Процесс пищеварения в организме человека. Процесс основы пищеварения в организме человека: ключевые моменты. Аппендикс хранит нетронутые бактерии




Физиология питания является областью физиологии человека, которая изучает процессы превращения пищевых веществ в энергию и структурные элементы тканей человеческого тела. Обогащение организма энергией и структурными элементами происходит за счет пищи, которую человек получает в течение суток.

Питание является важнейшим фактором, направленным на поддержание и обеспечение таких основных процессов, как рост, развитие и способность к активной деятельности. Эти процессы возможно поддерживать, используя только рациональное питание.

Прежде чем приступить к рассмотрению вопросов, связанных с основами рационального питания различных групп населения, необходимо познакомиться с процессами пищеварения в организме, где происходят сложные преобразования пищи, которые в дальнейшем используются для пластических и энергетических целей организма.

Пищеварение — сложный физиологический и биохимический процесс, в ходе которого принятая пища в пищеварительном тракте подвергается физическим и химическим изменениям.

Пищеварение — важнейший физиологический процесс, в результате которого сложные пищевые вещества пищи под воздействием механической и химической обработки превращаются в простые, растворимые и, следовательно, усвояемые вещества. Дальнейший их путь — использование в качестве строительного и энергетического материала в организме человека.

Физические изменения пищи состоят в ее размельчении, набухании, растворении. Химические — в последовательной деградации питательных веществ в результате действия на них компонентов пищеварительных соков, выделяемых в полость пищеварительного тракта его железами. Важнейшая роль в этом принадлежит гидролитическим ферментам.

Типы пищеварения

В зависимости от происхождения гидролитических ферментов пищеварение делится на три типа: собственное, симбионтное и аутолитическое.

Собственное пищеварение осуществляется ферментами, синтезированными организмом, его железами, ферментами слюны, желудка и поджелудочного соков, эпителия топкой кишки.

Симбионтное пищеварение — гидролиз питательных веществ за счет ферментов, синтезированных симбионтами макроорганизма — бактериями и простейшими пищеварительного тракта. Симбионтное пищеварение осуществляется у человека в толстой кишке. Клетчатка пищи у человека из-за отсутствия соответствующего фермента в секретах желез не гидролизуется (в этом заключается определенный физиологический смысл — сохранение пищевых волокон, играющих важную роль в кишечном пищеварении), поэтому переваривание ее ферментами симбионтов в толстой кишке является важным процессом.

В результате симбионтного пищеварения образуются вторичные пищевые вещества в отличие от первичных, формирующихся в результате собственного пищеварения.

Аутолитическое пищеварение осуществляется за счет ферментов, которые вводятся в организм в составе принимаемой пищи. Роль данного пищеварения существенна при недостаточно развитом собственном пищеварении. У новорожденных собственное пищеварение еще не развито, поэтому питательные вещества грудного молока перевариваются ферментами, поступающими в пищеварительный тракт младенца в составе грудного молока.

В зависимости от локализации процесса гидролиза питательных веществ пищеварение делится на внутри- и внеклеточное.

Внутриклеточное пищеварение состоит в том, что транспортируемые в клетку путем фагоцитоза вещества гидролизуются клеточными ферментами.

Внеклеточное пищеварение делится на полостное, которое осуществляется в полостях пищеварительного тракта ферментами слюны, желудочного сока и сока поджелудочной железы, и пристеночное. Пристеночное пищеварение происходит в тонкой кишке с участием большого количества ферментов кишки и поджелудочной железы на колоссальной поверхности, образованной складками, ворсинками и микроворсинками слизистой оболочки.

Рис. Этапы пищеварения

В настоящее время процесс пищеварения рассматривают как трех-этапный: полостное пищеварение — пристеночное пищеварение — всасывание. Полостное пищеварение заключается в начальном гидролизе полимеров до стадии олигомеров, пристеночное обеспечивает дальнейшую ферментативную деполимеризацию олигомеров в основном до стадии мономеров, которые затем всасываются.

Правильная последовательная работа элементов пищеварительного конвейера во времени и пространстве обеспечивается регулярными процессами различного уровня.

Ферментативная активность свойственна каждому отделу пищеварительного тракта и максимальна при определенном значении рН среды. Например, в желудке пищеварительный процесс осуществляется в кислой среде. Переходящее в 12-перстную кишку кислое содержимое нейтрализуется, и кишечное пищеварение происходит в нейтральной и слабощелочной среде, созданной выделяющимися в кишку секретами — желчью, соками поджелудочной железы и кишечным, которые инактивируют желудочные ферменты. Кишечное пищеварение происходит в нейтральной и слабощелочной среде сначала по типу полостного, а затем пристеночного пищеварения, завершающегося всасыванием продуктов гидролиза — нутриентов.

Деградация пищевых веществ по типу полостного и пристеночного пищеварения осуществляется гидролитическими ферментами, каждый из которых имеет выраженную в той или иной степени специфичность. Набор ферментов в составе секретов пищеварительных желез имеет видовую и индивидуальную особенности, адаптирован к перевариванию той пищи, которая характерна для данного вида животного, и тем питательным веществам, которые преобладают в рационе.

Процесс пищеварения

Процесс пищеварения осуществляется в желудочно-кишечном тракте, протяженность которого 5-6 м. Пищеварительный тракт представляет собой трубку, в некоторых местах расширенную. Строение желудочно-кишечного тракта на всем протяжении однотипно, он имеет три слоя:

  • наружный — серозный, плотная оболочка, которая в основном имеет защитную функцию;
  • средний — мышечная ткань участвует в сокращении и расслаблении стенки органа;
  • внутренний — оболочка, покрытая слизистым эпителием, позволяет простым пищевым веществам всасываться через ее толщу; слизистая оболочка часто имеет железистые клетки, которые вырабатывают пищеварительные соки или ферменты.

Ферменты — вещества белковой природы. В желудочно-кишечном тракте имеют свою специфичность: белки расщепляются только под воздействием протеаз, жиры — липаз, углеводы — карбогидраз. Каждый фермент активен только при определенной рН среды.

Функции желудочно-кишечного тракта:

  • Двигательная, или моторная — за счет средней (мышечной) оболочки пищеварительного тракта, сокращение-расслабление мышц осуществляет захват пищи, жевание, глотание, перемешивание и продвижение пищи вдоль пищеварительного канала.
  • Секреторная — за счет пищеварительных соков, которые вырабатываются железистыми клетками, расположенными в слизистой (внутренней) оболочке канала. Эти секреты содержат ферменты (ускорители реакций), которые осуществляют химическую обработку пищи (гидролиз пищевых веществ).
  • Экскреторная (выделительная) функция осуществляет выделение пищеварительными железами в желудочно-кишечный тракт продуктов обмена.
  • Всасывательная функция — процесс усвоения пищевых веществ через стенку желудочно-кишечного тракта в кровь и лимфу.

Желудочно-кишечный тракт начинается в ротовой полости, далее пища поступает в глотку и пищевод, которые осуществляют только транспортную функцию, пищевой комок опускается в желудок, далее в тонкий кишечник, состоящий из 12-перстной кишки, тощей и подвздошной кишки, где в основном происходит окончательный гидролиз (расщепление) пищевых веществ и они через стенку кишечника всасываются в кровь или лимфу. Тонкий кишечник переходит в толстый, где практически отсутствует процесс пищеварения, но функции толстого кишечника также очень важны для организма.

Пищеварение в ротовой полости

От процесса переваривания пищи в ротовой полости зависит дальнейшее пищеварение в других отделах желудочно-кишечного тракта.

В полости рта происходит начальная механическая и химическая обработка пищи. Она включает в себя измельчение пищи, смачивание ее слюной, анализ вкусовых свойств, начальное расщепление углеводов пищи и формирование пищевого комка. Пребывание пищевого комка в ротовой полости составляет 15-18 с. Пища, находящаяся в полости рта, возбуждает вкусовые, тактильные, температурные рецепторы слизистой оболочки ротовой полости. Это рефлекторно обусловливает активацию секреции не только слюнных желез, но и желез, расположенных в желудке, кишечнике, а также выделение сока поджелудочной железы и желчи.

