся в нейрогемальной области. По аксонам механизмом аксонного транспорта перемещается в область окончаний нейросекрет в виде гранул, содержащих гормоны, соединенные с белковыми носителями. В окончании носитель отщепляется от гормона, последний выходит (секретируется) в кровоток. Сома нейросекреторных клеток покрыта многочисленными синапсами, что свидетельствует о мощном нервном контроле их функций.

Гипофиз располагает воротной системой кровообращения. Воротные вены аденогипофиза служат мишенью для аксонов нейросекреторных клеток, образующих синаптические контакты на их стенках. Из капилляров воротной системы гормоны попадают к клеткам аденогипофиза.

Известны следующие либерины и статины гипоталамуса.

Либерины (релизинг-факторы):

1.Кортиколиберин (усиливает секрецию АКТГ)

2.Тиреолиберин (усиливает секрецию тротропина)

3.Фоллиберин (усиливает секрецию фоллитропина)

4.Люлиберин (усиливает секрецию люлитропина)

5.Соматолиберин (усиливает секрецию соматотропина)

6.Пролактолиберин (усиливает секрецию пролактина)

7.Меланолиберин (усиливает секрецию меланотропина)

1.Соматостатин

2.Пролактостатин

3.Меланостатин.

Кроме перечисленных, в клетках гипоталамуса вырабатывается множество других регуляторных молекул, нейропептидов в том числе, вещество Р , нейротензин, бомбезин, энкефалины и эндорфины. Они могут влиять на поведение, энкефалины и эндорфины уменьшают восприятие боли, способствуют эйфории. Неожиданно несколько лет назад выяснилось, что некоторые либерины обладают собственной (независимой от гипофиза) физиологической активностью. Кортикотропин-релизинг-фактор, нейропептид из 41 аминокислотного остатка, играет ключевую роль в реализации когнитивных функций мозга, улучшает выработку условных рефлексов и контролирует процессы памяти, а также может влиять на кровообращение и двигательную активность подопытных крыс.

Аденогипофизарные клетки под воздействием либеринов и статинов производят собственные гормоны. Поскольку большая часть из них влияет на активность периферических эндокринных желез, их называют тропными , или тропинами.

Адренокортикотропный гормон, полипептид из 39 аминокислотных остатков (АКТГ) необходим для развития и секреции корковыми клетками надпочечников собственных гормонов. АКТГ стимулирует выработку и секрецию глюкокортикоидов. Контролируется кортиколиберином.

Тиреотропный гормон гликопротеин, стимулирует рост и развитие щитовидной железы и регулирует выработку этой железой тироксина и трийодтиронина.

Гонадотропные гормоны:

фолликулостимулирующий (стимулирует развитие фолликулов в яичниках, дифференцировку сперматозоидов)

лютеинизирующий (участвует в процессе овуляции, образовании желтого тела, стимулирует секрецию половых гормонов клетками половых желез.

Эффекторные гормоны аденогипофиза (действуют на неэндокринные клетки организма):

Соматостатин, гормон роста. Полипептид, имеет 191 аминокислотный остаток. При недостатке гормона роста организм испытывает задержку роста, с сохранением всех других функций. Избыток соматостатина приводит к гигантизму или акромегалии. Повышает синтез белков, способствует транспорту аминокислот в клетки, усиливает мобилизацию жирных кислот. Влияет на энергетический обмен.

Гормональная регуляция менструального цикла
Период с первого дня менструации до первого дня следующей менструации называется менструальным циклом. Появление первой менструации называют менархе, а прекращение менструаций - менопаузой. Средняя продолжительность менструального цикла - 28 дней, возможны колебания продолжительности цикла в диапазоне от 18 до 40 дней. Наибольшие изменения продолжительности цикла с максимальными интервалами между менструациями обычно наблюдаются в первые годы после менархе и в период перед менопаузой, когда повышается частота ановуляторных (без овуляции) циклов. Во время менструального цикла репродуктивные органы претерпевают серию изменений, которые делают возможным развитие яйцеклетки, ее оплодотворение и прикрепление оплодотворенной яйцеклетки в матке. В менструальном цикле различают четыре фазы: менструальную, фолликулиновую (эстрогенную, пролиферативную), овуляторную и лютеиновую (прогестиновую, секреторную). Эти фазы связаны с созреванием яйцеклетки, которое регулируется гонадотропными гормонами гипоталамо-гипофизарной системы.

Лютеинизирующий гормон и фолликулостимулирующий гормон являются определяющими факторами в регуляции женских половых гормонов яичников - эстрогенов и прогестерона.

