Лекция на тему «Кровь. Свертывание крови. Группы крови переливание свертывание




Кровь - это жидкая ткань, циркулирующая по сосудам, осуществляющая транспорт различных веществ в пределах организма и обеспечивающая питание и обмен ве­ществ всех клеток тела. Красный цвет крови придает гемоглобин, содер­жащийся в эритроцитах.

У многоклеточных организмов большинство клеток не имеет непо­средственного контакта с внешней средой, их жизнедеятельность обеспе­чивается наличием внутренней среды (кровь, лимфа, тканевая жидкость). Из нее они получают необходимые для жизни вещества и выделяют в нее же продукты метаболизма. Для внутренней среды организма характерно относительное динамическое постоянство состава и физико-химических свойств, которое называется гомеостазом. Морфологическим субстратом, регулирующим обменные процессы между кровью и тканями и поддерживающим гомеостаз, являются гисто-гематические барьеры, состоящие из эндотелия капилляров, базальной мембраны, соединительной ткани, клеточных липопротеидных мембран.

В понятие "система крови" входят: кровь, органы кроветворения (красный костный мозг, лимфатические узлы и др.), органы кроворазрушения и механизмы регуляции (регулирующий нейрогумо-ральный аппарат). Система крови представляет собой одну из важнейших систем жизнеобеспечения организма и выполняет множество функций. Остановка сердца и прекращение движения крови немедленно приводит организм к гибели.

Физиологические функции крови:

1) дыхательная - перенос кислорода от легких к тканям и углекисло­го газа от тканей к легким;

2) трофическая (питательная) - доставка питательных веществ, вита­минов, минеральных солей и воды от органов пищеварения к тканям;

3) экскреторная (выделительная) - удаление из тканей конечных про­дуктов метаболизма, лишней воды и минеральных солей;

4) терморегуляторная - регуляция температуры тела путем охлаж­дения энергоемких органов и согревания органов, теряющих тепло;

5) гомеостатическая - поддержание стабильности ряда констант го-меостаза: рН, осмотического давления, изоионии и т.д.;

6) регуляция водно-солевого обмена между кровью и тканями;

7) защитная - участие в клеточном (лейкоциты), гуморальном (анти­тела) иммунитете, в свертывании для прекращения кровотечения;

8) гуморальная регуляция - перенос гормонов, медиаторов и др.;

9) креаторная (лат. creatio - созидание) - перенос макромолекул, осу­ществляющих межклеточную передачу информации с целью восстановле­ния и поддержания структуры тканей.

Общее количество крови в организме взрослого человека в норме составляет 6-8% массы тела и равно примерно 4,5-6 л. В покое в сосуди­стой системе находится 60-70% крови. Это так называемая циркулирую­щая кровь. Другая часть крови (30-40%) содержится в специальных кровя­ных депо. Это так называемая депонированная, или резервная, кровь.



Кровь состоит из жидкой части - плазмы и взвешенных в ней клеток -форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. На долю форменных элементов в циркулирующей крови приходится 40-45%, на долю плазмы - 55-60%. В депонированной крови наоборот: форменных элементов - 55-60%, плазмы - 40-45%. Объемное соотношение форменных элементов и плазмы (или часть объема крови, приходящаяся на долю эритроцитов) называется гематокритом (греч. haema, haematos - кровь, kritos - отдельный, определенный). Относительная плотность (удельный вес) цельной крови равен 1,050-1,060, эритроцитов- 1,090, плазмы- 1,025-1,034. Вязкость цельной крови по отношению к воде составляет около 5, а вязкость плазмы - 1,7-2,2. Вязкость крови обусловлена наличием белков и особенно эритроцитов.

Плазма содержит 90-92% воды и 8-10% сухого остатка, главным об­разом белков (7-8%) и минеральных солей (1%). Белки плазмы (их более 30) включают 3 основные группы:

1) альбумины (около 4,5%) обеспечивают онкотическое давление, связывают лекарственные вещества, витамины, гормоны, пигменты;

2) глобулины (2-3%) обеспечивают транспорт жиров, липоидов в составе липопротеинов, глюкозы - в составе гликопротеинов, меди, железа - в составе трансферрина, выработку антител, а также α-- и β – агглютининов крови;

3) фибриноген (0,2-0,4%) участвует в свертывании крови.

Небелковые азотсодержащие соединения плазмы включают: ами­нокислоты, полипептиды, мочевину, креатинин, продукты распада нук­леиновых кислот и т.д. Половина общего количества небелкового азота в плазме (так называемого остаточного азота) приходится на долю мочеви­ны. В норме остаточного азота в плазме содержится 10,6-14,1 ммоль/л, а мочевины - 2,5-3,3 ммоль/л. В плазме находятся также безазотистые органические вещества: глюкоза 4,44-6,67 ммоль/л, нейтральные жиры, липоиды. Минеральные вещества плаз­мы составляют около 1% (катионы Nа + , К + , Са 2+ , анионы С1 - , НСО 3 - , НРО 4 -)- В плазме содержится также более 50 различных гормонов и фер­ментов.



Осмотическое давление - это давление, которое оказывают раст­воренные в плазме вещества. Оно зависит в основном от содержащихся в ней минеральных солей и составляет в среднем около 7,6 атм., что соот­ветствует температуре замерзания крови, равной -0,56 - -0,58°С. Около 60% всего осмотического давления обусловлено солями натрия. Растворы, осмотическое давление которых такое же, как у плазмы, называются изо­тоническими, или изоосмотическими. Растворы с большим осмотическим давлением называются гипертоническими, а с меньшим - гипотонически­ми. 0,85-0,9% раствор NaCl называется физиологическим. Однако он не является полностью физиологическим, так как в нем нет других компонен­тов плазмы.

Онкотическое (коллоидно-осмотическое) давление - это часть осмо­тического давления, создаваемая белками плазмы (т.е. их способность притягивать и удерживать воду). Оно равно 0,03-0,04 атм. (25-30 мм рт.ст.), т.е. 1/200 осмотического давления плазмы (равного 7,6 атм.), и оп­ределяется более чем на 80% альбуминами. Постоянство осмотического и онкотического давления крови является жестким параметром гомеостаза, без которого невозможна нормальная жизнедеятельность организма.

Реакция крови (рН) обусловлена соотношением в ней водородных (Н +) и гидроксильных (ОН -) ионов. Она также является одной из важней­ших констант гомеостаза, так как только при рН 7,36-7,42 возможно опти­мальное течение обмена веществ. Крайними пределами изменения рН, совместимыми с жизнью, являются величины от 7 до 7,8. Сдвиг реакции крови в кислую сторону называется ацидозом, в щелочную - алкалозом. Поддержание постоянства реакции крови в пределах рН 7,36-7,42 (слабо­щелочная реакция) достигается за счет следующих буферных систем кро­ви:

1) буферной системы гемоглобина - самой мощной; на ее долю при­ходится 75% буферной емкости крови;

2) карбонатной буферной системы (Н 2 СО 3 + NaНСО 3) - занимает по мощности второе место после буферной системы гемоглобина;

3) фосфатной буферной системы, образованной дигидрофосфатом (NаН 2 РО 4) и гидрофосфатом (Na 2 НРО 4) натрия;

4) белков плазмы.

В поддержании рН крови участвуют также легкие, почки, потовые железы. Буферные системы имеются и в тканях. Главными буферами тка­ней являются клеточные белки и фосфаты.

2. Эритроцит (греч. erithros - красный, cytus - клетка) - безъя­дерный форменный элемент крови, содержащий гемоглобин. Имеет форму двояковогнутого диска диаметром 7-8 мкм, толщиной 1-2,5 мкм. Они очень гибки и эластичны, легко деформируются и проходят через крове­носные капилляры с диаметром меньшим, чем диаметр эритроцита. Обра­зуются в красном костном мозге, разрушаются в печени и селезенке. Про­должительность жизни эритроцитов составляет 100-120 дней. В начальных фазах своего развития эритроциты имеют ядро и называются ретикулоцитами. По мере созревания ядро замещается дыхательным пигментом - ге­моглобином, составляющим 90% сухого вещества эритроцитов.

В норме в 1 мкл (мм 3) крови у мужчин содержится 4-5х10¹²/л эритро­цитов, у женщин - 3,7-4,7 х10¹²/л, у новорожденных достигает 6 х10¹²/л. Увели­чение количества эритроцитов в единице объема крови называется эритроцитозом (полиглобулией, полицитемией), уменьшение - эритропенией. Общая площадь поверхности всех эритроцитов взрослого человека состав­ляет 3000-3800 м 2 , что в 1500-1900 раз превышает поверхность тела. Функции эритроцитов:

1) дыхательная - за счет гемоглобина, присоединяющего к себе О 2 и СО 2 ;

2) питательная - адсорбирование на своей поверхности аминокислот и доставка их к клеткам организма;

3) защитная - связывание токсинов находящимися на их поверх­ности антитоксинами и участие в свертывании крови;

4) ферментативная - перенос различных ферментов: угольной ангидразы (карбоангидразы), истинной холинэстеразы и др.;

5) буферная - поддержание с помощью гемоглобина рН крови в пре­делах 7,36-7,42;

6) креаторная - переносят вещества, осуществляющие межклеточные взаимодействия, обеспечивающие сохранность структуры органов и тка­ней. Например, при повреждении печени у животных эритроциты начина­ют транспортировать из костного мозга в печень нуклеотиды, пептиды, аминокислоты, восстанавливающие структуру этого органа.