Механическая обработка пищи в полости рта осуществляется с помощью жевания. В акте жевания принимают участие верхняя и нижняя челюсти с зубами, жевательные мышцы, слизистая полости рта, мягкое небо. В процессе жевания нижняя челюсть перемещается в горизонтальной и вертикальной плоскостях, нижние зубы контактируют с верхними. При этом передние зубы откусывают пищу, а коренные — раздавливают и размалывают ее. Сокращение мышц языка и щек обеспечивает подачу пищи между зубными рядами. Сокращение мышц губ препятствует выпадению пищи из ротовой полости. Акт жевания осуществляется рефлекторно. Пища раздражает рецепторы ротовой полости, нервные импульсы от которых по афферентным нервным волокнам тройничного нерва поступают в центр жевания, располагающийся в продолговатом мозге, и возбуждает его. Далее по эфферентным нервным волокнам тройничного нерва нервные импульсы поступают к жевательным мышцам.

В процессе жевания происходит оценка вкусовых качеств пищи и определение ее съедобности. Чем полнее и интенсивнее осуществляется процесс жевания, тем активнее протекают секреторные процессы как в ротовой полости, так и в нижележащих отделах пищеварительного тракта.

Секрет слюнных желез (слюна) образуется тремя парами крупных слюнных желез (подчелюстными, подъязычными и околоушными) и мелкими железками, расположенными в слизистой оболочке щек и языка. В сутки образуется 0,5-2 л слюны.

Функции слюны следующие.

Смачивание пищи , растворение твердых веществ, пропитывание слизью и формирование пищевого комка. Слюна облегчает процесс глотания и способствует формированию вкусовых ощущений.

Ферментное расщепление углеводов благодаря наличию а-амилазы и мальтазы. Фермент а-амилаза расщепляет полисахариды (крахмал, гликоген) до олигосахаридов и дисахаридов (мальтозы). Действие амилазы внутри пищевого комка продолжается и при попадании его в желудок до тех пор, пока в нем сохраняется слабощелочная или нейтральная среда.

Защитная функция связана с наличием в слюне антибактериальных компонентов (лизоцима, иммуноглобулинов различных классов, лактоферрина). Лизоцим, или мурамидаза, представляет собой фермент, разрушающий клеточную стенку бактерий. Лактоферрин связывает ионы железа, необходимые для жизнедеятельности бактерий, и таким образом приостанавливает их рост. Муцин тоже выполняет защитную функцию, так как предохраняет слизистую оболочку полости рта от повреждающего действия пищевых продуктов (горячих или кислых напитков, острых приправ).

Участие в минерализации эмали зубов - кальций поступает в зубную эмаль из слюны. В ней имеются белки, связывающие и транспортирующие ионы Са 2+ . Слюна предохраняет зубы от развития кариеса.

Свойства слюны зависят от режима питания и вида пищи. При приеме твердой и сухой пищи выделяется более вязкая слюна. При попадании в ротовую полость несъедобных, горьких либо кислых веществ выделяется большое количество жидкой слюны. Ферментный состав слюны также может изменяться в зависимости от количества углеводов, содержащихся в пище.

Регуляция слюноотделения. Глотание. Регуляция слюноотделения осуществляется вегетативными нервами, иннервирующими слюнные железы: парасимпатическим и симпатическим. При возбуждении парасимпатического нерва слюнной железы образуется большое количество жидкой слюны с низким содержанием органических веществ (ферментов и слизи). При возбуждении симпатического нерва образуется небольшое количество вязкой слюны, содержащей много муцина и ферментов. Активация слюноотделения при приеме пищи вначале происходит по механизму условного рефлекса при виде пищи, подготовке к ее приему, вдыхании пищевых ароматов. При этом от зрительных, обонятельных, слуховых рецепторов нервные импульсы по афферентным нервным путям поступают в слюноотделительные ядра продолговатого мозга (центр слюноотделения ), которые посылают эфферентные нервные импульсы по парасимпатическим нервным волокнам к слюнным железам. Поступление пищи в ротовую полость возбуждает рецепторы слизистой оболочки и это обеспечивает активацию процесса слюноотделения по механизму безусловного рефлекса. Торможение активности центра слюноотделения и уменьшение секреции слюнных желез происходит во время сна, при утомлении, эмоциональном возбуждении, а также при лихорадке, обезвоживании организма.

Завершается пищеварение в ротовой полости актом глотания и поступлением пищи в желудок.

Глотание представляет собой рефлекторный процесс и состоит из трех фаз: 1-я фаза — ротовая - является произвольной и заключается в поступлении сформированного в процессе жевания пищевого комка на корень языка. Далее происходит сокращение мышц языка и проталкивание пищевого комка в глотку; 2-я фаза — глоточная - является непроизвольной, осуществляется быстро (в течение приблизительно 1 с) и находится под контролем центра глотания продолговатого мозга. В начале этой фазы сокращение мышц глотки и мягкого неба поднимает небную занавеску и закрывает вход в носовую полость. Гортань смещается вверх и вперед, что сопровождается опусканием надгортанника и закрытием входа в гортань. Одновременно происходит сокращение мышц глотки и расслабление верхнего пищеводного сфинктера. В результате пища попадает в пищевод; 3-я фаза — пищеводная - медленная и непроизвольная, происходит за счет перистальтических сокращений мышц пищевода (сокращение циркулярных мышц стенки пищевода выше пищевого комка и продольных мышц, располагающихся ниже пищевого комка) и находится под контролем блуждающего нерва. Скорость перемещения пищи по пищеводу составляет 2 — 5 см/с. После расслабления нижнего пищеводного сфинктера пища поступает в желудок.

Пищеварение в желудке

Желудок представляет собой мышечный орган, где осуществляется депонирование пищи, перемешивание ее с желудочным соком и продвижение ее к выходному отверстию желудка. Слизистая оболочка желудка имеет четыре вида желез, которые выделяют желудочный сок, соляную кислоту, ферменты и слизь.

Рис. 3. Пищеварительный тракт

Соляная кислота сообщает желудочному соку кислотность, которая активизирует фермент пепсиноген, превращая его в пепсин, участвуя в гидролизе белка. Оптимальная кислотность желудочного сока — 1,5-2,5. В желудке белок расщепляется до промежуточных продуктов (альбумозы и пептоны). Жиры расщепляются липазой, только находясь в эмульгированном состоянии (молоко, майонез). Углеводы практически там не перевариваются, так как ферменты углеводов нейтрализуются кислым содержимым желудка.

В течение суток выделяется от 1,5 до 2,5 л желудочного сока. Пища в желудке переваривается от 4 до 8 часов в зависимости от состава пищи.

Механизм секреции желудочного сока — сложный процесс, он делится на три фазы:

  • мозговая фаза, действующая через головной мозг, участвует как безусловный, так и условный рефлекс (вид, запах, вкус, поступление пищи в ротовую полость);
  • желудочная фаза — при поступлении пищи в желудок;
  • кишечная фаза, когда некоторые виды пищи (мясной бульон, капустный сок и т.д.), поступая в тонкий кишечник, вызывают выделение желудочного сока.

Пищеварение в 12-перстной кишке

Из желудка небольшие порции пищевой кашицы поступают в начальный отдел тонкого кишечника — 12-перстную кишку, где пищевая кашица подвергается активному воздействию поджелудочного сока и желчных кислот.

В 12-перстную кишку из поджелудочной железы поступает поджелудочный сок, имеющий щелочную реакцию (рН 7,8-8,4). Сок содержит ферменты трипсин и химотрипсин, которые расщепляют белки — до полипептидов; амилаза и мальтаза расщепляют крахмал и мальтозу до глюкозы. Липаза воздействует только на эмульгированные жиры. Процесс эмульгирования происходит в 12-перстной кишке в присутствии желчных кислот.