Повышение фолликулостимулирующего гормона стимулирует развитие нескольких (10-15) фолликулов, но наступает созревание лишь одного из них, другие фолликулы подвергаются в этот период атрезии. Фолликулостимулирующий гормон способствует синтезу в фолликуле эстрогенов. Концентрация эстрадиола в крови достигает максимума в предовуляционный период, что приводит к высвобождению большого количества гонадолиберина в гипоталамусе и последующему пику высвобождения лютеинизирующего гормона и фолликулостимулирующего гормона. Предовуляторное повышение лютеинизирующего гормона и фолликулостимулирующего гормона стимулирует разрыв фолликула и овуляцию. В общем виде считается, что фолликулостимулирующий гормон определяет рост фолликулов в яичнике, а лютеинизируюий гормон - их стероидную активность. В течение менструального цикла происходит переключение секреторной активности яичников с эстрогенов в фолликулярной фазе цикла на прогестерон в фазе желтого тела.

Идентифицировано около 30 эстрогенов, но только 3 из них имеют клиническое значение и могут быть определены в клинико-диагностических лабораториях. Это эстрадиол, эстрон и эстриол. Основным из них является эстрадиол, именно его, как правило, определяют для оценки эндокринной активности фолликулов.

Прогестерон - гормон, вырабатываемый желтым телом, его активность наблюдается в период после овуляции до следующей менструации. Эстрогены из яичников, в свою очередь, стимулируют органы-мишени репродуктивной системы (молочные железы, матку и влагалище) и участвуют в регуляции гормональных функций гипоталамо-гипофизарного комплекса центральной нервной системы по принципу обратной связи.

Менструальная фаза (фаза десквамации, отторжения эндометрия) наступает в случае, если оплодотворения яйцеклетки не происходит. В эту фазу поверхностный (функциональный) слой слизистой оболочки матки отторгается. Менструальная фаза длится до 3-5 дней. Ее первый день соответствует времени гибели (обратному развитию) желтого тела в яичнике и началу созревания ново¬го фолликула под влиянием фолликулостимулирующего гормона, уровень которого в крови возрастает в течение первых дней менструального цикла. Описанные события связаны с уменьшением содержания в крови прогестерона.

В фазу пролиферации происходят регенерация слизистой оболочки матки и созревание фолликула с яйцеклеткой. Фолликулостимулирующий гормон гипофиза стимулирует рост и развитие группы из 3-30 фолликулов, каждый из которых состоит из ооцита и окружающих клеток.

Один из этих фолликулов в последующем созревает, а остальные подвергаются дегенерации. Под влиянием эстрогена, продуцируемого клетками созревающего фолликула, строма функционального слоя эндометрия восстанавливаются. Эта фаза длится с 5-го дня от начала менструации по 14-15-й день.

Овуляция. Примерно в середине менструального цикла (14-15-й день) под действием высокой концентрации эстрогена резко увеличивается выработка гипофизом лютеинизирующего гормона. Под влиянием лютеинизирующего гормона и фолликулостимулирующего гормона происходит овуляция - разрыв фолликула и выход яйцеклетки из яичника.

Секреторная фаза является наиболее стабильной частью цикла. При отсутствии беременности она продолжается 14 дней и завершается с началом менструации. После овуляции лютеинизирующего гормона вызывает развитие желтого тела в пустом (лопнувшем) фолликуле. Желтое тело вырабатывает свой собственный гормон - прогестерон. Значение желтого тела состоит в том, чтобы помочь сохраниться беременности. Под влиянием прогестерона и эстрогена, секретируемых желтым телом, протекает секреторная фаза преобразования эндометрия - внутренняя оболочка матки утолщается, готовясь принять оплодотворенную яйцеклетку. Если яйцеклетка оплодотворена и имплантируется в эндометрий, желтое тело продолжает функционировать и секреция прогестерона увеличивается. Если в течение 2 нед оплодотворения яйцеклетки не произошло, желтое тело претерпевает обратное развитие, превращается в «белое тело», прогестерон перестает вырабатываться, слизистая оболочка матки отслаивается во время менструации и цикл повторяется.

Женский гипогонадизм
Главным симптомом гипогонадизма у женщин является аменорея - отсутствие менструаций более 6 мес. Аменорея может быть первичной (менструаций никогда не было) или вторичной (менструации были, затем произошло их нарушение, вплоть до полного прекращения). Первичная аменорея может быть частью нейроэндокринного или обменно-эндокринного синдрома (синдрома Иценко- Кушинга, ожирения, врожденной гипоплазии коры надпочечников, надпочечниковой недостаточности, диффузного токсического зоба, гипотиреоза). Вторичная аменорея может быть яичниковой или гипоталамо-гипофизарной природы. Недостаточность яичников может быть обусловлена аутоиммунным процессом, облучением, синдромом резистентных или истощенных яичников, а также при опухолях яичников, секретирующих андрогены, или поликистозе яичников.

Гипергонадотропная аменорея проявляется синдромом истощенных яичников или синдромом резистентных яичников. Гипергонадотропная аменорея, или ранний климакс, развивается у женщин моложе 40 лет, имевших до этого нормальную менструацию. Считается, что это состояние наследственно обусловлено и связано с уменьшением количества ооцитов в яичниках ниже 10-15 тыс., что недостаточно для поддержания их нормальной функции до 48-50 лет. Содержание лютеинизирующего гормона и фолликулостимулирующего гормона в сыворотке резко повышено, концентрация эстрогенов снижена, что обычно наблюдают при климактерическом периоде. Синдром резистентных яичников также характеризуется гипергонадотропной аменореей, при которой вторичная аменорея сочетается с повышенным уровнем гонадотропинов в сыворотке и нормальной секрецией эстрогенов. Это может быть обусловлено мутацией рецептора фолликулостимулирующего гормона или инактивирующими мутациями гена-рецептора лютеинизирующего гормона.