Гемоглобин является основной составной частью эритроцитов и обеспечивает:

1) дыхательную функцию крови за счет переноса О 2 от легких к тка­ням и СО 2 от клеток к легким;

2) регуляцию активной реакции (рН) крови, обладая свойствами сла­бых кислот (75% буферной емкости крови).

По химической структуре гемоглобин является сложным белком -хромопротеидом, состоящим из белка глобина и простетической группы тема (четырех молекул). Гем имеет в своем составе атом железа, способ­ный присоединять и отдавать молекулу кислорода. При этом валентность железа не изменяется, т.е. оно остается двухвалентным.

В крови человека должно содержаться в идеале 166,7 г/л гемоглобина. Фактически у мужчин в норме содержится гемоглобина в среднем 145 г/л с колебаниями от 130 до 160 г/л, у женщин - 130 г/л с колебаниями от 120 до 140 г/л. Об­щее количество гемоглобина в пяти литрах крови у человека составляет 700-800 г. 1 г гемоглобина связывает 1,34 мл кислорода. Разница в содер­жании эритроцитов и гемоглобина у мужчин и женщин объясняется сти­мулирующим действием на кроветворение мужских половых гормонов и тормозящим влиянием женских половых гормонов. Гемоглобин синтези­руется эритробластами и нормобластами костного мозга. При разрушении эритроцитов гемоглобин после отщепления гема превращается в желчный пигмент - билирубин. Последний с желчью поступает в кишечник, где превращается в стеркобилин и уробилин, выводимые с калом и мочой. За сутки разрушается и превращается в желчные пигменты около 8 г гемо­глобина, т.е. около 1% гемоглобина, находящегося в крови.

В скелетных мышцах и миокарде находится мышечный гемоглобин, называемый миоглобином. Его простетическая группа - гем идентична этой же группе молекулы гемоглобина крови, а белковая часть - глобин обладает меньшей молекулярной массой, чем белок гемоглобина. Миоглобин связывает до 14% общего количества кислорода в организме. Его на­значение - снабжение кислородом работающей мышцы в момент сокра­щения, когда кровоток в ней уменьшается или прекращается.

В норме гемоглобин содержится в крови в виде трех физиологи­ческих соединений:

1) оксигемоглобин (НbО 2) - гемоглобин, присоединивший О 2 ; на­ходится в артериальной крови, придавая ей ярко-алый цвет;

2) восстановленный, или редуцированный, гемоглобин, дезоксиге-моглобин (Нb) - оксигемоглобин, отдавший О 2 ; находится в венозной кро­ви, которая имеет более темный цвет, чем артериальная;

3) карбгемоглобин (НbСО 2) - соединение гемоглобина с углекислым газом; содержится в венозной крови.

Гемоглобин способен образовывать и патологические соединения.

1) Карбоксигемоглобин (НbСО) - соединение гемоглобина с угар­ным газом (окисью углерода); сродство железа гемоглобина к угарному газу превышает его сродство к О 2 , поэтому даже 0,1% угарного газа в воз­духе ведет к превращению 80% гемоглобина в карбоксигемоглобин, кото­рый неспособен присоединять О 2 , что является опасным для жизни. Сла­бое отравление угарным газом - обратимый процесс. Вдыхание чистого кислорода увеличивает скорость расщепления карбоксигемоглобина в 20 раз.

2) Метгемоглобин (МеtHb) - соединение, в котором под влиянием сильных окислителей (анилин, бертолетова соль, фенацетин и др.) железо гема из двухвалентного превращается в трехвалентное. При накоплении в крови большого количества метгемоглобина транспорт кислорода тканям нарушается, и может наступить смерть.

3. Лейкоцит или белое кро­вяное тельце, - это бесцветная ядерная клетка, не содержащая гемоглоби­на. Размер лейкоцитов - 8-20 мкм. Образуются в красном костном мозге, лимфатических узлах, селезенке, лимфатических фолликулах. В 1 мкл (мм 3) крови человека в норме содержится 4-9 х109 лейкоцитов. Увеличе­ние количества лейкоцитов в крови называется лейкоцитозом, уменьшение - лейкопенией. Продолжительность жизни лейкоцитов составляет в сред­нем 15-20 дней, лимфоцитов - 20 и более лет. Некоторые лимфоциты жи­вут на протяжении всей жизни человека.

Лейкоциты делят на две группы: гранулоциты (зернистые) и аграну-лоциты (незернистые). В группу гранулоцитов входят нейтрофилы, эози-нофилы и базофилы, а в группу агранулоцитов - лимфоциты и моноциты. При оценке изменений числа лейкоцитов в клинике решающее значение придается не столько изменениям их количества, сколько изменениям взаимоотношений между различными видами клеток. Процентное соот­ношение отдельных форм лейкоцитов в крови называется лейкоцитарной формулой, или лейкограммой. В настоящее время она имеет следующий вид (табл.6).

У здоровых людей лейкограмма довольно постоянна, и ее изменения служат признаком различных заболеваний. Так, например, при острых воспалительных процессах наблюдается увеличение количества нейтрофилов (нейтрофилия), при аллергических заболеваниях и глистной болез­ни - эозинофилия, при вялотекущих хронических инфекциях (туберкулез, ревматизм и др.) - лимфоцитоз.

По нейтрофилам можно определить пол человека. При наличии жен­ского генотипа 7 из 500 нейтрофилов содержат особые, специфические для женского пола образования, называемые "барабанными палочками" (круг­лые выросты диаметром 1,5-2 мкм, соединенные с одним из сегментов ядра посредством тонких хроматиновых мостиков).

Лейкоцитарная формула у детей (%)

Возраст лейкоциты х10* 9/л нейтрофилы лимфоциты моноциты эозинофилы базофилы
палочк. сегмент.
5 суток 12 (9-15) 1-5 35-55 30-50 6-11 1-4 0-1
10 сут. 11 (8,5-14) 1-4 27-47 40-60 6-14 1-5 0-1
1 месяц 10 (8-12) 1-5 17-30 45-60 5-12 1-5 0-1
1 год 9 (7-11) 1-5 20-35 45-65 5-12 1-4 0-1
4-5 лет 8 (6-10) 1-4 35-55 35-55 4-6 1-4 0-1
10 лет 7,5 (6-10) 1-4 40-60 30-45 4-6 1-4 0-1
15 лет 1-4 40-60 30-45 3-7 1-4 0-1

Все виды лейкоцитов обладают тремя важнейшими физиологичес­кими свойствами:

1) амебовидной подвижностью - способностью активно передви­гаться за счет образования ложноножек (псевдоподий);

2) диапедезом - способностью выходить (мигрировать) через непо­врежденную стенку сосуда;

3) фагоцитозом - способностью окружать инородные тела и микро­организмы, захватывать их в цитоплазму, поглощать и переваривать. Это явление было подробно изучено и описано И.И.Мечниковым (1882).

Лейкоциты выполняют множество функций:

1) защитная - борьба с чужеродными агентами; они фагоцитируют (поглощают) чужеродные тела и уничтожают их;

2) антитоксическая - выработка антитоксинов, обезвреживающих продукты жизнедеятельности микробов;

3) выработка антител, обеспечивающих иммунитет, т.е. невос­приимчивость к заразным болезням;

4) участвуют в развитии всех этапов воспаления, стимулируют вос­становительные (регенеративные) процессы в организме и ускоряют за­живление ран;

5) ферментативная - они содержат различные ферменты, необхо­димые для осуществления фагоцитоза;

6) участвуют в процессах свертывания крови и фибринолиза путем выработки гепарина, гнетамина, активатора плазминогена и т.д.;

7) являются центральным звеном иммунной системы организма, осуществляя функцию иммунного надзора ("цензуры"), защиты от всего чужеродного и сохраняя генетический гомеостаз (Т-лимфоциты);

8) обеспечивают реакцию отторжения трансплантата, уничтожение собственных мутантных клеток;

9) образуют активные (эндогенные) пирогены и формируют лихора­дочную реакцию;

10) несут макромолекулы с информацией, необходимой для управле­ния генетическим аппаратом других клеток организма; путем таких меж­клеточных взаимодействий (креаторных связей) восстанавливается и под­держивается целостность организма.