Желчные кислоты являются компонентом желчи. Желчь вырабатывается клетками самого крупного органа — печени, масса которой от 1,5 до 2,0 кг. Печеночные клетки постоянно вырабатывают желчь, которая накапливается в желчном пузыре. Как только пищевая кашица достигает 12-перстной кишки, желчь из желчного пузыря по протокам попадает в кишечник. Желчные кислоты эмульгируют жиры, активизируют ферменты жиров, усиливают моторную и секреторную функции тонкой кишки.

Пищеварение в тонком кишечнике (тощая, подвздошная кишка)

Тонкий кишечник является самым длинным отделом пищеварительного тракта, длина его составляет 4,5-5 м, диаметр от 3 до 5 см.

Кишечный сок является секретом тонкого кишечника, реакция — щелочная. В кишечном соке содержится большое количество ферментов, принимающих участие в пищеварении: пеитидаза, нуклеаза, энтерокиназа, липаза, лактаза, сахараза и т.д. Тонкий кишечник благодаря различному строению мышечного слоя обладает активной двигательной функцией (перистальтикой). Это позволяет пищевой кашице продвигаться подлинному просвету кишечника. Этому способствует и химический состав пищи — наличие клетчатки и пищевых волокон.

Согласно теории кишечного пищеварения процесс усвоения пищевых веществ делится на полостное и пристеночное (мембранное) пищеварение.

Полостное пищеварение присутствует во всех полостях желудочно-кишечного тракта за счет пищеварительных секретов — желудочного сока, поджелудочного и кишечного сока.

Пристеночное пищеварение присутствует только на определенном отрезке тонкого кишечника, где слизистая оболочка имеет выпячивание или ворсинки и микроворсинки, увеличивающие внутреннюю поверхность кишки в 300-500 раз.

Ферменты, участвующие в гидролизе пищевых веществ, расположены на поверхности микроворсинок, что значительно увеличивает эффективность процесса всасывания пищевых веществ на этом участке.

Тонкий кишечник является органом, где большая часть пищевых веществ, растворимых в воде, проходя через стенку кишечника, всасывается в кровь, жиры первоначально поступают в лимфу, а далее в кровь. Все пищевые вещества по воротной вене попадают в печень, где, очистившись от ядовитых веществ пищеварения, используются для питания органов и тканей.

Пищеварение в толстом кишечнике

Передвижение кишечного содержимого в толстой кишке составляет до 30-40 часов. Пищеварение в толстой кишке практически отсутствует. Здесь всасывается глюкоза, витамины, минеральные вещества, которые остались неусвоенными за счет большого количества микроорганизмов, находящихся в кишечнике.

В начальном отрезке толстого кишечника происходит почти полное усвоение поступившей туда жидкости (1,5-2 л).

Большое значение для здоровья человека имеет микрофлора толстого кишечника. Более 90 % составляют бифидобактерии, около 10% — молочнокислые и кишечные палочки, энтерококки и т.д. Состав микрофлоры и ее функции зависят от характера питания, времени движения по кишечнику и приема различных медикаментов.

Основные функции нормальной микрофлоры кишечника:

  • защитная функция — создание иммунитета;
  • участие в процессе пищеварения — окончательное пищеварение пищи; синтез витаминов и ферментов;
  • поддержание постоянства биохимической среды желудочно-кишечного тракта.

Одной из важных функций толстого кишечника является образование и выведение из организма каловых масс.

Большинство полезных веществ для поддержания жизнедеятельности человеческий организм получает через желудочно-кишечный тракт.

Однако обычные продукты, которые ест человек: хлеб, мясо, овощи – организм не может использовать напрямую для своих нужд. Для этого еду и напитки надо разделить на более мелкие составляющие – отдельные молекулы.

Эти молекулы переносятся кровью в клетки организма для строительства новых клеток и получения энергии.

Как пища переваривается?

Процесс пищеварения включает в себя смешивание пищи с желудочным соком и ее перемещение через желудочно-кишечный тракт. В ходе этого перемещения она разбирается на составляющие, которые используются на нужды организма.

Пищеварение начинается во рту – при пережевывании и глотании пищи. А заканчивается в тонком кишечнике.

Как пища движется по желудочно-кишечному тракту?

Большие полые органы желудочно-кишечного тракта – желудок и кишечник – имеют слой мышц, который приводит их стенки в движение. Это движение позволяет пище и жидкости продвигаться через пищеварительную систему и перемешиваться.

Сокращение органов желудочно-кишечного тракта называется перистальтика . Она похожа на волну, которая при помощи мышц движется вдоль всего пищеварительного тракта.

Мышцы кишечника создают суженный участок, который медленно движется вперед, проталкивая перед собой пищу и жидкость.

Как происходит пищеварение?

Пищеварение начинается еще в полости рта, когда пережевываемая пища обильно смачивается слюной. Слюна содержит в себе ферменты, начинающие расщепление крахмала.

Проглоченная пища попадает в пищевод , который соединяет между собой глотку и желудок . На стыке пищевода и желудка располагаются кольцевые мышцы. Это нижний сфинктер пищевода, который открывается при давлении проглоченной пищи и пропускает ее в желудок.

У желудка есть три основные задачи :

1. Хранение . Чтобы принять большой объем пищи или жидкости, мышцы верхней части желудка расслабляются. Это позволяет стенкам органа растягиваться.

2. Смешивание . Нижняя часть желудка сокращается, чтобы пища и жидкость смешивались с желудочным соком. Этот сок состоит из соляной кислоты и пищеварительных ферментов, которые помогают в расщеплении белков. Стенки желудка выделяют большое количество слизи, которая защищает их от воздействия соляной кислоты.

3. Транспортировка . Перемешанная пища поступает из желудка в тонкий кишечник.

Из желудка пища попадает в верхний отдел тонкого кишечника – двенадцатиперстную кишку . Здесь пища подвергается воздействию сока поджелудочной железы и ферментов тонкого кишечника , который способствует перевариванию жиров, белков и углеводов.

Здесь же пища обрабатывается желчью, которую производит печень. Между приемами пищи желчь хранится в желчном пузыре . Во время еды она выталкивается в двенадцатиперстно кишку, где смешивается с пищей.

Желчные кислоты растворяют жир в содержимом кишечника примерно так же, как моющие средства – жир со сковороды: они разбивают его на крошечные капельки. После того, как жир измельчен, он легко расщепляется ферментами на составляющие.

Вещества, которые получены из расщепленной ферментами пищи, всасываются через стенки тонкого кишечника.

Слизистая оболочка тонкого кишечника покрыта крошечными ворсинками, которые создают поверхность огромной площади, позволяющую поглощать большое количество питательных веществ.

Через специальные клетки эти вещества из кишечника попадают в кровь и с ней разносятся по всему организму – для хранения или использования.

Непереваренные части пищи поступают в толстый кишечник , в котором происходит всасывание воды и некоторых витаминов. После отходы пищеварения формируются в каловые массы и удаляются через прямую кишку .

Что нарушает работу желудочно-кишечного тракта?

Самое важное

Желудочно-кишечный тракт позволяет организму расщепить пищу до простейших соединений, из которых могут строиться новые ткани и получаться энергия.

Пищеварение происходит во всех отделах желудочно-кишечного тракта – от полости рта до прямой кишки.