Нормогонадотропная аменорея может быть причиной бесплодия при врожденных или приобретенных нарушениях матки и ее придатков. К таким состояниям приводит внутриматочный спаечный процесс как следствие воспалительных процессов (эндометрита, криминального аборта и др.).

Гипогонадотропная аменорея может быть обусловлена нарушением секреции гипоталамических или гипофизарных гормонов при первичных или метастазирующих опухолях, травмах черепа, нарушениях кровоснабжения, инфекционных болезнях (менингите и других заболеваниях), гиперпролактинемии, гранулематозных заболеваниях, нервной анорексии, состояниях после приема пероральных контрацептивов. Нарушение гипоталамо-гипофизарно-яичниковой системы бывает при острой и хронической психической травме, большой физической нагрузке (у спортсменов). В 30-50% случаев вторичная аменорея и бесплодие являются следствием гиперпролактинемии даже при отсутствии лактореи.

Гормональная диагностика аменореи
При дифференциальной диагностике гипер- и гипогонадотропного гипогонадизма следует определять содержание фолликулостимулирующего гормона в сыворотке крови. Повышение фолликулостимулирующего гормона, как правило, указывает на первичную недостаточность яичников. Вторичная аменорея, наблюдаемая после приема пероральных контрацептивов, у большинства больных связана с повышением секреции пролактина.

Для выяснения причин бесплодия следует провести тщательное обследование женщины, в том числе гормональное. Оценивают функцию щитовидной железы, определяют уровень пролактина, фолликулостимулирующего гормона. В зависимости от изменения этих гормонов определяют уровень лютеинизирующего гормона, прогестерона, эстрадиола в сыворотке крови в различные фазы цикла, экскрецию с мочой 17-КС, 17-ОКС, кортизола, дегидроэпиандросте- рона, тестостерона, эстрагенов.

Лютеинизирующий гормон
Референтные пределы
В сыворотке. Дети младше 11 лет - 1-14 ЕД/л.
- Женщины:
- фолликулиновая фаза - 1-20 ЕД/л;
- фаза овуляции - 26-94 ЕД/л;
- период менопаузы - 13-80 ЕД/л.

В моче.
- Дети:
- младше 8 лет - менее 7 ЕД/сут;
- 9-15 лет - менее 40 ЕД/сут.
- Взрослые - менее 45 Ед/сут.

Лютеиниирующий гормон стимулирует овуляцию и активизирует в клетках яичников синтез эстрогенов и прогестерона. 
У женщин концентрация лютеинизирующего гормона в крови максимальна за 12-24 ч перед овуляцией и удерживается в течение всего дня, достигая в 10 раз большего уровня по сравнению с неовуляционным периодом. В случае нерегулярных овуляционных циклов для определения овулярности цикла кровь в целях установления лютеинизирующего гормона следует брать каждый день в период между 8-18-м днем перед предполагаемой менструацией.

В период менопаузы происходит повышение концентрации лютеинизирующего гормона и фолликулостимулирующего гормона. Вследствие пульсирующего характера выделения лютеинизирующего гормона и фолликулостимулирующего гормона следует при состояниях, сопровождающихся пониженной секрецией этих гормонов, сделать, по крайней мере, три забора крови каждый раз не менее чем через 30 мин.

Повышение концентрации в сыворотке:
дисфункция гипофиза;
первичная гипофункция гонад.

Понижение концентрации в сыворотке:
нарушение функции гипофиза или гипоталамуса (гипопитуитаризм).

Определение содержания лютеинизирующего гормона в моче применяют главным образом при диагностике эндокринных нарушений у детей с проявлениями слишком раннего созревания. Явление пульсирующего выделения гормона не оказывает существенного воздействия на величину выделения лютеинизирующего гормона гормона с мочой в течение суток.

Фолликулостимулирующий гормон
Референтные пределы
В сыворотке.
❖ Дети младше 11 лет - менее 2 ЕД/л.
❖ Женщины:
- фолликулиновая фаза - 4-10 ЕД/л;
- фаза овуляции - 10-25 ЕД/л;
- лютеиновая фаза - 2-8 ЕД/л;
- период менопаузы - 18-150 ЕД/л.

В моче.
❖ Дети:
- младше 8 лет - менее 5 ЕД/сут;
- 9-15 лет- менее 22 ЕД/сут.
❖ Женщины:
- детородного периода - менее 30 ЕД/сут;
- период менопаузы - в 2-3 раза выше, чем в детородный период.

Фолликулостимулирующий гормон стимулирует созревание фолликулов яичников и усиливает выделение эстрогенов. Определение фолликулостимулирующего гормона проводят в целях диагностики нарушений генеративных органов (аменорея, олигоменорея, гипогонадизм, бесплодие у мужчин и женщин, нарушение полового развития детей).