4 . Тромбоцит или кровяная пластинка, - участвующий в свертывании крови форменный эле­мент, необходимый для поддержания целостности сосудистой стенки. Представляет собой округлое или овальное безъядерное образование диа­метром 2-5 мкм. Тромбоциты образуются в красном костном мозге из ги­гантских клеток - мегакариоцитов. В 1 мкл (мм 3) крови у человека в норме содержится 180-320 тысяч тромбоцитов. Увеличение количества тромбо­цитов в периферической крови называется тромбоцитозом, уменьшение - тромбоцитопенией. Продолжительность жизни тромбоцитов составляет 2- 10 дней.

Основными физиологическими свойствами тромбоцитов являются:

1) амебовидная подвижность за счет образования ложноножек;

2) фагоцитоз, т.е. поглощение инородных тел и микробов;

3) прилипание к чужеродной поверхности и склеивание между со­бой, при этом они образуют 2-10 отростков, за счет которых происходит прикрепление;

4) легкая разрушаемость;

5) выделение и поглощение различных биологически активных ве­ществ типа серотонина, адреналина, норадреналина и др.;

Все эти свойства тромбоцитов обусловливают их участие в остановке кровотечения.

Функции тромбоцитов:

1) активно участвуют в процессе свертывания крови и растворения кровяного сгустка (фибринолиза);

2) участвуют в остановке кровотечения (гемостазе) за счет при­сутствующих в них биологически активных соединений;

3) выполняют защитную функцию за счет склеивания (агглютина­ции) микробов и фагоцитоза;

4) вырабатывают некоторые ферменты (амилолитические, протеоли-тические и др.), необходимые для нормальной жизнедеятельности тромбо­цитов и для процесса остановки кровотечения;

5) оказывают влияние на состояние гистогематических барьеров ме­жду кровью и тканевой жидкостью путем изменения проницаемости сте­нок капилляров;

6) осуществляют транспорт креаторных веществ, важных для сохра­нения структуры сосудистой стенки; без взаимодействия с тромбоцитами эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты.

Скорость (реакция) оседания эритроцитов (сокращенно СОЭ) - показатель, отражающий изменения физико-химических свойств крови и измеряемой величиной столба плазмы, освобождающейся от эритроцитов при их оседании из цитратной смеси (5% раствор цитрата натрия) за 1 час в специальной пипетке прибора Т.П.Панченкова.

В норме СОЭ равна:

у мужчин - 1-10 мм/час;

у женщин - 2-15 мм/час;

новорожденные - от 2 до 4 мм/ч;

дети первого года жизни - от 3 до 10 мм/ч;

дети возрастом 1-5 лет - от 5 до 11 мм/ч;

дети 6-14 лет - от 4 до 12 мм/ч;

старше 14 лет - для девочек - от 2 до 15 мм/ч, а для мальчиков - от 1 до 10 мм/ч.

у беременных женщин перед родами - 40-50 мм/час.

Увеличение СОЭ больше указанных величин является, как правило, признаком патологии. Величина СОЭ зависит не от свойств эритроцитов, а от свойств плазмы, в первую очередь от содержания в ней крупномолеку­лярных белков - глобулинов и особенно фибриногена. Концентрация этих белков возрастает при всех воспалительных процессах. При беременности содержание фибриногена перед родами почти в 2 раза больше нормы, по­этому СОЭ достигает 40-50 мм/час.

Лейкоциты имеют свой, независимый от эритроцитов режим оседа­ния. Однако скорость оседания лейкоцитов в клинике во внимание не при­нимается.

Гемостаз (греч. haime - кровь, stasis - неподвижное состояние) - это остановка движения крови по кровеносному сосуду, т.е. остановка кровотечения. Различают 2 механизма остановки кровотечения:

1) сосудисто-тромбоцитарный (микроциркуляторный) гемостаз;

2) коагуляционный гемостаз (свертывание крови).

Первый механизм способен самостоятельно за несколько минут оста­новить кровотечение из наиболее часто травмируемых мелких сосудов с довольно низким кровяным давлением. Он слагается из двух процессов:

1) сосудистого спазма, приводящего к временной остановке или уменьшению кровотечения;

2) образования, уплотнения и сокращения тромбоцитарной пробки, приводящей к полной остановке кровотечения.

Второй механизм остановки кровотечения - свертывание крови (ге-мокоагуляция) обеспечивает прекращение кровопотери при повреждении крупных сосудов, в основном мышечного типа. Осуществляется в три фа­зы:

I фаза - формирование протромбиназы;

II фаза - образование тромбина;

III фаза - превращение фибриногена в фибрин.

В механизме свертывания крови, помимо стенки кровеносных сосудов и форменных элементов, при­нимает участие 15 плазменных факторов: фибриноген, протромбин, ткане­вой тромбопластин, кальций, проакцелерин, конвертин, антигемофильные глобулины А и Б, фибринстабилизирующий фактор, прекалликреин (фак­тор Флетчера), высокомолекулярный кининоген (фактор Фитцджеральда) и др.

Большинство этих факторов образуется в печени при участии вита­мина К и является проферментами, относящимися к глобулиновой фрак­ции белков плазмы. В активную форму - ферменты они переходят в про­цессе свертывания. Причем каждая реакция катализируется ферментом, образующимся в результате предшествующей реакции.

Пусковым механизмом свертывания крови служит освобождение тромбопластина поврежденной тканью и распадающимися тромбоцитами. Для осуществления всех фаз процесса свертывания необходимы ионы кальция.

Кровяной сгусток образуют сеть из волокон нерастворимого фибрина и опутанные ею эритроци­ты, лейкоциты и тромбоциты. Прочность обра­зовавшегося кровяного сгустка обеспечивается фактором XIII - фибрин-стабилиризующим фактором (ферментом фибриназой, синтезируемой в печени). Плазма крови, лишенная фибриногена и некоторых других ве­ществ, участвующих в свертывании, называется сывороткой. А кровь, из которой удален фибрин, называется дефибринированной.

Время полного свертывания капиллярной крови в норме составляет 3-5 минут, венозной крови - 5-10 мин.

Кроме свертывающей системы, в организме имеются одновременно еще две системы: противосвертывающая и фибринолитическая.

Противосвертывающая система препятствует процессам внутрисосудистого свер­тывания крови или замедляет гемокоагуляцию. Главным антикоагулянтом этой системы является гепарин, выделяемый из ткани легких и печени, и продуцируемый базофильными лейкоцитами и тканевыми базофилами (тучными клетками соединительной ткани). Количество базофильных лей­коцитов очень мало, зато все тканевые базофилы организма имеют массу 1,5 кг. Гепарин тормозит все фазы процесса свертывания крови, подавляет активность многих плазменных факторов и динамические превращения тромбоцитов. Выделяемый слюнными железами медицинских пиявок ги­рудин действует угнетающе на третью стадию процесса свертывания кро­ви, т.е. препятствует образованию фибрина.

Фибринолитическая система способна растворять образовавшийся фибрин и тромбы и является антиподом свертывающей системы. Главная функция фибринолиза - расщепление фибрина и восстановление просвета закупоренного сгустком сосуда. Расщепление фибрина осуществляется протеолитическим ферментом плазмином (фибринолизином), который находится в плазме в виде профермента плазминогена. Для его превраще­ния в плазмин имеются активаторы, содержащиеся в крови и тканях, и ингибиторы (лат. inhibere - сдерживать, останавливать), тормозящие пре­вращение плазминогена в плазмин.

Нарушение функциональных взаимосвязей между свертывающей, противосвертывающей и фибринолитической системами может привести к тяжелым заболеваниям: повышенной кровоточивости, внутрисосудистому тромбообразованию и даже эмболии.

Группы крови - совокупность признаков, характеризующих антигенную структуру эритроцитов и специфичность антиэритроцитарных антител, которые учитываются при подборе крови для трансфузий (лат. transfusio - переливание).

В 1901 г. австриец К.Ландштейнер и в 1903 г. чех Я.Янский обна­ружили, что при смешивании крови разных людей часто наблюдается склеивание эритроцитов друг с другом - явление агглютинации (лат. agglutinatio - склеивание) с последующим их разрушением (гемолизом). Было установлено, что в эритроцитах имеются агглютиногены А и В, склеиваемые вещества гликолипидного строения, антигены. В плазме бы­ли найдены агглютинины α и β, видоизмененные белки глобулиновой фракции, антитела, склеивающие эритроциты. Агглютиногены А и В в эритроцитах, как и агглютинины α и β в плазме, у разных людей могут быть по одному или вместе, либо отсутствовать. Агглютиноген А и агглю­тинин α, а также В и β называются одноименными. Склеивание эритроци­тов происходит в том случае, если эритроциты донора (человека, дающего кровь) встречаются с одноименными агглютининами реципиента (челове­ка, получающего кровь), т.е. А + α, В + β или АВ + αβ. Отсюда ясно, что в крови каждого человека находятся разноименные агглютиноген и агглю­тинин.