(далее по тексту - «П.») - это совокупность процессов, обеспечивающих механическое измельчение и химическое (главным образом ферментативное) расщепление пищевых веществ на компоненты, лишённые видовой специфичности и пригодные к всасыванию и участию в организма животных и человека. Поступающая в организм пища всесторонне обрабатывается под действием различных пищеварительных ферментовПищеварительные ферменты - вырабатываются органами пищеварения и расщепляют сложные вещества пищи на более простые, легко усвояемые организмом соединения. Белки расщепляются протеазами (трипсин, пепсин и др.), жиры - липазами, углеводы - гликозидазами (амилаза). , синтезируемых специализированными клетками, причём расщепление сложных пищевых веществ ( , и углеводовУглеводы - один из основных компонентов клеток и тканей живых организмов. Обеспечивают все живые клетки энергией (глюкоза и ее запасные формы - крахмал, гликоген), участвуют в защитных реакциях организма (иммунитет). Из пищевых продуктов наиболее богаты углеводами овощи, фрукты, мучные изделия. ) на всё более мелкие фрагменты происходит с присоединением к ним молекулы воды. Белки расщепляются в конечном итоге на аминокислотыАминокислоты - класс органических соединений, обладающих свойствами и кислот, и оснований. Участвуют в обмене азотистых веществ в организме (исходные соединения при биосинтезе гормонов, витаминов, медиаторов, пигментов, пуриновых оснований, алкалоидов и др.). Около 20 важнейших аминокислот служат мономерными звеньями, из которых построены все белки. , жиры - на глицерин и жирные кислоты, углеводы - на моносахариды. Эти относительно простые вещества подвергаются всасыванию, а из них в органах и тканях вновь синтезируются сложные органические соединения.

Типы пищеварения

Рис. 1. Локализация гидролиза пищевых веществ при внеклеточном, дистантном пищеварении: 1 - внеклеточная жидкость; 2 - внутриклеточная жидкость; 4 - ядро; 5 - клеточная мембрана; 6 -

Нерасщеплённый или не полностью расщепленный пищевой субстрат поступает внутрь клетки, где подвергается дальнейшему гидролизу ферментами . Такой эволюционно более древний тип П. распространён у всех одноклеточных, у некоторых низших многоклеточных организмов (например, у губок) и у высших животных. В последнем случае имеются в виду фагоцитарные свойства белых клеток (см. ) и ретикуло-эндотелиальной системы, а также одна из разновидностей - так называемый пиноцитоз, свойственный клеткам эктодермального и энтодермального происхождения. Внутриклеточное П. может быть реализовано не только в цитоплазме, но и в специальных внутриклеточных полостях - пищеварительных вакуолях, существующих постоянно или образующихся при фагоцитозе и пиноцитозе. Предполагается, что во внутриклеточном пищеварении могут участвовать , ферменты которых поступают в пищеварительные вакуоли.

Рис. 2. Локализация гидролиза пищевых веществ при внутриклеточном пищеварении: 1 - внеклеточная жидкость; 2 - внутриклеточная жидкость; 3 - внутриклеточная вакуоль; 4 - ядро; 5 - клеточная мембрана; 6 - ферменты

Синтезируемые в клетках ферменты переносятся во внеклеточную среду организма и осуществляют своё действие на расстоянии от секретирующих клеток. Внеклеточное П. преобладает у кольчатых червей, ракообразных, насекомых, головоногих, оболочников и хордовых, кроме ланцетника. У большинства высокоорганизованных животных секреторные клетки расположены достаточно далеко от полостей, где реализуется действие пищеварительных ферментов ( и у млекопитающих). Если дистантное П. происходит в специальных полостях, принято говорить о полостном пищеварении. Дистантное П. может проходить за пределами организма, продуцирующего ферменты. Так, при дистантном внеполостном П. насекомые вводят пищеварительные ферменты в обездвиженную добычу, а бактерииБактерии - группа микроскопических, преимущественно одноклеточных организмов. Шаровидные (кокки), палочковидные (бациллы, клостридии, псевдомонады), извитые (виброны, спириллы, спирохеты). Способны расти как в присутствии атмосферного кислорода (аэробы), так и в его отсутствии (анаэробы). Многие бактерии являются возбудителями болезней животных и человека. Существуют бактерии, необходимые для нормального процесса жизнедеятельности (кишечная палочка участвует в переработке питательных веществ в кишечнике, однако при обнаружении ее, например, в моче, эта же бактерия рассматривается как возбудитель инфекции почек и мочевыводящих путей). выделяют разнообразные ферменты в культуральную среду.

Рис. 3. Локализация гидролиза пищевых веществ при мембранном пищеварении: 1 - внеклеточная жидкость; 2 - внутриклеточная жидкость; 4 - ядро; 5 - клеточная мембрана; 6 - ферменты

Осуществляется ферментами, локализованными на структурах клеточной мембраны, и занимает промежуточное положение между внеклеточным и внутриклеточным. У большинства высокоорганизованных животных такое П. происходит на поверхности мембран микроворсинок кишечных клеток и является основным механизмом промежуточных и заключительных стадий гидролиза. Мембранное пищеварение обеспечивает совершенное сопряжение пищеварительных и транспортных процессов и их максимальное сближение в пространстве и времени. Это достигается в результате специальной организации пищеварительных и транспортных функций клеточной мембраны в виде своеобразного пищеварительно-транспортного «конвейера», способствующего передаче конечных продуктов гидролиза с фермента на переносчик или вход в транспортную систему (рис. 4). Мембранное П. обнаружено у человека, млекопитающих, птиц, земноводных, рыб, круглоротых и многих представителей беспозвоночных животных (насекомые, ракообразные, моллюски, черви).

Рис. 4. Пищеварительно-транспортный конвейер (гипотетическая модель): 1 - фермент; 2 - переносчик; 3 - мембрана кишечной клетки; 4 - димер; 5 - мономеры, образующиеся при заключительных стадиях гидролиза

Каждому из трёх типов пищеварения присущи как определённые преимущества, так и ограничения. В процессе эволюцииЭволюция (в биологии) - необратимое историческое развитие живой природы. Определяется изменчивостью, наследственностью и естественным отбором организмов. Сопровождается приспособлением их к условиям существования, образованием и вымиранием видов, преобразованием биогеоценозов и биосферы в целом. большинство организмов стало сочетать эти процессы; чаще они комбинируются у одного и того же организма, что способствует оптимальной эффективности и экономичности пищеварительной системы.

У человека, высших и многих низших животных пищеварительный аппарат подразделяют на ряд отделов, выполняющих специфические функции:

1) воспринимающий;

2) проводящий, который у некоторых видов животных расширен с образованием специального ;

3) пищеварительные отделы - а) размельчения и начальных этапов П. (в некоторых случаях оно завершается в этом отделе), б) последующего П. и всасывания;

4) всасывания воды; этот отдел имеет особое значение для наземных животных, в нём всасывается большая часть воды, поступающей в (английский учёный Дж. Дженнингс, 1972). В каждом из отделов пищевая масса, в зависимости от её свойств и специализации отделов, задерживается на определённое время или переводится в следующий отдел.

Пищеварение в ротовой полости

У млекопитающих, большинства других позвоночных и многих беспозвоночных животных пища подвергается в ротовой полости (у человека она находится здесь в среднем 10 - 15 секунд) как механическому измельчению путём жевания, так и первоначальной химической обработке под действием , которая, смачивая пищевую массу, обеспечивает формирование пищевого комка. Химическая обработка пищи во рту заключается в основном в переваривании (у человека и всеядных) углеводов амилазой слюны. Здесь же (главным образом на языке) расположены вкусовые органы, осуществляющие дегустацию пищи. С помощью движений языка и щёк пищевой комок подаётся на корень языка и в результате глотания поступает в , а затем в .

Пищеварение в желудке

Рис. 5. Собственно кишечные и адсорбированные из полости тонкой кишки ферменты при мембранном пищеварении (схематическое изображение фрагмента внешней поверхности микроворсинки): А - распределение ферментов; Б - взаимоотношение ферментов, переносчиков и субстратов; I - полость тонкой кишки; II - гликокаликс; III - поверхность мембраны; IV - трёхслойная мембрана кишечной клетки; 1 - собственно кишечные ферменты; 2 - адсорбированные ферменты; 3 - переносчики; 4 - субстраты.

Промежуточные и заключительные стадии пищеварения реализуются ферментами, локализованными на поверхности мембран кишечных клеток, где начинается всасывание. В мембранном П. участвуют: 1) ферменты поджелудочного сока (?-амилаза, липаза, трипсин, химотрипсин, эластаза и др.), адсорбированные в различных слоях так называемого гликокаликса, покрывающего микроворсинки и представляющего собой мукополисахаридную трёхмерную сеть; 2) собственно кишечные ферменты (?-амилаза, олигосахаридазы и дисахаридазы, различные тетрапептидазы, трипептидазы и дипептидазы, аминопептидаза, щелочная и её изоэнзимы, моноглицеридлипаза и другие), синтезированные клетками кишечного и переносимые на поверхность их мембран, где они осуществляют пищеварительные функции.