Во время менопаузы происходит повышение лютеинизирующего гормона и фолликулостимулирующего гормона. Вследствие пульсирующего характера выделения лютеинизирующего гормона и фолликулостимулирующего гормона при состояниях, приводящих к понижению выделения этих гормонов, следует взять, по крайней мере, три пробы крови не менее чем через 30 мин каждую.

Повышение концентрации в сыворотке.
Менопауза, вызванная нарушением функции яичников
Первичная гипофункция гонад.
Синдром Клайнфельтера.
Синдром Шерешевского-Тернера.
Эктопическое выделение агентов, действующих аналогично гонадотропину
(особенно при новообразованиях легких).
Ранняя фаза гиперфункции гипофиза.

Понижение концентрации в сыворотке.
Первичная гипофункция гипофиза.
Лекарственные препараты (эстрогены, прогестерон). 

Определение фолликулостимулирующего гормона в моче применяют в основном при диагностике эндокринных нарушений у детей с признаками слишком раннего полового созревания. Явление пульсирующего выделения гормона не оказывает существенного воздействия на выделение фолликулостимулирующего гормона с суточной мочой.

Показания к определению лютеинизирующего гормона и фолликулостимулирующего гормона.
Нарушения менструального цикла - олигоменорея и аменорея.
Бесплодие.
Дисфункциональные маточные кровотечения.
Невынашивание беременности.
Преждевременное половое развитие или его задержка.
Задержка роста.
Синдром поликистозных яичников.
Эндометриоз.
Контроль эффективности гормонотерапии.
Дифференциальная диагностика гипер- и гипогонадотропного гипогонадизма.

Пролактин
Референтные пределы
Дети:
❖ 3 мес - 540-13000 мЕД/л (15-361 мкг/л);
❖ 3 мес-12 лет - 85-300 мЕД/л (2,8-8,3 мкг/л).

Женщины - 40-470 мЕД/л (1,1-13,0 мкг/л).

У беременных концентрация гормона постепенно нарастает с ранних сроков беременности, вплоть до родов:
❖ 12 нед - 290-1750 мЕД/л (8-49 мкг/л);
❖ 12-28 нед - 330-4800 мЕД/л (9-133 мкг/л); о 29-40 нед - 770-5700 мЕД/л (21-158 мкг/л).

Коэффициенты пересчета: мЕД/л х 0,02778 = мкг/л, мкг/л х 36,0 = мЕД/л.

Пролактин у женщин регулирует развитие грудных желез и лактацию. Эстрогены обычно увеличивают секрецию пролактина. Концентрация пролактина в крови увеличивается во время физических упражнений, раздражения сосков, гипогликемии, беременности, лактации, стресса (особенно вызванного операционным вмешательством). Опухоли из пролактинсекретирующих клеток вызывают у женщин аменорею и галакторею. Гиперпролактинемия бывает причиной бесплодия и нарушений функции яичников, пролактин сдерживает секрецию стероидов в яичниках, дозревание желтого тела и секрецию лютеинизирующего гормона и фолликулостимулирующего гормона. После менопаузы концентрация пролактина в крови снижается.

Чрезмерное образование териотропного гормона может привести к гиперпролактинемии. Именно поэтому следует критически относиться к заключению «пролактинома» при гипофункции щитовидной железы. Следует предварительно проверить функцию щитовидной железы и предпринять соответствующее лечение.

Эстрадиол

Эстрадиол - 17-бета (Е2).

Референтные пределы: пмоль/л; пг/мл.
Дети до 11 лет - менее 35; менее 9,5.

Женщины:
❖ фолликулиновая фаза - 180-1000; 50-270;
❖ фаза овуляции - 500-1500; 135-410;
❖ лютеиновая фаза - 440-800; 120-220;
❖ период менопаузы - 40-140; 11-40.

Коэффициенты пересчета: пмоль/л х 0,272 = пг/мл, пг/мл х 3,671 = пмоль/л. 