Согласно классификации Я.Янского и К.Ландштейнера у людей име­ется 4 комбинации агглютиногенов и агглютининов, которые обозначают­ся следующим образом: I(0) - αβ., II(А) - А β, Ш(В) - В α и IV(АВ). Из этих обозначений следует, что у людей 1 группы в эритроцитах отсутствуют агглютиногены А и В, а в плазме имеются оба агглютинина α и β . У людей II группы эритроциты имеют агглютиноген А, а плазма - агглютинин β. К III группе относятся люди, у которых в эритроцитах находится агглютино­ген В, а в плазме - агглютинин α. У людей IV группы в эритроцитах со­держатся оба агглютиногена А и В, а агглютинины в плазме отсутствуют. Исходя из этого, нетрудно представить, каким группам можно переливать кровь определенной группы (схема 24).

Как видно из схемы, людям I группы можно переливать кровь только этой группы. Кровь же I группы можно переливать людям всех групп. По­этому людей с I группой крови называют универсальными донорами. Лю­дям с IV группой можно переливать кровь всех групп, поэтому этих людей называют универсальными реципиентами. Кровь же IV группы можно пе­реливать людям с кровью IV группы. Кровь людей II и III групп можно переливать людям с одноименной, а также с IV группой крови.

Однако в настоящее время в клинической практике переливают толь­ко одногруппную кровь, причем в небольших количествах (не более 500 мл), или переливают недостающие компоненты крови (компонентная те­рапия). Это связано с тем, что:

во-первых, при больших массивных переливаниях разведения агглю­тининов донора не происходит, и они склеивают эритроциты реципиента;

во-вторых, при тщательном изучении людей с кровью I группы были обнаружены иммунные агглютинины анти-А и анти-В (у 10-20% людей); переливание такой крови людям с другими группами крови вызывает тя­желые осложнения. Поэтому людей с I группой крови, содержащих агглю­тинины анти-А и анти-В, сейчас называют опасными универсальными до­норами;

в-третьих, в системе АВО выявлено много вариантов каждого агглю­тиногена. Так, агглютиноген А существует более, чем в 10 вариантах. Раз­личие между ними состоит в том, что А1 является самым сильным, а А2-А7 и другие варианты обладают слабыми агглютинационными свойствами. Поэтому кровь таких лиц может быть ошибочно отнесена к I группе, что может привести к гемотрансфузионным осложнениям при перелива­нии ее больным с I и III группами. Агглютиноген В тоже существует в не­скольких вариантах, активность которых убывает в порядке их нумерации.

В 1930 г. К.Ландштейнер, выступая на церемонии вручения ему Но­белевской премии за открытие групп крови, предположил, что в будущем будут открыты новые агглютиногены, а количество групп крови будет расти до тех пор, пока не достигнет числа живущих на земле людей. Это предположение ученого оказалось верным. К настоящему времени в эрит­роцитах человека обнаружено более 500 различных агглютиногенов. Толь­ко из этих агглютиногенов можно составить более 400 млн. комбинаций, или групповых признаков крови. Если же учитывать и все остальные агг­лютиногены, встречающиеся в крови, то число комбинаций достигнет 700 млрд., т.е значительно больше, чем людей на земном шаре. Это определяет удивительную антигенную неповторимость, и в этом смысле каждый че­ловек имеет свою группу крови. Данные системы агглютиногенов отлича­ются от системы АВО тем, что не содержат в плазме естественных агглю­тининов, подобных α- и β-агглютининам. Но при определенных условиях к этим агглютиногенам могут вырабатываться иммунные антитела - агг­лютинины. Поэтому повторно переливать больному кровь от одного и того же донора не рекомендуется.

Для определения групп крови нужно иметь стандартные сыворотки, содержащие известные агглютинины, или цоликлоны анти-А и анти-В, содержащие диагностические моноклональные антитела. Если смешать каплю крови человека, группу которого надо определить, с сывороткой I, II, III групп или с цоликлонами анти-А и анти-В, то по наступившей агг­лютинации можно определить его группу.

Несмотря на простоту метода в 7-10% случаев группа крови опреде­ляется неверно, и больным вводят несовместимую кровь. Для избежания такого осложнения перед переливанием крови обязательно проводят:

1) определение группы крови донора и реципиента;

2) резус-принадлежность крови донора и реципиента;

3) пробу на индивидуальную совместимость;

4) биологическую пробу на совместимость в процессе переливания: вливают вначале 10-15 мл донорской крови и затем в течение 3-5 минут наблюдают за состоянием больного.

Перелитая кровь всегда действует многосторонне. В клинической практике выделяют:

1) заместительное действие - замещение потерянной крови;

2) иммуностимулирующее действие - с целью стимуляции защитных сил;

3) кровоостанавливающее (гемостатическое) действие - с целью ос­тановки кровотечения, особенно внутреннего;

4) обезвреживающее (дезинтоксикационное) действие - с целью уменьшения интоксикации;

5) питательное действие - введение белков, жиров, углеводов в лег­коусвояемом виде.

кроме основных агглютиногенов А и В, в эритроцитах могут быть другие дополнительные, в частности так называемый резус-агглютиноген (резус-фактор). Впервые он был найден в 1940 г. К.Ландштейнером и И.Винером в крови обезьяны макаки-резуса. У 85% людей в крови имеется этот же резус-агглютиноген. Такая кровь на­зывается резус-положительной. Кровь, в которой отсутствует резус-агглютиноген, называется резус-отрицательной (у 15% людей). Система резус имеет более 40 разновидностей агглютиногенов - О, С, Е, из которых наиболее активен О. Особенностью резус-фактора является то, что у лю­дей отсутствуют антирезус-агглютинины. Однако если человеку с резус-отрицательной кровью повторно переливать резус-положительную кровь, то под влиянием введенного резус-агглютиногена в крови выра­батываются специфические антирезус-агглютинины и гемолизины. В этом случае переливание резус-положительной крови этому человеку может вызвать агглютинацию и гемолиз эритроцитов - возникнет гемотрансфузионный шок.

Резус-фактор передается по наследству и имеет особое значение для течения беременности. Например, если у матери отсутствует резус-фактор, а у отца он есть (вероятность такого брака составляет 50%), то плод может унаследовать от отца резус-фактор и оказаться резус-положительным. Кровь плода проникает в организм матери, вызывая образование в ее кро­ви антирезус-агглютининов. Если эти антитела поступят через плаценту обратно в кровь плода, произойдет агглютинация. При высокой концен­трации антирезус-агглютининов может наступить смерть плода и выки­дыш. При легких формах резус-несовместимости плод рождается живым, но с гемолитической желтухой.

Резус-конфликт возникает лишь при высокой концентрации антирезус-гглютининов. Чаще всего первый ребенок рождается нормальным, по-скольку титр этих антител в крови матери возрастает относительно медленно (в течение нескольких месяцев). Но при повторной беременности резус-отрицательной женщины резус-положительным плодом угроза резус-конфликта нарастает вследствие образования новых порций антирезус-агглютининов. Резус-несовместимость при беременности встречается не очень часто: примерно один случай на 700 родов.

Для профилактики резус-конфликта беременным резус-отрица­тельным женщинам назначают антирезус-гамма-глобулин, который ней­трализует резус-положительные антигены плода.

Открытие в начале ХХ века четырех групп крови существенно расширило возможности медицины. Переливание с учетом их совместимости стало принципиально возможным, а с ним стало возможным лечение множества тяжелых болезней. Однако все ли особенности групп крови исследованы? Мы расскажем, насколько ее тип может влиять на функционирование организма и, в частности, на сердечно-сосудистую систему.

Первые исследования постоянного состава крови были начаты иммунологом Карлом Ландштейнером. Тогда группа медиков под его руководством заметила, что в некоторых случаях смешивание крови двух пациентов изменяет ее структуру - происходит слипание красных кровяных телец (эритроцитов). Дальнейшие исследования позволили выявить на этих клетках наличие антигенов (А и В) и антител к ним (α и β). Одновременно присутствие антигенов и антител к ним в крови человека невозможно - именно такое совмещение при переливании и вызывало слипание клеток. В результате было выделено 4 варианта крови, которые и известны сегодня как система АВ0:

  • 0 (1 группа) - только антитела α и β.
  • А (2 группа) - А и β.
  • В (3 группа) - α и В.
  • АВ (4 группа) - только антигены А и В.

В дальнейшем изучение системы антител и антигенов продолжалось, и сегодня современной медицине известно более десятка различных систем: Келла, Кидда, Даффи и других. Однако по сей день наиболее популярной для выявления совместимости является система АВ0 с уточнением резус-фактора - наличия на эритроцитах специфического белка. Если он присутствует резус положительный, если нет - отрицательный.