Адсорбированные ферменты осуществляют преимущественно промежуточные, а собственно кишечные - заключительные стадии гидролиза пищевых веществ. Олигопептиды, поступающие в область щёточной каймы, расщепляются до аминокислот, способных к всасыванию, за исключением глицилглицина и некоторых дипептидов, содержащих пролин и оксипролин, которые всасываются как таковые. Дисахариды, и образующиеся в результате переваривания крахмала и гликогена, гидролизуются собственно кишечными гликозидазами до моносахаридов, которые транспортируются через кишечный барьер во внутреннюю среду организма. Триглицериды расщепляются не только под действием липазы поджелудочного сока, но и под влиянием собственно кишечного фермента - моноглицеридлипазы. Всасывание происходит в виде жирных кислот и?-моноглицеридов. Длинноцепочные жирные кислоты в слизистой оболочке тонкой кишки вновь эстерифицируются и поступают в в виде хиломикронов (частиц диаметром около 0,5 мкм). Короткоцепочные жирные кислоты не ресинтезируются и поступают в большей степени в кровь, чем в лимфу.

В целом при мембранном пищеварении расщепляется большая часть всех гликозидных и пептидных связей и триглицеридов. Мембранное П., в отличие от полостного, происходит в стерильной зоне, т.к. микроворсинки щёточной каймы представляют собой своеобразный бактериальный фильтр, отделяющий заключительные стадии гидролиза пищевых веществ от заселённой бактериями полости кишки.

В норме в процессах пищеварения важное значение имеют микроорганизмыМикроорганизмы (микробы) - мельчайшие, преимущественно одноклеточные организмы, видимые только в микроскоп: бактерии, микроскопические грибы, простейшие, иногда к ним относят вирусы. Характеризуются огромным разнообразием видов, способных существовать в различных условиях (холода, жары, воды, засухи). Микроорганизмы используют в производстве антибиотиков, витаминов, аминокислот, белка и т.д. Патогенные вызывают болезни человека. , а у некоторых животных - простейшие, населяющие различные отделы желудочно-кишечного тракта. Пищеварительные процессы в тонкой кишке распределены неодинаково как в направлении от её начала к концу, так и в направлении от крипт к верхушкам ворсинок, что выражается в соответственной топографии каждого из пищеварительных ферментов, осуществляющих как полостное, так и мембранное П.

практически отсутствует. В их содержимом обнаруживаются незначительные количества ферментов и богатая флора бактерий, вызывающих сбраживание углеводов и гниение белков, в результате чего образуются органические кислоты, газы (углекислый газ, метан и сероводород), ядовитые вещества (фенол, скатол, индол, крезол), обезвреживающиеся в печени. Вследствие микробного брожения расщепляется клетчатка.

В толстых кишках преобладают процессы обратного всасывания (реабсорбции) воды, минеральных и органических компонентов пищевой кашицы - химуса. В толстых кишках всасываются до 95% воды, а также электролиты, глюкоза, некоторые витаминыВитамины - органические вещества, образующиеся в организме с помощью микрофлоры кишечника или поступающие с пищей, Обычно растительной. Необходимы для нормального обмена веществ и жизнедеятеэгеяосяги. Длительное употребление пищи, лишеных витаминов, вызывает заболевания (авитаминоз, гиповитаминоз). Основные витамины: А (ретинол), Д (кальциферолы), Е (токоферолы), К (филлохинон); Н (биотин), РР (никотиновая кислота), С (аскорбиновая кислота), B1 (тиамин), В2 (рибофлавин), В3 (пантотеновая кислота), В6 (пиридоксин), B12 (цианкобаламин), Вс (фолиевая кислота). АД, Е и К являются жирорастворимыми, остальные - водорастворимыми. и аминокислоты, продуцируемые микробамиМикробы (от микро… и греческого bios - жизнь) - то же, что микроорганизмы. Микроорганизмы - мельчайшие, преимущественно одноклеточные, организмы, видимые только в микроскоп: бактерии, микроскопические грибы и водоросли, простейшие. Иногда к микроорганизмам относят вирусы. кишечной флоры. По мере продвижения и уплотнения содержимого кишечника формируется кал, накопление которого вызывает акт.

Регуляция пищеварения

Более подробно о пищеварении можно прочитать в литературе: Борис Петрович Бабкин, Внешняя секреция пищеварительных железЖелезы - органы, вырабатывающие и выделяющие специфические вещества (гормоны, слизь, слюна и др.), которые участвуют в различных физиологических функциях и биохимических процессах организма. Железы внутренней секреции (эндокринные) выделяют продукты своей жизнедеятельности - гормоны непосредственно в кровь или лимфу (гипофиз, надпочечники и др.). Железы внешней секреции (экзокринные) - на поверхность тела, слизистых оболочек или во внешнюю среду (потовые, слюнные, молочные железы). Деятельность желез регулируется нервной системой, а также гормональными факторами. , М. - Л., 1927; Иван Петрович Павлов, Лекции о работе главных пищеварительных желез, Полн. собр. соч., 2 изд., т. 2, кн. 2, М. - Л., 1951; Бабкин Б. П., Секреторный механизм пищеварительных желез, Л., 1960; Проссер Л., Браун Ф., Сравнительная физиологияФизиология - наука о жизнедеятельности целостного организма и его отдельных частей - клеток, органов, функциональных систем. Физиология стремится вскрыть механизм осуществления функций живого организма (рост, размножение, дыхание и др.), их связь между собой, регуляцию и приспособление к внешней среде, происхождение и становление в процессе эволюции и индивидуального развития особи. животных, пер. с англ., М., 1967; Александр Михайлович Уголев, Пищеварение и его приспособительная эволюция, М., 1961; его же, Мембранное пищеварение. Полисубстратные процессы, организация и регуляция, Л., 1972; Bockus Н. L., Gastroenterology, v. 1 - 3, Phil.- L., 1963-65; Davenport Н. W., Physiology of the digestive tract, 2 ed., Chi., 1966; Handbook of physiology, sec. 6: Alimentary canal, v. 1 - 5, Wash., 1967 - 68; Jennings J. B., Feeding, digestion and assimilationin animals, 2 ed., L., 1972. (А. М. Уголев, Н. М. Тимофеева, Н. Н. Иезуитова)


Найти ещё что-нибудь интересное:

Отношение к еде у разных людей заметно отличается. Для некоторых это просто способ восполнения утраченных энергетических ресурсов, а для других - удовольствие и наслаждение. Но общим остается одно: мало кто знает, что происходит с едой после того, как она попадает в организм человека.

Между тем вопросы переваривания и усваивания пищи очень важны, если вы хотите иметь крепкое здоровье. Зная законы, в соответствии с которыми устроен наш организм, можно скорректировать свое питание и сделать его более сбалансированным и грамотным. Ведь чем быстрее переваривается пища, тем эффективнее работает пищеварительная система и улучшается обмен веществ.

Рассказываем, что нужно знать о переваривании пищи, усваивании полезных веществ и времени, которое необходимо организму для переваривания тех или иных продуктов.

Как работает обмен веществ

Для начала необходимо дать определение такому важному процессу, как переваривание пищи. Что же это такое? По сути, это совокупность механических и биохимических процессов в организме, преобразующих поглощаемую человеком пищу в вещества, которые могут быть усвоены.

Сначала еда попадает в желудок человека. Это начальный процесс, который обеспечивает дальнейшее всасывание веществ. Затем пища поступает в тонкий кишечник, где подвергается действию различных пищевых ферментов. Так, именно на этом этапе углеводы превращаются в глюкозу, липиды расщепляются на жирные кислоты и моноглицериды, а белки преобразуются в аминокислоты. Все эти вещества попадают в кровь, всасываясь через стенки кишечника.