Е2 - наиболее активный эстроген. У женщин детородного возраста Е2 практически полностью образуется в фолликуле яичника и эндометрии. В системе циркуляции Е2 связывается с глобулином, связывающим половые гормоны (SHBG - Sex Hormone Binding Globulin). Клетки-мишени для Е2 расположены в плаценте, матке, грудных железах, влагалище, уретре, гипоталамусе. У небеременных эстрадиол меняется в течение менструального цикла. По мере созревания фолликул экскретирует эстрадиол, экскреция достигает максимума перед овуляцией. За 14 дней до менструации уровень эстрадиола достаточен для стимуляции выброса лютеинизирующего гормона гипофизом. Происходит болюсное освобождение лютеинизирующего гормона, стимулируется овуляция, и концентрация эстрадиола значительно уменьшается. В последующие дни перед менструацией эстрадиол поддерживается на стабильном уровне за счет синтеза в эндометрии. Если происходит оплодотворение, уровень эстрадиола сохраняется повышенным за счет синтеза плацентой. Концентрация эстрадиола в плазме крови во время беременности примерно в 100 раз выше, чем у небеременных, на 36-й неделе беременности достигает значения 20-140 нмоль/л и постепенно растет, вплоть до дня родов. Если же нет оплодотворения, эстрадиол снижается при деградации эндометрия в период менструации. Определение концентрации эстрадиола в крови служит для оценки функции яичников при констатации нарушений менструации. Анализ эстрадиола является основным параметром при контроле индукции овуляции и гиперстимуляции яичников. Скорость синтеза эстрадиола отражает количество и качество созревающих фолликулов. Прием эстрогенов (оральных контрацептивов) повышает концентрацию эстрадиола в сыворотке крови. Подобно другим эстрогенам, эстрадиол метаболизируется в печени. Эстрадиол стимулирует анаболизм, предотвращает потерю кальция из костей, вызывает половое созревание девочек, существенно влияет на процессы, связанные с оплодотворением и рождением.

Прогестерон
Референтные пределы: нмоль/л; мкг/л.
Женщины.
❖ Фолликулиновая фаза - 0,9-2,3; 0,3-0,7.
❖ Овуляционная фаза - 2,1-5,2; 0,7-1,6.
❖ Лютеиновая фаза - 15,0-57,0; 4,7-18,0.
❖ Период менопаузы - 0,2-4,0; 0,06-1,3.

Беременные.
❖ 9-16 нед - 50-130; 15-40.
❖ 16-18 нед - 65-250; 20-80.
❖ 28-30 нед - 180-490; 55-155.
❖ Предродовой период - 350-790; 110-250.

Коэффициенты пересчета: нмоль/л х 0,314 = мкг/л, мкг/л х 3,18 = нмоль/л.

Прогестерон - женский половой гормон, его основным органом-мишенью является матка. В фолликулярную фазу его количество в крови минимальное, после овуляции этот гормон повышается, стимулируя утолщение эндометрия и готовность к имплантации оплодотворенной яйцеклетки. При беременности гормон снижает чувствительность матки к веществам, вызывающим ее сокращение, его концентрация постепенно повышается с 5-й по 40-ю неделю беременности, увеличиваясь в 10-40 раз. У небеременных этот гормон выделяется желтым телом, у беременных - плацентой. Небольшое количество гормона вырабатывается в надпочечниках. Увеличение концентрации гормона наблюдается при врожденной гиперплазии надпочечников и опухолях яичников. Снижение концентрации гормона при беременности позволяет заподозрить угрозу выкидыша.

Повышение концентрации.
Беременность.
Опухоли надпочечника и яичников (в некоторых случаях).
Лекарственные препараты (прогестерон и синтетические аналоги).

Ингибин
У женщин гормон синтезируется в гранулезных клетках фолликулов. Во время беременности основным продуцирующим органом ингибина А служит плацента. Если ингибин А обнаруживают, как правило, у женщин (функция его у мужчин неизвестна), то главной формой циркулирующего в крови ингибина у мужчин является ингибин В.

Ингибин селективно ингибирует освобождение фолликулостимулирующего гормона из передней доли гипофиза и обладает паракринным действием в гонадах. Уровень ингибина А остается низким в начале фолликулярной фазы, затем начинает повышаться к концу фолликулиновой фазы и достигает максимума в середине лютеиновой фазы. Уровни эстрадиола и ингибина А сильно коррелируют друг с другом в течение фолликулярной фазы (с 14-го по 2-й день менструального цикла).

Приблизительно через неделю с момента образования желтого тела начинается его обратное развитие, при этом секретируется меньше эстрадиола, прогестерона и ингибина А. Падение уровня ингибина А устраняет его блокирующий эффект на гипофиз и секрецию фолликулостимулирующего гормона. В ответ на повышение уровня фолликулостимулирующего гормона окончательно формируется пул антральных фолликулов, из которых в дальнейшем разовьется доминантный фолликул.

У женщин по мере старения отмечается снижение концентрации ингибинов А и В. Когда количество созревающих фолликулов в яичниках становится ниже определенного порога, наблюдается снижение концентрации ингибина, что ведет к повышению уровня фолликулостимулирующего гормона. За последние два года в процедурах экстракорпорального оплодотворения для оценки овариального резерва стали использовать ингибин В. Овариальный резерв - способность яичников отвечать на стимуляцию гонадотропинами достаточным количеством зрелых яйцеклеток, пригодных для оплодотворения в процедуре ЭКО. Измерение ингибина В позволяет напрямую более точно оценить овариальную функцию, чем фолликулостимулирующий гормон.