Выявление различного состава антител и антигенов натолкнуло ученых на мысль, что они могут определять на устойчивость организма к различным типам болезней. Уже в середине ХХ века было выдвинуто предположение, что состав крови может влиять на ее свертываемость. В 1964 году Оксфордский региональный центр переливания крови провел статистическое исследование 400 образцов, по результатам которого была выявлена связь наличия антигенов с повышением свертываемости. Оказалось, что в 1-й группе, в которой присутствуют только антитела, концентрация VIII фактора свертывания ниже, чем в остальных образцах.

Повышенная свертываемость крови - это риск тромбообразования. А именно тромбы являются наиболее частой причиной инфарктов миокарда и инсультов. Поэтому на основе исследований ученые предположили, что 1-я группа крови наиболее безопасна в отношении развития сердечно-сосудистых заболеваний (ССЗ).

На сегодняшний день собрана большая база различных статистических данных, подтверждающих эту теорию. Однако сам принцип, по которому вероятность развития болезней сердца и сосудов в группах 2, 3, 4 выше, на уровне лабораторных исследований все еще не подтвержден.

В 1990 году врачи Королевского лазарета Эдинбурга высказали предположение, что существующая статистика связана с тем, что антигены А и В являются сахаридами, которые и повышают свертываемость крови. Поскольку в 1-й группе их нет, она может считаться менее подверженной образованию тромбов.

Ишемическая болезнь сердца (ИБС), по данным Всемирной организации здоровья, является главной причиной смерти в мире. Это заболевание, которое приводит к инфаркту миокарда или внезапной остановке сердца. При этом на начальных стадиях ИБС не имеет выраженных симптомов - человек может не подозревать о наличии болезни. Поэтому одним из существенных направлений профилактики инфарктов является ранняя диагностика ИБС. А значит, выявление дополнительных факторов риска - перспективное направление в медицинских исследованиях. Группы крови в данном аспекте изучаются очень внимательно.

Одно из наиболее масштабных исследований было проведено Гарвардской школой в Бостоне. На протяжении 20 лет учитывались истории болезней более 90 тысяч пациентов, среди которых 4 тысячи страдали ишемической болезнью сердца. Для того, чтобы статистика была как можно достовернее, учитывались дополнительные факторы: наличие сопутствующих диагнозов, возраст, пол, даже рацион питания. Как и в других исследованиях в этой области, было подтверждено, что пациенты с 1-й группой крови меньше страдают от ИБС. Кроме этого, были выявлены и другие данные:

  • Наличие антигенов повышает риск развития ИБС, однако А и В в этом плане неравноценны. У 2-й группы (А) вероятность заболевания по сравнению с 1-й группой выше на 6%, а вот у 3-й группы (В) - уже на 15%.
  • Наиболее подвержены ИБС люди с 4-й группой крови. По сравнению с 1-й группой, заболевание среди таких пациентов встречается на 23% чаще.

Еще одно важное исследование в этом направлении провели ученые Норвегии в 1980 году. Во внимание брались лишь данные пациентов с уже имеющейся ишемической болезнью сердца. Среди них людей с 1-й группой крови оказалось больше, чем со 2-й группой. Однако сами результаты оперативного лечения (аортокоронарного шунтирования) показали, что у больных с отсутствием антигенов А и В намного выше выживаемость и меньше риск осложнений.

В исследованиях связи группы крови и сердечно-сосудистых заболеваний (ССЗ) также собирались данные по атеросклерозу, артериальной гипертензии и инсультам.

  • Атеросклероз сосудов чаще встречается у мужчин с 4-й группой крови (польское исследование), а у женщин - с 3-й группой (литовское исследование).
  • Мужчины со 2-й группой крови более подвержены артериальной гипертензии, а у женщин она чаще встречается среди обладательниц 3-й группы. Более того, ранние исследования 70-80-х годов прошлого века выделяли именно 2-ю группу, как главный фактор риска по развитию всех сердечно-сосудистых заболеваний. И лишь статистика последних 20 лет показала, что наиболее опасна 4-я группа.
  • Люди с 4-й группой более подвержены инсультам. В 2012 году ученые из Университета Вермонта провели исследование с участием 30 тысяч человек пожилого возраста. По результатам оказалось, что наибольший процент людей с деменцией наблюдается среди пациентов с 4-й группой крови. В данном случае слабоумие связано именно с поражением сосудов головного мозга.

Кардиологи обращают внимание, что группа крови - лишь один из возможных факторов риска. Причем на сегодняшний день доказан он косвенно. Но существуют вполне реальные, полностью подтвержденные, факторы. Среди них наряду с пожилым возрастом, наследственностью и другим присутствуют привычки и образ жизни.

  • Курение.

Никотин повышает свертываемость крови, а окись углерода способствует отложению холестерина в стенках сосудов. Это приводит к образованию атеросклеротических бляшек, а нарушение свертывающей системы крови – к формированию на их поверхности тромбов, что в результате повышает риск развития инсульта и ИБС и, в частности, инфаркта. Также во время курения легкие поставляют меньше кислорода, и сердце компенсирует нехватку учащенным ритмом. Это приводит к аритмиям и тахикардии.

  • Алкоголь.

Употребление спиртных напитков приводит к резкому расширению сосудов, а потом к столь же резкому их сужению. Это отражается на артериальном давлении, нарушает кровообращение и может приводить к перерождению сердечной мышцы (кардиомиопатиии). Частое последствие пивного алкоголизма - чрезмерно увеличенный миокард, так называемое бычье сердце.

  • Ожирение.

Люди с избыточной массой тела чаще страдают от артериальной гипертензии. Избыточная жировая ткань увеличивает общее количество сосудов, для обеспечения которых сердце должно постоянно работать в напряженном режиме. Жировые накопления могут влиять на гормональный фон, нарушать восприимчивость организма к инсулину. Это, в свою очередь, приводит к сахарному диабету 2-го типа - существенному фактору риска развития инфаркта миокарда.

  • Чрезмерное потребление соли.

Употребление более 5 г соли в день приводит к нарушению водно-солевого баланса - жидкость задерживается в организме. А это способствует повышению артериального давления. При этом полное отсутствие соли в рационе может, напротив, приводить к обезвоживанию, что сказывается на работе организма в целом.

  • Гиподинамия.

Отсутствие спорта и сидячий образ жизни относятся к одним из основных факторов риска ССЗ. Нетренированное сердце более резко реагирует на стрессы, физические нагрузки. Заниматься рекомендуется регулярно, в умеренном ритме и не менее 30 минут в день.

Плазма крови – полупрозрачная жидкость, в ней содержится 90-92% воды и 8-10% органических соединений и минеральных солей. В плазме содержатся 3 группы белков: альбумины, глобулины, фибриноген.

Альбумины и фибриноген образуются в клетках печени. Глобулины не только в печени, но и в селезенке, костном мозге и лимфатических узлах. Альбумины осуществляют транспорт плохорастворимых веществ. Фибриноген участвует в свертывании крови.

Гамма-глобулины - антитела, которые защищают организм от бактерий и их токсинов. Введение гамма-глобулина повышает устойчивость к инфекции.

Белки крови выполняют многие важные функции. Они обладают буферными свойствами, то есть делают раствор нейтральным. Белки участвуют в поддержании определенной вязкости крови, от которой зависит постоянство кровяного давления. Белки способны удерживать некоторое количество воды в кровяном русле и тем самым регулируют тканевой водный обмен. В крови содержится и небелковый азот, продукты распада белков: мочевая кислота, креатинин и т.д. В крови также имеется глюкоза, ее норма от 4 до 6 ммоль/л. В плазме имеются минеральные соли, они составляют приблизительно 1%, к ним относятся соли натрия, калия, кальция, угольной кислоты, фосфорной кислоты и т.д. Осмотическое давлениезависит отминеральных солей. Из плазмы крови готовят сыворотку, путем удаления из нее фибриногена.

Свертывание крови (гемкоагуляция).

Наблюдается при повреждении сосудов. Свертываться кровь начинает через 4-5 мин., а через 5-10 мин. образуется тромб. Объясняется это тем, что растворимый белок плазмы фибриноген переходит в нерастворимый фибрин. В нитях фибрина оседают форменные элементы крови. В свертывании крови принимают участие 13 факторов: тромбопластин, протромбин, тромбин, фибриноген, ионы кальция, витамин К и др. Отсутствие 8го, 9го и 10го фактора связано с наследственным заболеванием – гемофилией. Механизм свертывания крови включает 3 этапа:

1. тромбоциты Са2+ тромбопластин

2. протромбин (неактивный) Са2+, витамин К тромбин (активный)

3. фибриноген (растворимый) Са2+ фибрин (нерастворимый)

1. Тромбоциты – очень хрупкие клетки, при соприкосновении с воздухом, при рваных ранах, при неровных поверхностях тромбоциты, сталкиваясь с неровными поверхностями разрушаются и из них выходит вещество тромбопластин. Эта реакция идет в присутствии ионов кальция. Тромбопластин является неактивным веществом, чтобы оно перешло в активное на него действуют ионы кальция.