Переваривание и последующее усваивание пищи - это сложный процесс, который между тем не длится часами. Кроме того, далеко не все вещества действительно усваиваются организмом человека. Это нужно знать и учитывать.

От чего зависит переваривание пищи

Сомнений в том, что переваривание пищи - это сложный и комплексный процесс, не осталось. От чего же он зависит? Существуют определенные факторы, которые могут как ускорить, так и замедлить переваривание пищи. Их обязательно нужно знать, если вы заботитесь о своем здоровье.

Так, переваривание пищи во многом зависит от обработки продуктов питания и способа их приготовления. Так, время усвоения жареной и вареной пищи увеличивается на 1,5 часа по сравнению с сырой едой. Это связано с тем, что модифицируется изначальная структура продукта и разрушаются некоторые важные ферменты. Именно поэтому следует отдавать предпочтение сырым продуктам, если есть возможность есть их без термической обработки.

Помимо этого, на переваривание пищи влияет ее температура. Холодная еда, например, переваривается гораздо быстрее. В связи с этим между горячим и теплым супом предпочтительнее выбирать второй вариант.

Важным является также фактор смешивания пищи. Дело в том, что каждый продукт имеет свое время усваивания. А есть и такие продукты, которые вовсе не перевариваются. Если смешивать продукты с разным временем усваивания и употреблять их за один прием пищи, то время их переваривания заметно изменится.

Всасывание углеводов

Углеводы расщепляются в организме под действием пищеварительных ферментов. Ключевым для этого процесса является амилаз слюнной и поджелудочной желез.

Еще один важный термин, если мы говорим о всасывании углеводов, - это гидролиз. Это превращение углеводов в усваиваемую организмом глюкозу. Этот процесс напрямую зависит от гликемического индекса того или иного продукта. Объясняем: если гликемический индекс глюкозы равен 100%, то это значит, что организм человека усвоит ее на 100% соответственно.

При равной калорийности продуктов их гликемический индекс может отличаться друг от друга. Следовательно, концентрация глюкозы, которая попадет в кровь при расщеплении такой пищи, будет неодинаковой.

Как правило, чем ниже гликемический индекс продукта, тем он полезнее. Он содержит меньше калорий и заряжает организм энергией на более долгий срок. Таким образом, у сложных углеводов, к которым относятся зерновые, бобовые, ряд овощей, есть преимущество перед простыми (кондитерские и мучные изделия, сладкие фрукты, фастфуд, жареная пища).

Рассматриваем на примерах. В 100 граммах жареного картофеля и чечевицы содержится 400 килокалорий. Их гликемический индекс равен 95 и 30 соответственно. После переваривания этих продуктов в кровь в виде глюкозы поступает 380 килокалорий (жареный картофель) и 120 килокалорий (чечевица). Разница является достаточно существенной.

Всасывание жиров

Тяжело переоценить роль жиров в рационе человека. Они должны присутствовать обязательно, ведь это ценный источник энергии. Они обладают более высокой калорийностью по сравнению с белками и углеводами. Кроме того, жиры напрямую связаны с поступлением и усваиванием витаминов A, D, E и ряда других, так как они являются их растворителями.

Многие жиры также являются источником полиненасыщенных жирных кислот, которые крайне важны для полноценного роста и развития организма и для укрепления иммунитет а. Вместе с жирами человек получает и комплекс биологически активных веществ, благоприятно влияющих на работу пищеварительной системы и обмен веществ.

Как же перевариваются жиры в организме человека? В ротовой полости они не подвергаются никаким изменениям, так как в слюне человека нет ферментов, расщепляющих жиры. В желудке взрослого человека жиры также не претерпевают значительных изменений, так как там нет особых условий для этого. Таким образом, расщепление жиров у человека происходит в верхних отделах тонкого кишечника.

Среднее суточное оптимальное потребление жиров для взрослого человека составляет 60–100 граммов. Большинство жиров в пище (до 90%) относятся к категории нейтральных жиров, то есть триглицеридов. Остальные жиры – это фосфолипиды, эфиры холестерина и жирорастворимые витамины.

Полезные жиры, к которым относятся мясо, рыба, авокадо, оливковое масло, орехи, используются организмом практически сразу после употребления. А вот трансжиры, которые считаются нездоровой пищей (фастфуд, жареная пища, сладкое), откладываются в жировые запасы.

Всасывание протеинов

Белок является очень важным веществом для здоровья человека. Он обязательно должен присутствовать в рационе. Белки, как правило, советуют употреблять на обед и на ужин, сочетая их с клетчаткой. Однако хороши они и на завтрак. Этот факт подтверждают многочисленные исследования ученых, в ходе которых было установлено, что яйца - ценный источник белка - это идеальный вариант для вкусного, сытного и полезного завтрака.

На всасывание протеинов влияют различные факторы. Самыми важными из них являются происхождение и состав белка. Белки бывают растительные и животные. К животным относятся мясо, птица, рыба и ряд других продуктов. В основном эти продукты усваиваются организмом на 100%. Чего не скажешь о белках растительного происхождения. Немного цифр: чечевица всасывается организмом на 52%, нут - на 70%, а пшеница - на 36%.

В настоящее время под питанием понимается сложный процесс поступления, переваривания, всасывания и усвоения в организме веществ (нутриентов), необходимых для удовлетворения энергетических и пластических потребностей организма, в том числе регенерации клеток и тканей, регуляции различных функций организма. Пищеварением называется совокупность физико-химических и физиологических процессов, обеспечивающих расщепление поступающих в организм сложных пищевых веществ на простые химические соединения, способные всасываться и усваиваться в организме.

Не вызывает сомнений тот факт, что поступающая в организм извне пища, обычно состоящая из нативного полимерного материала (белки, жиры, углеводы), должна быть деструктурирована и гидролизована до таких элементов, как аминокислоты, гексозы, жирные кислоты и т. д., которые непосредственно участвуют в процессах метаболизма. Превращение исходных веществ в резорбируемые субстраты происходит поэтапно в результате гидролитических процессов, проходящих с участием различных ферментов.

Последние достижения в области фундаментальных исследований работы пищеварительной системы существенно изменили традиционные представления о деятельности "пищеварительного конвейера". В соответствии с современной концепцией под пищеварением понимаются процессы ассимиляции пищи от ее поступления в желудочно-кишечный тракт до включения во внутриклеточные метаболические процессы.

Многокомпонентная система пищеварительного конвейера состоит из следующих этапов:

1. Поступление пищи в ротовую полость, ее измельчение, смачивание пищевого комка и начало полостного гидролиза. Преодоление глоточного сфинктера и выход в пищевод.

2. Поступление пищи из пищевода через кардиальный сфинктер в желудок и временное ее депонирование. Активное перемешивание пищи, ее перетирание и измельчение. Гидролиз полимеров желудочными ферментами.

3. Поступление пищевой смеси через антральный сфинктер в двенадцатиперстную кишку. Перемешивание пищи с желчными кислотами и ферментами поджелудочной железы. Гомеостазирование и формирование химуса с участием кишечной секреции. Гидролиз в полости кишки.

4. Транспорт полимеров, олиго- и мономеров через пристеночный слой тонкой кишки. Гидролиз в пристеночном слое, осуществляемый панкреатическими и энтероцитарными ферментами. Транспорт нутриентов в зону гликокаликса, сорбция - десорбция на гликокаликсе, связывание с акцепторными гликопротеидами и активными центрами панкреатических и энтероцитарных ферментов. Гидролиз нутриентов в щеточной кайме энтероцитов (мембранное пищеварение). Доставка продуктов гидролиза к основанию микроворсинок энтероцитов в зону образования эндоцитозных инвагинаций (с возможным участием сил полостного давления и капиллярных сил).