Антимюллеров гормон

Гормон принадлежит к семейству трансформирующего фактора роста-p вместе с ингибином В. У женщин синтезируется непосредственно развивающимися преантральными и антральными фолликулами, у мужчин - клетками Сертоли. Все члены этого семейства являются димерными гликопротеинами, вовлеченными в регуляцию роста и дифференцировки тканей. Антимюллеров гормон вместе с тестостероном необходим для нормального развития внутренних половых органов эмбрионов мужского пола, оказывает ингибирующий эффект на рекрутирование примордиальных фолликулов в яичниках, а также может ингибировать ФСГ-зависимую селекцию доминантного фолликула на ранней антральной стадии. Снижение синтеза антимюллерового гормона в фолликулах более 9 мм в нормальных яичниках - принципиально необходимое условие селекции доминантного фолликула. Концентрация антимюллерового гормона лучше всего отражает снижение репродуктивной функции у здоровых женщин с доказанной фертильностью: она коррелирует с количеством антральных фолликулов и возрастом женщины.

Используют антимюллеровый гормон в следующих направлениях.
Для диагностики и мониторинга пациенток с нормогонадотропным бесплодием.
Для прогноза успешного получения ооцитов и клинической беременности в протоколах ЭКО.
Для выявления преждевременного или замедленного полового созревания у обоих полов: антимюллеровый гормон подтверждает приближающееся половое созревание надежнее, чем более вариабельные тестостерон, лютеинизирующий гормон и эстрадиол. Концентрация антимюллерового гормона отражает количество и качество клеток Сертоли у мальчиков до начала полового созревания, его определение возможно в оценке мужской фертильности в любом возрасте, начиная с периода новорожденности.
Для подтверждения наличия тестикулярной ткани (предсказательная ценность выше, чем у теста стимуляции тестостерона введением хорионического гонадотропина человека у пациентов с анорхизмом и крипторхизмом).
Для дифференциальной диагностики интерсексуальных состояний/определения гонадного пола/амбивалентных гениталий [синдром нечувствительности к андрогенам, аплазия клеток Лейдига, мутации рецепторов лютеинизирующего гормона, дефек¬ты ферментов стероидогенеза, дисгенезия гонад, врожденная гиперплазия надпочечников, синдром Суайра (врожденный дисгенез яичников), дефицит 5-а-редуктазы]. У XY-пациентов с амбивалентными гениталиями рекомендуют обязательное исследование антимюллерового гормона перед дорогостоящими и инвазивными рентгенологическими и хирургическими исследованиями.
Антимюллеров гормон отражает эффективность антиандрогенной терапии (тестостерон может изменяться недостоверно, так как многие препараты действуют на его рецепторы, а не на его синтез), например, у мальчиков с преждевременным половым развитием.
Как высокочувствительный и специфичный маркер гранулезоклеточного рака яичников.
Высокая воспроизводимость: для определения антимюллерового гормона достаточно единственного определения.
Антимюллерово гормон - циклонезависимый маркер овариального резерва: уровень антимюллерового гормона, измеренный в течение менструального цикла, не имеет значительных колебаний, в отличие от лютеинизирующего гормона и фолликулостимулирующего гормона и эстрадиола.

Андрогены
Андрогены в организме женщины представлены в основном тестостероном, андростендионом и дегидроэпиандростерон-сульфатом. При этом общий андрогенный уровень у них в большей мере определяется функцией надпочечников. У женщин уровень свободного тестостерона повышается при гирсутизме с наличием или отсутствием поликистоза яичника. При тех ситуациях, когда SHBG часто повышен (например, при гипертиреоидизме, состоянии гиперэстрогении, в том числе беременности, приеме пероральных контрацептивов, а также при введении противоэпилептических средств) или снижен (например, при гипотиреоидизме, избытке андрогенов, ожирении), измерение свободного тестостерона может быть более целесообразным, чем измерение общего тестостерона.

Дегидроэпиандростерон-сульфат
Дегидроэпиандростерон-сульфат - стероид, секретируемый корой надпочечников (95%) и яичниками (5%). Выделяется с мочой и составляет основную фракцию 17-кетостероидов. В процессе его метаболизма в периферических тканях образуются тестостерон и дигидротестостерон. Дегидроэпиандростерон-сульфатобладает относительно слабой андрогенной активностью, составляющей для несульфированного гормона примерно 10% уровня тестостерона. Однако его биологическая активность усиливается благодаря относительно высоким концентрациям в сыворотке - в 100 или 1000 раз превосходящим тестостерон, а также из-за слабой аффинности к стероидсвязывающему b-глобулину. Содержание дегидроэпиандростерон-сульфата в сыворотке является маркером синтеза андрогенов надпочечниками. Низкие уровни гормона характерны для гипофункции над¬почечников, высокие - для вирилизирующей аденомы или карциномы, дефицита 21-гидроксилазы и 3-р-гидроксистероиддегидрогеназы, некоторых случаев гирсутизма у женщин и др. Поскольку лишь незначительная часть гормона образуется половыми железами, измерение дегидроэпиандростерон-сульфата может помочь в определении локализации источника андрогенов. Если у женщин наблюдается повышенный уровень тестостерона, с помощью определения концентрации дегидроэпиандростерон-сульфата можно установить, связано ли это с болезнью надпочечников или с заболеванием яичников. Секреция дегидроэпиандростерон-сульфата связана с циркадными ритмами.