2. Активный тромбопластин воздействует на неактивный протромбин. Протромбин образуется в печени и поступает в кровь. В присутствии ионов кальция и витамина К неактивный протромбин переходит в активный тромбин.

3. В плазме крови имеется растворимый белок фибриноген. Под воздействием активного тромбина и ионов кальция растворимый фибриноген переходит в нерастворимый фибрин. В нитях фибрина оседают форменные элементы крови и образуется тромбоцитарная пробка, которая закупоривает сосуд.

Все 3 этапа идут за 3-5 мин. В нормальной крови содержится небольшое количество тромбопластина, так как небольшое количество тромбоцитов разрушается. Для этого в крови находится гепарин, который разжигает кровь и предотвращает ее свертывание. Гепарин останавливает 2ой этап свертывания крови.

Заболевание печени может привести к нарушению свертывания крови, так как больная печень не вырабатывает протромбин. Свертывание крови не происходит, если удалить ионы кальция.

В организме существует фибринолитическая система, которая способна растворять фибрин. После того, как образовалась тромбоцитарная пробка этот тромб удаляется фибринолизином.

Группы крови

Кровь разных людей различна по химическому составу. Первой попыткой осуществить переливание крови была у Ландштейнера в 1901 году. Этот ученый показал, что в крови здоровых людей имеются вещества, которые могут вызвать агглютинацию (склеивание эритроцитов).

Основной системой групп крови являются: система АВ0 и резус-фактор.

Система АВ0.

В плазме крови человека имеются белковые вещества агглютинины, которые называются . В оболочке эритроцитов имеются 2 вида белков А и В, они называются агглютиногенами. Явление агглютинации происходит тогда, когда встречаются при переливании крови одноименные агглютиногены и агглютинины. После процесса агглютинации следует гемолиз. В крови человека таких комбинаций как А не бывает, поэтому не происходит агглютинация эритроцитов.

Страница 3 из 6

Свертывание крови, группы крови

Свертывающие механизмы.

Свертывание крови (гемокоагуляция) – это жизненно важная защитная реакция, направленная на сохранение крови в сосудистой системе и предотвращающая гибель организма от кровопотери при травме сосудов. Основные положения ферментативной теории свертывания крови разработаны А. Шмидтом более 100 лет назад. В остановке кровотечения участвуют: сосуды, ткань, окружающая сосуды, физиологически активные вещества плазмы, форменные элементы крови, главная роль принадлежит тромбоцитам. Управляет этим нейрогуморальный регуляторный механизм. Физиологически активные вещества участвующие в свертывании крови и находящиеся в плазме, называются плазменными факторами свертывания крови, обозначаются римскими цифрами в порядке их открытия. Некоторые названия связанны с фамилией больного, у которого впервые обнаружен дефицит этого фактора. К плазменным факторам относятся: Iф – фибриноген, IIф – протромбин, IIIф – тканевой тромбопластин, IVф – ионы кальция, Vф – Ас-глобулин (ассеlеrаnсе – ускоряющий), или проакцелерин, VIф – исключен из номенклатуры, VIIф – проконвертин, VIIIф – антигемофильный глобулин А, IXф – антигемофильный глобулин В, или фактор Кристмаса, Xф – фактор Стюарта – Прауэра, XIф – плазменный предшественник тромбопластина, или антигемофильный глобулин С, XIIф – контактный фактор, или фактор Хагемана, XIIIф – фибринстабилизирующий фактор, или фибриназа, XIVф – фактор Флетчера (прокалликреин), XVф – фактор Фитцджеральда – Фложе (высокомолекулярный кининоген – ВМК). Большинство факторов образуется в печени. Для синтеза некоторых (II, VII, IX, X) необходим витамин К, содержащийся в растительной пище и синтезируемый микрофлорой кишечника. При недостатке активности факторов свертывания крови может наблюдаться патологическая кровоточивость. Это может происходить при заболеваниях печени, или недостаточности витамина К. Витамин К является жирорастворимым, его дефицит может обнаружиться при угнетении всасывания жиров в кишечнике, например при снижении желчеобразования или при подавлении кишечной микрофлоры антибиотиками. Ряд заболеваний наследственные (формы гемофилии, которыми болеют только мужчины, но передают их женщины).

Вещества, находящиеся в тромбоцитах, получили название тромбоцитарных, или пластинчатых, факторов свертывания крови. Их обозначают арабскими цифрами. К наиболее важным тромбоцитарным факторам относятся: ПФ-3 (тромбоцитарный тромбопластин) – липидно-белковый комплекс, на котором как на матрице происходит гемокоагуляция, ПФ-4 – антигепариновый фактор, ПФ-5 – благодаря которому тромбоциты способны к адгезии и агрегации, ПФ-6 (тромбостенин) – актиномиозиновый комплекс, обеспечивающий ретракцию тромба, ПФ-10 – серотонин, ПФ-11 – фактор агрегации, представляющий комплекс АТФ и тромбоксана. Аналогичные вещества открыты и в эритроцитах, и в лейкоцитах. При переливании несовместимой крови, резус-конфликте матери и плода происходит массовое разрушение эритроцитов и выход этих факторов в плазму, что является причиной интенсивного внутрисосудистого свертывания крови, При многих воспалительных и инфекционных заболеваниях также возникает диссеминированное (распространенное) внутрисосудистое свертывание крови (ДВС-синдром), причиной которого являются лейкоцитарные факторы свертывания крови.

По современным представлениям в остановке кровотечения участвуют 2 механизма: сосудисто-тромбоцитарный и коагуляционный.

Сосудисто-тромбоцитарный гемостаз - Благодаря этому механизму происходит остановка кровотечения из мелких сосудов с низким артериальным давлением. При травме наблюдается рефлекторный спазм поврежденных кровеносных сосудов, который в дальнейшем поддерживается сосудосуживающими веществами (серотонин, норадреналин, адреналин), освобождающимися из тромбоцитов и поврежденных клеток тканей. Внутренняя стенка сосудов в месте повреждения изменяет свой заряд с отрицательного на положительный. Благодаря способности к адгезии под влиянием фактора Виллебранда, содержащегося в субэндотелии и кровяных пластинках, отрицательно заряженные тромбоциты прилипают к положительно заряженной раневой поверхности. Практически одновременно происходит агрегация – скучиванье и склеивание тромбоцитов с образованием тромбоцитарной пробки, или тромба. Сначала под влиянием АТФ, АДФ и адреналина тромбоцитов и эритроцитов образуется рыхлая тромбоцитарная пробка, через которую проходит плазма (обратимая агрегация). Затем тромбоциты теряют свою структурность и сливаются в однообразную массу, образуя пробку, непроницаемую для плазмы (необратимая агрегация). Эта реакция протекает под действием тромбина, образующегося в небольших количествах под действием тканевого тромбопластина. Тромбин разрушает мембрану тромбоцитов, что ведет к выходу из них серотонина, гистамина, ферментов, факторов свертывания крови. Пластинчатый фактор 3 дает начало образованию тромбоцитарной протромбиназы, что приводит к образованию на агрегатах тромбоцитов небольшого количества нитей фибрина, среди которых задерживаются эритроциты и лейкоциты. После образования тромбоцитарного тромба происходит его уплотнение и закрепление в поврежденном сосуде за счет ретракции кровяного сгустка. Ретракция осуществляется под влиянием тромбостенина тромбоцитов за счет сокращения актин-миозинового комплекса тромбоцитов. Тромбоцитарная пробка образуется в целом в течение 1 – 3 минут с момента повреждения, и кровотечение из мелких сосудов останавливается.

Коагуляционный гемостаз - В крупных сосудах тромбоцитарный тромб не выдерживает высокого давления и вымывается, и гемостаз осуществляется путем формирования более прочного фибринового тромба, для образования которого необходим ферментативный коагуляционный механизм. Свертывание крови – это цепной ферментативный процесс, в нем последовательно происходит активация факторов свертывания и образование их комплексов. Сущность свертывания заключается в переходе растворимого белка крови фибриногена в нерастворимый фибрин, в результате образуется прочный фибриновый тромб.

Процесс свертывания крови осуществляется в 3 последовательные фазы.