5. Перенос нутриентов в кровеносные и лимфатические капилляры путем микропиноцитоза, а также диффузии через фенестры эндотелиальных клеток капилляров и по межклеточному пространству. Поступление нутриентов через портальную систему в печень. Доставка пищевых веществ лимфо- и кровотоком в ткани и органы. Транспорт нутриентов через мембраны клеток и их включение в пластические и энергетические процессы.

Какова же роль различных отделов пищеварительного тракта и органов в обеспечении процессов переваривания и всасывания нутриентов?

В полости рта происходит механическое размельчение пищи, смачивание слюной и подготовка ее к дальнейшему транспорту, который обеспечивается тем, что пищевые нутриенты превращаются в более или менее однородную массу. Движениями, в основном, нижней челюсти и языка формируется пищевой комок, который затем проглатывается и, в большинстве случаев, очень быстро достигает полости желудка. Химическая обработка пищевых веществ в ротовой полости, как правило, не имеет большого значения. Хотя слюна содержит целый ряд ферментов, их концентрация очень невелика. Лишь амилаза может играть определенную роль в предварительном расщеплении полисахаридов.

В полости желудка пища задерживается и затем медленно, небольшими порциями перемещается в тонкую кишку. По-видимому, основная функция желудка - депонирующая. Пища быстро накапливается в желудке и затем постепенно утилизируется организмом. Это подтверждается большим числом наблюдений над больными с удаленным желудком. Основным нарушением, характерным для этих больных, является не выключение собственно пищеварительной деятельности желудка, а нарушение депонирующей функции, то есть постепенной эвакуации пищевых веществ в кишечник, что проявляется в виде так называемого "демпинг-синдрома". Пребывание пищи в желудке сопровождается ферментативной обработкой, при этом желудочный сок содержит ферменты, осуществляющие начальные стадии расщепления белков.

Желудок рассматривается как орган пепсинно-кислотного пищеварения, так как это единственный отдел пищеварительного канала, где ферментативные реакции проходят в резко кислой среде. Железы желудка выделяют несколько протеолитических ферментов. Наиболее важными из них являются пепсины и, кроме того, химозин и парапепсин, которые осуществляют дезагрегацию белковой молекулы и лишь в небольшой степени расщепление пептидных связей. Большое значение имеет, по-видимому, действие соляной кислоты на пищу. Во всяком случае, кислая среда желудочного содержимого не только создает оптимальные условия для действия пепсинов, но и способствует денатурации белков, вызывает набухание пищевой массы, увеличивает проницаемость клеточных структур, тем самым благоприятствуя последующей пищеварительной обработке.

Таким образом, слюнные железы и желудок играют весьма ограниченную роль в переваривании и расщеплении пищи. Каждая из упомянутых желез по сути осуществляет воздействие на один из видов пищевых веществ (слюнные железы - на полисахариды, желудочные - на белки), причем в ограниченных пределах. В то же время поджелудочная железа выделяет самые разнообразные ферменты, которые осуществляют гидролиз всех пищевых веществ. Поджелудочная железа воздействует с помощью вырабатываемых ею ферментов на все виды нутриентов (белки, жиры, углеводы).

Ферментативное действие секрета поджелудочной железы реализуется в полости тонкой кишки, и уже один этот факт заставляет считать, что кишечное пищеварение является наиболее существенным этапом в переработке пищевых веществ. Сюда же, в полость тонкой кишки, попадает и желчь, которая вместе с панкреатическим соком осуществляет нейтрализацию кислого желудочного химуса. Ферментативная активность желчи невелика и, в общем, не превышает ту, что обнаруживается в крови, моче и других непищеварительных жидкостях. Вместе с тем желчь и, в особенности, ее кислоты (холевая и дезоксихолевая) выполняют ряд важных пищеварительных функций. Известно, в частности, что желчные кислоты стимулируют деятельность некоторых панкреатических ферментов. Наиболее отчетливо это доказано в отношении панкреатической липазы, в меньшей степени это касается амилазы и протеаз. Кроме того, желчь стимулирует перистальтику кишечника и, по-видимому, обладает бактериостатическим действием. Но наиболее важно участие желчи во всасывании нутриентов. Желчные кислоты необходимы для эмульгирования жиров и для всасывания нейтральных жиров, жирных кислот и, возможно, других липидов.

Принято считать, что кишечное полостное пищеварение - это процесс, который осуществляется в просвете тонкой кишки под влиянием, главным образом, секрета поджелудочной железы, желчи и кишечного сока. Внутрикишечное пищеварение осуществляется за счет слияния части транспортных везикул с лизосомами, цистернами эндоплазматической сети и комплекса Гольджи. Предполагается участие нутриентов во внутриклеточном метаболизме. Происходит слияние транспортных везикул с базолатеральной мембраной энтероцитов и выход содержимого везикул в межклеточное пространство. Тем самым достигается временное депонирование нутриентов и их диффузия по градиенту концентрации через базальную мембрану энтероцитов в собственную пластинку слизистой оболочки тонкой кишки.

Интенсивное изучение процессов мембранного пищеварения позволило достаточно полно охарактеризовать деятельность пище-варительно-транспортного конвейера в тонкой кишке. Согласно сложившимся на сегодня представлениям, ферментативный гидролиз пищевых субстратов последовательно осуществляется в полости тонкой кишки (полостное пищеварение), в надэпителиальном слое слизистых наложений (пристеночное пищеварение), на мембранах щеточной каймы энтероцитов (мембранное пищеварение) и после проникновения не полностью расщепленных субстратов внутрь энтероцитов (внутриклеточное пищеварение).

Начальные стадии гидролиза биополимеров осуществляются в полости тонкой кишки. При этом пищевые субстраты, не подвергшиеся гидролизу в кишечной полости, и продукты их начального и промежуточного гидролиза диффундируют сквозь неперемешивае-мый слой жидкой фазы химуса (автономный примембранный слой) в зону щеточной каймы, где осуществляется мембранное пищеварение. Крупномолекулярные субстраты гидролизуются панкреатическими эндогидролазами, адсорбированными преимущественно на поверхности гликокаликса, а продукты промежуточного гидролиза - экзогидролазами, транслоцированными на внешней поверхности мембран микроворсинок щеточной каймы. Благодаря сопряженности механизмов, осуществляющих заключительные стадии гидролиза и начальные этапы транспорта через мембрану, продукты гидролиза, образующиеся в зоне мембранного пищеварения, всасываются и поступают во внутреннюю среду организма.

Переваривание и всасывание основных нутриентов осуществляется следующим образом.

Переваривание белков в желудке происходит при превращении в кислой среде пепсиногенов в пепсины (оптимальный рН 1,5-3,5). Пепсины расщепляют связи между ароматическими аминокислотами, соседствующими с карбоксильными аминокислотами. Они инактивируются в щелочной среде, расщепление пептидов пепсинами прекращается после поступления химуса в тонкую кишку.

В тонкой кишке полипептиды подвергаются дальнейшему расщеплению протеазами. В основном расщепление пептидов осуществляется панкреатическими ферментами: трипсином, химотрипсином, эластазой и карбоксипептидазами А и В. Энтерокиназа переводит трипсиноген в трипсин, который затем активирует и другие протеазы. Трипсин расщепляет полипептидные цепочки в местах соединений основных аминокислот (лизина и аргинина), в то время как химотрипсин разрушает связи ароматических аминокислот (фенилала-нина, тирозина, триптофана). Эластаза расщепляет связи алифатических пептидов. Эти три фермента являются эндопептидазами, поскольку гидролизуют внутренние связи пептидов. Карбоксипеп-тидазы А и В представляют собой экзопептидазы, так как отщепляют только концевые карбоксильные группы преимущественно нейтральных и основных аминокислот соответственно. При протеолизе, осуществляемом панкреатическими ферментами, происходит отщепление олигопептидов и некоторых свободных аминокислот. Микроворсинки энтероцитов имеют на своей поверхности эндопептидазы и экзопептидазы, которые расщепляют олигопептиды до аминокислот, ди- и трипептидов. Всасывание ди- и трипептидов осуществляется с помощью вторичного активного транспорта. Эти продукты затем расщепляются до аминокислот внутриклеточными пептидазами энтероцитов. Аминокислоты абсорбируются по принципу механизма ко-транспорта с натрием на апикальном участке мембраны. Последующая диффузия через базолатеральную мембрану энтероцитов происходит против градиента концентрации, и аминокислоты попадают в капиллярное сплетение кишечных ворсинок. По типам переносимых аминокислот различают: нейтральный транспортер (переносящий нейтральные аминокислоты), основной (переносящий аргинин, лизин, гистидин), дикарбоксильный (транспортирующий глутамат и аспартат), гидрофобный (транспортирующий фенилаланин и метионин), иминотранспортер (переносящий пролин и гидроксипролин).