Эстриол свободный (неконъюгированный)
Эстриол - основной эстроген, образующийся в фетоплацентарном комплексе при беременности, особенно в III триместре (28-40 нед). Неконъюгированный эстриол проходит через плаценту и попадает в кровоток матери, где быстро преобразуется в глюкуронидные и сульфатные производные, которые могут экскретироваться с мочой. Время полужизни эстриол в кровотоке матери составляет всего 20-30 мин. Уровень эстриола в крови матери отражает состояние плода. Внезапное уменьшение фетоплацентарного образования эстриола сопровождается быстрым снижением эстриола в крови матери.

Преимущества определения эстриола.
Определение неконъюгированного эстриола, в отличие от определения общего эстриола в сыворотке или моче, позволяет характеризовать состояние плода независимо от функций печени или почек матери и от применения антибиотиков.
При сахарном диабете свободный эстриол более точно отражает состояние плода, так как при его определении не требуется гидролиза конъюгированного эстриола.

Диагностическое значение:
Эстриол быстро повышается во второй половине беременности, особенно в III триместре, концентрация его в плазме широко варьирует от пациента к пациенту, поэтому однократное определение эстриола малозначимо, необходимо серийное его определение.
При высокой вероятности патологии беременности постоянно низкий уровень эстриола или его внезапное снижение в III триместре свидетельствуют о нарушении развития плода или возможной внутриутробной его гибели.
Заключение о патологии беременности можно делать только при сочетании с результатами альтернативных диагностических методов, таких как амниоцентез или УЗИ.
Измененный уровень эстриола может быть при введении антибиотиков, глюкокортикоидов или при выраженной патологии печени у матери.

ХОРИОНИЧЕСКИЙ ГОНАДОТРОПИН ЧЕЛОВЕКА
b-Субъединица
Референтные пределы:
Женщины и мужчины - менее 3 ЕД/л.
Женщины в периоде менопаузы - менее 9 ЕД/л.

Хорионический гонадотропин человека является гликопротеином с молекулярной массой около 37 тыс. Да, в его состав входят неспецифическая а-субъединица (молекулярная масса 14,5 тыс. Да) и специфическая b-субъединица (молекулярная масса 22 тыс. Да). Хорионический гонадотропин человека выделяется синцитиальным слоем трофобласта во время беременности. Хорионический гонадотропин человека поддерживает активность и существование желтого тела, принимая эту роль от лютеинизирующего гормона примерно через 8 дней после овуляции, является основным гормоном ранней беременности, стимулирующим развитие эмбриобласта. Хорионический гонадотропин человека выделяется с мочой. Обнаружение гормона в моче является простым тестом на наличие либо отсутствие беременности. Определение хорионического гонадотропина человека в сыворотке используют для ранней диагностики и наблюдения за развитием беременности, выявления угрожающего выкидыша и другой патологии беременности (в первую очередь в группе риска). Определение концентрации хорионического гонадотропина человека в онкологии используют для выявления и контроля эффективности хирургического лечения и химиотерапии трофобластических опухолей (хорионэпителиомы, пузырного заноса), а также для дифференциальной диагностики опухолей яичек.

Следует обратить внимание на следующее.
Тесты на беременность проводят не ранее 3-5 дней первой (отсутствующей) менструации после оплодотворения. Самая высокая концентрация м во время беременности достигается в конце I триместра, затем она постепенно понижается, вплоть до дня родов. За 9 дней перед родами концентрация хорионического гонадотропина человека падает ниже чувствительности обнаружения. Более высокая концентрация b-хорионического гонадотропина человека имеет место при многоплодной беременности.
Причины отсутствия хорионического гонадотропина человека при беременности: тест проведен слишком рано, внематочная беременность, измерение выполнено в правильно проходящем III триместре беременности.
Причины обнаружения хорионического гонадотропина человека, не вызванные беременностью: менопауза (редко), эндокринные нарушения.

Повышение концентрации.
Трофобластическая опухоль в матке.
Тератома яичка. Результат исследования концентрации в крови хорионический гонадотропин человека позволяет оценить действие химиотерапии на опухолевые клетки.
Хориокарцинома.
Многоплодная беременность. 

Понижение концентрации.
Внематочная беременность. Низкие значения концентрации относительно фазы беременности.
Повреждение плаценты во время беременности. Об этом свидетельствуют низкие концентрации в I триместре беременности.
Угрожающий выкидыш.