Первая фаза (самая сложная и продолжительная) - происходит образование активного ферментативного комплекса – протромбиназы, являющейся активатором протромбина. В образовании этого комплекса принимают участие тканевые и кровяные факторы, формируя тканевую и кровяную протромбиназы. Образование тканевой протромбиназы начинается с активации тканевого тромбопластина, образующегося при повреждении стенок сосуда и окружающих тканей. Вместе с VII фактором и ионами кальция он активирует X фактор. В результате взаимодействия активированного X фактора с V фактором и с фосфолипидами тканей или плазмы образуется тканевая протромбиназа. Этот процесс длится 5 – 10 секунд. Образование кровяной протромбиназы начинается с активации XII фактора при его контакте с волокнами коллагена поврежденных сосудов. В активации и действии XII фактора участвуют также высокомолекулярный кининоген (ф XV) и калликреин (ф XIV). Затем XII фактор активирует XI фактор, образуя с ним комплекс. Активный XI фактор совместно с IV фактором активирует IX фактор, который, в свою очередь, активирует VIII фактор, Затем происходит активация X фактора, который образует комплекс с V фактором и ионами кальция, чем и заканчивается образование кровяной протромбиназы. В этом также участвует тромбоцитарный фактор 3. Процесс длится 5-10 минут.

Вторая фаза - под влиянием протромбиназы происходит переход протромбина в активный фермент тромбин. В этом процессе принимают участие факторы IV, V, X.

Третья фаза - растворимый белок крови фибриноген превращается в нерастворимый фибрин, образующий основу тромба. Вначале под влиянием тромбина происходит образование фибрин-мономера. Затем с участием ионов кальция образуется растворимый фибрин-полимер (фибрин “S”, soluble). Под влиянием фибринстабилизирующего фактора XIII образуется нерастворимый фибрин-полимер (фибрин “I”, insoluble), устойчивый к фибринолизу. В фибриновых нитях оседают форменные элементы крови, в частности эритроциты, и формируется кровяной сгусток, или тромб закупоривающий рану. Затем начинается процесс ретракции (уплотнения и закрепления тромба в поврежденном сосуде) - с помощью сократительного белка тромбоцитов тромбостенина и ионов кальция. Через 2 – 3 часа сгусток сжимается до 25 – 50процентов от первоначального объема и идет отжатие сыворотки, т.е. плазмы, лишенной фибриногена. За счет ретракции тромб становится более плотным и стягивает края раны.

Фибринолиз – это процесс расщепления фибринового сгустка, в результате которого происходит восстановление просвета сосуда. Фибринолиз начинается одновременно с ретракцией сгустка, но идет медленнее. Это тоже ферментативный процесс, который осуществляется под влиянием плазмина (фибринолизина). Плазмин находится в плазме крови в неактивном состоянии в виде плазминогена. Под влиянием кровяных и тканевых активаторов плазминогена происходит его активация. Высокоактивным тканевым активатором является урокиназа. Кровяные активаторы находятся в крови в неактивном состоянии и активируются адреналином, лизокиназами. Плазмин расщепляет фибрин на отдельные полипептидные цепи, в результате чего происходит лизис (растворение) фибринового сгустка. Если нет условий для фибринолиза, то возможна организация тромба, т.е. замещение его соединительной тканью. Иногда тромб может оторваться от места своего образования и вызвать закупорку сосуда в другом месте (эмболия). У здоровых людей активация фибринолиза всегда происходит вторично в ответ на усиление гемокоагуляции. Под влиянием ингибиторов фибринолиз может тормозиться.

Группы крови

Учение о группах крови возникло в связи с проблемой переливания крови. В 1901 г. К. Ландштейнер обнаружил в зритроцитах людей агглютиногены А и В. В плазме крови находятся агглютинины a и b (гамма-глобулины). Согласно классификации К.Ландштейнера и Я.Янского в зависимости от наличия или отсутствия в крови конкретного человека агглютиногенов и агглютининов различают 4 группы крови. Эта система получила название АВО, Группы крови в ней обозначаются цифрами и теми агглютиногенами, которые содержатся в эритроцитах данной группы. Групповые антигены – это наследственные врожденные свойства крови, не меняющиеся в течение всей Жизни человека. Агглютининов в плазме крови новорожденных нет. Они образуются в течение первого года жизни ребенка.

I группа (О) – в эритроцитах агглютиногенов нет, в плазме содержатся агглютинины a и b ;

II группа (А) – в эритроцитах содержится агглютиноген А, в плазме – агглютинин b ;

III группа (В) – в эритроцитах находится агглютиноген В, в плазме – агглютинин a ;

IV группа (АВ) – в эритроцитах обнаруживаются агглютиногены А и В, в плазме агглютининов нет.

У жителей Центральной Европы I группа крови встречается в 33,5 процентов, II группа – 37,5 процентов, III группа – 21 процентов, IV группа – 8 процентов. У 90 процентов коренных жителей Америки встречается I группа крови. Более 20 процентов населения Центральной Азии имеют III группу крови.

Агглютинация происходит в том случае, если в крови человека встречаются агглютиноген с одноименным агглютинином: агглютиноген А с агглютинином а или агглютиноген В с агглютинином b . При переливании несовместимой крови в результате агглютинации и последующего их гемолиза развивается гемотрансфузионный шок, который может привести к смерти, Поэтому было разработано правило переливания небольших количеств крови (200 мл), по которому учитывали наличие агглютиногенов в эритроцитах донора и агглютининов в плазме реципиента. Плазму донора во внимание не принимали, так как она сильно разбавлялась плазмой реципиента. Согласно данному правилу кровь I группы можно переливать людям со всеми группами крови (I, II, III, IV), поэтому людей с первой группой крови называют универсальными донорами. Кровь II группы можно переливать людям со II и IV группами крови, кровь III группы – с III и IV. Кровь IV группы можно переливать только людям с этой же группой крови. В то же время людям с IV группой крови можно переливать любую кровь, поэтому их называют универсальными реципиентами. При необходимости переливания больших количеств крови этим правилом пользоваться нельзя. В дальнейшем было установлено, что агглютиногены А и В существуют в разных вариантах, отличающихся по антигенной активности: А1,А2,А3 и т.д., В1, В2 и т.д. Активность убывает в порядке их нумерации. Наличие в крови людей агглютиногенов с низкой активностью может привести к ошибкам при определении группы крови, а значит, и переливанию несовместимой крови. Также было обнаружено, что у людей с I группой крови на мембране эритроцитов имеется антиген Н. Этот антиген встречается и у людей с II, III и IV группами крови, однако у них он проявляется в качестве скрытой детерминанты. У людей с II и IV группами крови часто встречаются анти-Н-антитела. Поэтому при переливании крови I группы людям с другими группами крови также могут развиться гемотрансфузионные осложнения. В связи с этим в настоящее время пользуются правилом, по которому переливается только одногруппная кровь. Одну каплю крови смешивают с сывороткой анти-В, вторую – с анти-А, третью – с анти-А-анти-В. По реакциям агглютинации (скопления эритроцитов, показанные ярко-красным цветом) судят о групповой принадлежности крови.

Система резус

К.Ландштейнером и А.Винером в 1940 г. в эритроцитах обезьяны макаки-резуса был обнаружен антиген, который они назвали резус-фактором. Этот антиген находится и в крови 85 процентов людей белой расы. У некоторых народов, например, эвенов резус-фактор встречается в 100 процентов. Кровь, содержащая резус-фактор, называется резус-положительной (Rh +). Кровь, в которой резус-фактор отсутствует, называется резус-отрицательной (Rh -). Резус-фактор передается по наследству. В настоящее время известно, что система резус включает много антигенов. Наиболее активными в антигенном отношении являются антиген D, затем следуют С, Е, d, с, е. Они и чаще встречаются. У аборигенов Австралии в эритроцитах не выявлен ни один антиген системы резус. Система резус, в отличие от системы АБО, не имеет в норме соответствующих агглютининов в плазме. Однако если кровь резус-положительного донора перелить резус-отрицательному реципиенту, то в организме последнего образуются специфические антитела по отношению к резус-фактору – антирезус-агглютинины. При повторном переливании резус-положительной крови этому же человеку у него произойдет агглютинация эритроцитов, т.е. возникает резус-конфликт, протекающий по типу гемотрасфузионного шока. Поэтому резус-отрицательным реципиентам можно переливать только резус-отрицательую кровь. Резус-конфликт также может возникнуть при беременности, если кровь матери резус- отрицательная, а кровь плода резус-положительная. Резус-агглютиногены, проникая в организм матери, могут вызвать выработку у нее антител. Однако значительное поступление эритроцитов плода в организм матери наблюдается только в период родовой деятельности. Поэтому первая беременность может закончиться благополучно. При последующих беременностях резус-положительным плодом антитела проникают через плацентарный барьер, повреждают ткани и эритроциты плода, вызывая выкидыш или тяжелую гемолитическую анемию у новорожденных. С целью иммунопрофилактики женщине сразу после родов или аборта вводят концентрированные анти-D-антитела.

Кроме агглютиногенов системы АВО и резус-фактора в последние годы на мембране эритроцитов обнаружены и другие агглютиногены, которые определяют группы крови в данной системе. Таких антигенов более 400. Наиболее важными антигенными системами считаются MNSs, Р, Лютеран (Lи), Льюис (Lе), Даффи (Fу) и др. Наибольшее значение для клиники переливания крови имеют система АВО и резус-фактор. Лейкоциты также имеют более 90 антигенов. Лейкоциты содержат антигены главного локуса НЛА – антигены гистосовместимости, которые играют важную роль в трансплантационном иммунитете.

Основные понятия и ключевые термины: ГРУППЫ КРОВИ. Переливание крови. СВЕРТЫВАНИЕ КРОВИ.

Вспомните! Что такое кровь?

Знакомьтесь!

Карл Ландштейнер (1868-1943) - австрийский врач, иммунолог. В 1900 году К. Ландштейнер взял кровь у себя и у пяти своих сотрудников, отделил плазму от эритроцитов и смешал эритроциты с плазмой крови разных лиц. По наличию или отсутствию склеивания эритроцитов в различных образцах разделил кровь на группы, которые в дальнейшем стали называть группами крови системы АВ0 (читается «А-Бэ-ноль»). В 1930 году Ландштейнеру была присуждена Нобелевская премия по физиологии и медицине «за открытие групп крови человека»

По каким признакам различают группы крови?

ГРУППЫ КРОВИ - это наследственные признаки крови, которые не изменяются в течение жизни человека. В 1901 году, когда К. Ландштейнер опубликовал результаты своих исследований, началось открытие систем групп крови. Сегодня их известно уже более тридцати: система АВ0, резус-система, системы Даффи, Льюис, Лютеран, Келл, Кидд и др.

Группы крови по системе АВ0 определяются наличием в эритроцитах антигенов А и В и соединений плазмы крови -антител а и р. По комбинации этих веществ выделяют 4 группы крови: I (0) - нет антигенов А и В, но есть антитела а и Р; II (А) - содержит антигены А и антитела Р; III (В) - имеет антигены В и антитела а; IV (АВ) -антигены А и В, антител а и Р

нет. Склеивание (агглютинация) эритроцитов происходит в результате реакции антиген-антитело, т. е. когда антиген А встречается с антителами а, а антигены В - с антителами р.

По статистике, самой распространённой является I (0) группа крови (33,5 % населения), а наименее распространённой - IV (АВ) (5 % населения). Деление людей с определённой группой крови по системе АВ0 имеет свои отличия в разных странах. Так, среди украинцев распространённой является вторая группа (А) - 40 %. Далее следуют I (0) -37 %, III (В) - 17 %, IV (АВ) - 6 %.

По резус-системе выделяют две группы крови: резус-положитель-ную и резус-отрицательную. В эритроцитах большинства людей (85 %) содержится антиген, впервые обнаруженный К. Ландштейнером и Р. Винером в 1940 году в крови обезьян макак (Macacus rhesus), и поэтому названный резус-фактором. Отсутствие его обнаружено у 15 % людей. По его наличию или отсутствию кровь называют резус-по-ложительной (Rh+жровь) или резус-отрицательной (Rh"-кровь).


Rh + -KpoBb перелить человеку с Rh“-Kpo-вью, то у него образуются Rh-антитела и возникает резус-конфликт. Повторное введение такому человеку Rh+жрови может привести к склеиванию эритроцитов и тяжёлым осложнением. Резус-фактор имеет значение не только при переливании крови, но и во время беременности. Если у Rh"-женщины формируется R^-плод, то его кровь приводит к образованию в крови матери Rh-антител.

Итак, группу крови определяют по наличию или отсутствию в эритроцитах и плазме определённых антигенов и антител.

Каковы современные принципы переливания крови?

Переливание крови - операция, заключающаяся в переносе в организм определённого количества крови или её компонентов. Переливание крови осуществляют в случае больших потерь крови, некоторых заболеваний и т. п. Человек, который даёт кровь, называется донором, а тот, который получает, - реципиентом. Люди с I (0) группой крови теоретически универсальными донорами, а люди с IV (АВ) - универсальными реципиентами. У взрослого человека без ущерба для его здоровья можно взять 200 мл крови. Донорскую кровь консервируют, добавляя специальные вещества, предотвращающие её свертывание. Такую кровь можно хранить длительное время.

Переливание крови, согласно современным рекомендациям, осуществляется с учётом определённых положений: а) для переливания используют только одногруппную кровь; б) в некоторых случаях человек с IV (AB) группой крови может стать «универсальным донором» плазмы, поскольку в его крови нет антител; в) не следует

пользоваться кровью одного и того же донора во время повторного переливания, потому что обязательно произойдет иммунизация в одной из систем; г) лучшим донором является человек, который сам для себя может сдать кровь (заранее). Сегодня для переливания используют цельную кровь (реже), компоненты крови (эритроцитарная масса, лейкоцитарная масса, тромбоцитарная масса, плазма), кровезаменители (полиглюкин, желатиноль, солевые растворы и др.).

Итак, правильное определение группы крови жизненно важно для человека, который нуждается в переливании крови, так как несовместимость групп крови донора и реципиента может привести к свёртыванию крови и смерти больного.

Каковы основные этапы свёртывания крови?

СВЁРТЫВАНИЕ КРОВИ - защитная реакция организма, которая предупреждает потерю крови при повреждении сосудов. В процессе свёртывания крови принимают участие белки, витамины (витамин К), соли кальция и т. п. Свёртывание крови начинается через 1-2 мин после начала кровотечения и заканчивается образованием тромба через 3-5 мин.

В процессе свёртывания крови выделяют три основных этапа. На первом этапе разрушаются тромбоциты и высвобождается тромбопластин. Во время второго этапа растворённый в плазме крови протромбин под действием тромбопластина и ионов кальция превращается в тромбин. Третий этап свёртывания крови связан с преобразованием растворимого в плазме крови фибриногена в нерастворимый волокнистый белок - фибрин. Нити фибрина переплетаются, между ними задерживаются клетки крови, формируется кровяной сгусток который плотно закупоривает рану и прекращает кровотечение.

Процесс образования фибрина уравновешивается образованием определённого количества фибринолизина, растворяющего тромбы. Кроме того, в организме человека существует и противосвёртывающая система, основой которой является гепарин (соединение, образуемое специальными клетками многих органов, в частности печени и лёгких).

Итак, в организме человека функционируют системы свёртывания крови (фибрин), противосвёртывающая (гепарин) и фибринолитическая (фибринолизин), что является проявлением защитных реакций, направленных на сохранение объёма жидкостей внутренней среды.

ДЕЯТЕЛЬНОСТЬ

Учимся познавать

Самостоятельная работа с иллюстрациями

Группу крови по системе АВ0 определяют с помощью метода стандартных сывороток II и III групп. На тарелку наносят каплю крови каждой из групп, с помощью пипетки добавляют по капле ис-

следуемой крови. По отсутствию или наличию склеивания в каплях сыворотки определите группу крови для каждого из четырёх вариантов. Применив знания об определении групп крови по системе АВ0, объясните результаты.

Условные обозначения: (^) - отсутствие агглютинации; (^) - агглютинация; ^3 - группа крови, которую определяют.


Биология + Психология

Знаете ли вы, что японцы при знакомстве часто спрашивают: «Какая у вас группа крови»? По мнению японцев, группа крови определяет индивидуальные особенности каждого человека. Так, японский учёный Масахико Номи написал книгу «Вы таковы, какова ваша группа крови», в которой доказал взаимосвязь основных черт характера человека с его группой крови. Вот отрывки из этой книги:

«I группу крови имеет человек, который стремится всегда быть лидером. Если он поставит себе цель, то будет за неё бороться, пока не достигнет. Умеет выбирать направление, чтобы двигаться вперёд. Верит в свои силы, не лишен эмоциональности. Однако у него есть и слабости: он очень ревнив, суетлив, чрезмерно амбициозен.

II группу крови имеет человек, который любит гармонию, спокойствие и порядок. Такие люди хорошо сотрудничают с другими людьми, они чувствительны, терпеливы и доброжелательны. Их слабости - упрямство и неспособность расслабляться.

III группы крови имеет человек-индивидуалист, склонен делать так, как ему нравится. Он легко приспосабливается, гибок, имеет хорошо развитое воображение. Однако желание быть независимым часто является чрезмерным и превращается в слабость.

IV группы крови у спокойных и уравновешенных, их люди обычно любят и чувствуют себя хорошо рядом с ними. Владельцы этой группы крови умеют развлекать, тактичны и справедливы к окружающим. Но иногда они бывают очень резкими, кроме того, долго колеблются, когда принимают решение...»

А какая у вас группа крови?

РЕЗУЛЬТАТ

Это материал учебника