Гормональная регуляция, регуляция жизнедеятельности организма животных и человека, осуществляемая при участии поступающих в кровь гормонов; одна из систем саморегуляции функций, тесно связанная с нервной и гуморальной системами регуляции и координации функций. Гормоны выделяются в кровь железами внутренней секреции , разносятся по всему организму и влияют на состояние и деятельность различных органов и тканей. По характеру действия гормоны могут быть разделены на 2 группы. Одни действуют на определённые органы (органы-мишени), например тиреотропный гормон действует главным образом на щитовидную железу, адренокортикотропный (АКТГ) - на кору надпочечников, эстрогены - на матку и т. д. Др. гормоны (кортикостероиды , ростовой, или соматотропный, гормон и некоторые др.) обладают общим, или генерализованным, действием на все ткани организма. Так, инсулин действует на обмен углеводов; активируя гексокиназную реакцию, он также может стимулировать биосинтез белка. Тестостерон и др. андрогены усиливают процессы ассимиляции (анаболическое действие); их введение сопровождается задержкой азота в организме, Глюкокортикоиды вызывают многообразные изменения в обмене веществ, стимулируют образование гликогена в печени, тормозят утилизацию глюкозы на периферии и усиливают распад белков, особенно в соединительной и лимфоидной ткани. Эстрогены стимулируют синтез в матке фосфолипидов, белка и вызывают оводнение ткани этого органа. Гормон роста усиливает синтез белка в организме, влияет на жировой, фосфорный и кальциевый обмен. По-видимому, действие гормонов на обмен веществ связано с изменением скорости ферментативных реакций, и в большинстве случаев это осуществляется путём активации ферментов. Действие гормонов на биосинтез белка связано со стимуляцией образования информационной рибонуклеиновой кислоты (и-РНК), определяющей структуру синтезируемого белка. Г. р. обмена веществ обеспечивает нормальное функционирование органов и тканей. Рост и половое созревание организма регулируют ростовые и половые гормоны. В случае необходимости мобилизация возможностей организма также осуществляется при участии Г. р. Например, при опасности и вызванном ею мышечном напряжении усиливается поступление в кровь адреналина , повышающего уровень сахара в крови и увеличивающего кровоснабжение сердца и мозга; при интенсивных повреждающих воздействиях усиливается выработка адренокортикотропного гормона и др. (см. Адаптационный синдром ).

Результаты многих экспериментов позволили предположить, что гормоны обладают способностью активировать гены. Так, введение насекомым гормона линьки - экдизона - вызывает образование особых вздутий на гигантских хромосомах. Анализ этих вздутий показал, что в них происходит интенсивный процесс образования РНК. Поскольку изменения, касающиеся хромосом и синтеза РНК, опережают начало процесса окукливания, считают, что первым результатом действия экдизона является активация генов, затем стимуляция биосинтеза РНК и образование соответствующих ферментов. Последние обеспечивают процесс метаморфоза.

Многообразие действия гормонов требует для обеспечения нормальной деятельности организма точного соответствия выработки гормонов его потребностям. Это точное и тонкое соответствие обеспечивается взаимовлиянием нервных, гуморальных и гормональных факторов. В одних случаях связь нервной системы с эндокринной железой - непосредственная. Это доказано для мозгового вещества надпочечников: раздражение чревного нерва приводит к повышению выделения адреналина. В др. случаях возбуждение передаётся по нервным волокнам сначала в гипоталамус , где под их влиянием образуются вещества (релизинг-факторы, или высвобождающие факторы), поступающие в гипофиз и вызывающие дополнительное выделение гипофизарных (так называемых тропных) гормонов, стимулирующих образование периферической железой соответствующего гормона. Хотя релизинг-факторы не получены в чистом виде, образование их в гипоталамусе доказано для адренокортикотропного, лютеинизирующего, фолликулостимулирующего, соматотропного и некоторых др. гормонов. Выделение гормонов регулируется также и по принципу механизмов с обратной связью (плюс - минус взаимодействие), Если по тем или др. причинам в организме увеличивается количество какого-нибудь гормона, это приводит к торможению выделения релизинг-фактора гипоталамусом, что вызывает уменьшение выделения соответствующего тропного гормона гипофизом, а затем и снижение секреции гормона периферической железой. Если же концентрация какого-либо гормона в крови уменьшается (например, в случае ускоренного распада его в тканях), это приводит к усилению выделения релизинг-факторов, увеличению выделения тропных гормонов гипофизом и биосинтеза гормона в периферических железах. Определённое значение в Г. р. имеет механизм саморегуляции. Так, показано, что повышение концентрации глюкозы в крови приводит к усилению выделения инсулина и, следовательно, - уменьшению концентрации глюкозы. Недостаток солей натрия стимулирует выделение гормона коры надпочечников альдостерона , действие которого связано с ускорением процессов реабсорбции солей натрия в почечных канальцах и тем самым задержкой их в организме. Таким образом, система регуляции выработки гормонов обеспечивает Г. р. обмена веществ и др. функций организма.

Лит.: Берзин Т., Биохимия гормонов, пер. с нем., М., 1964; Многотомное руководство по внутренним болезням, т. 7, М., 1966; Лейтес С. М., Лаптева Н. Н. Очерки по патофизиологии обмена веществ и эндокринной системы, М., 1967; Юдаев Н. А., О действии гормонов на уровне передачи генетической информации, «Проблемы эндокринологии», 1967, т. 13, № 1; Горизонтов П. Д., Протасова Т. Н. Роль АКТГ и кортикостероидов в патологии, М., 1968; Hamilton T., Control by estrogen of genetic transcription and translation, «Science», 1968, v. 161, № 3842, р. 649.

Н. А. Юдаев.

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978