В кишечнике расщепляются и всасываются только те углеводы, на которые действуют соответствующие ферменты. Непереваривае-мые углеводы (или пищевые волокна) не могут быть ассимилированы, поскольку для этого нет специальных ферментов. Однако возможен их катаболизм бактериями толстой кишки. Углеводы пищи состоят из дисахаридов: сахарозы (обычный сахар) и лактозы (молочный сахар); моносахаридов - глюкозы и фруктозы; растительных крахмалов - амилозы и амилопектина. Еще один углевод пищи - гликоген - является полимером глюкозы.

Энтероциты не способны транспортировать углеводы размером больше, чем моносахариды. Поэтому большая часть углеводов должна расщепляться перед всасыванием. Под действием амилазы слюны образуются ди- и триполимеры глюкозы (соответственно мальтоза и мальтотриоза). Амилаза слюны инактивируется в желудке, так как оптимальный рН для ее активности составляет 6,7. Панкреатическая амилаза продолжает гидролиз углеводов до мальтозы, мальтотриозы и концевых декстранов в полости тонкой кишки. Микроворсинки энтероцитов содержат ферменты, расщепляющие олиго- и дисахариды до моносахаридов для их абсорбции. Глюкоамилаза расщепляет связи на нерасщепленных концах олигосахаридов, которые образовались при расщеплении амилопектина амилазой. В результате этого образуются наиболее легко расщепляемые тетрасахариды. Сахаразно-изомальтазный комплекс имеет два каталитических участка: один с сахаразной активностью, другой - с изомальтазной. Изомальтазный участок переводит тетрасахариды в мальтотриозу. Изомальтаза и сахараза отщепляют глюкозу от нередуцированных концов мальтозы, мальтотриозы и концевых декстранов. При этом сахараза расщепляет дисахарид сахарозу до фруктозы и глюкозы. Кроме того, на микроворсинках энтероцитов также имеется лактаза, которая расщепляет лактозу до галактозы и глюкозы.

После образования моносахаридов начинается их абсорбция. Глюкоза и галактоза транспортируются в энтероциты вместе с натрием посредством транспортера "натрий-глюкоза", при этом всасывание глюкозы значительно возрастает в присутствии натрия и нарушается в его отсутствие. Фруктоза же поступает в клетку через апикальный участок мембраны путем диффузии. Галактоза и глюкоза проходят через базолатеральный участок мембраны с помощью переносчиков, механизм выхода фруктозы из энтероцитов менее изучен. Моносахариды поступают через капиллярное сплетение ворсинок в воротную вену и далее в кровоток.

Жиры в пище представлены в основном триглицеридами, фосфолипидами (лецитином) и холестерином (в виде его эфиров). Для полноценного переваривания и всасывания жиров необходимо сочетание нескольких факторов: нормальной работы печени и желчевыводящих путей, наличия панкреатических ферментов и щелочного рН, нормального состояния энтероцитов, лимфатической системы кишечника и регионарной кишечно-печеночной циркуляции. Отсутствие любого из этих компонентов приводит к нарушению всасывания жиров и стеаторее.

В основном переваривание жиров происходит в тонкой кишке. Однако начальный процесс липолиза может проходить в желудке под действием желудочной липазы при оптимальном значении рН 4-5. Липаза желудка расщепляет триглицериды до жирных кислот и диглицеридов. Она устойчива к воздействию пепсина, однако разрушается под действием протсаз поджелудочной железы в щелочной среде двенадцатиперстной кишки, ее активность снижается также под действием солей желчных кислот. Желудочная липаза имеет небольшое значение по сравнению с панкреатической липазой, хотя обладает некоторой активностью, особенно в антральном отделе, где при механическом перемешивании химуса образуются мельчайшие жировые капли, что повышает площадь поверхности переваривания жиров.

После попадания химуса в двенадцатиперстную кишку происходит дальнейший липолиз, включающий несколько последовательных стадий. Сначала триглицериды, холестерин, фосфолипиды и продукты расщепления липидов желудочной липазой сливаются в мицеллы под действием желчных кислот, мицеллы стабилизируются фосфолипидами и моноглицеридами в щелочной среде. Затем колипаза, секретируемая поджелудочной железой, воздействует на мицеллы и служит точкой приложения действия панкреатической липазы. В отсутствие колипазы панкреатическая липаза обладает слабой липолитической активностью. Связывание колипазы с мицеллой улучшается в результате воздействия панкреатической фосфолипазы А на лецитин мицелл. В свою очередь, для активации фосфолипазы А и образования лизолецитина и жирных кислот необходимо наличие солей желчных кислот и кальция. После гидролиза лецитина триглицериды мицелл становятся доступными для переваривания. Затем панкреатическая липаза прикрепляется к соединению "колипаза-мицелла" и гидролизует 1- и 3-связи триглицеридов, образуя моноглицерид и жирную кислоту. Оптимальный рН для панкреатической липазы составляет 6,0-6,5. Другой фермент - панкреатическая эстераза - гидролизует связи холестерина и жирорастворимых витаминов с эфирами жирной кислоты. Основными продуктами расщепления липидов под действием панкреатической липазы и эстеразы являются жирные кислоты, моноглицериды, лизолецитин и холестерин (неэстерифицированный). Скорость поступления гидрофобных веществ в микроворсинки зависит от их солюбилизации в мицеллах в просвете кишки.

Жирные кислоты, холестерин и моноглицериды поступают в энтероциты из мицелл путем пассивной диффузии; хотя жирные кислоты с длинной цепью могут переноситься и с помощью поверхностного связывающего протеина. Поскольку эти компоненты жирорастворимы и гораздо мельче, чем непереваренные триглицериды и эфиры холестерина, они легко проходят через мембрану энтероцита. В клетке жирные кислоты с длинной цепью (более 12 атомов углерода) и холестерин переносятся связывающими протеинами в гидрофильной цитоплазме к эндоплазматическому ретикулуму. Холестерин и жирорастворимые витамины переносятся стерольным белком-переносчиком к гладкому эндоплазматическому ретикулуму, где холестерин реэстерифицируется. Жирные кислоты с длинной цепью транспортируются через цитоплазму специальным белком, степень их поступления в шероховатый эндоплазматический ретикулум зависит от количества жиров в пище.

После ресинтеза эфиров холестерина, триглицеридов и лецитина в эндоплазматическом ретикулуме они образуют липопротеины, соединяясь с аполипопротеинами. Липопротеины делят по размеру, по содержанию в них липидов и по типу апопротеинов, входящих в их состав. Хиломикроны и липопротеины очень низкой плотности имеют больший размер и состоят, в основном, из триглицеридов и жирорастворимых витаминов, тогда как липопротеины низкой плотности имеют меньший размер и содержат преимущественно эсте-рифицированный холестерин. Липопротеины высокой плотности - самые маленькие по размеру и содержат, главным образом, фосфолипиды (лецитин). Сформированные липопротеины выходят через базолатеральную мембрану энтероцитов в везикулах, далее они поступают в лимфатические капилляры. Жирные кислоты со средней и короткой цепью (содержащие менее 12 атомов углерода) могут прямо поступать в систему воротной вены из энтероцитов без образования триглицеридов. Кроме того, жирные кислоты с короткой цепью (бутират, пропионат и др.) образуются в толстой кишке из непереваренных углеводов под действием микроорганизмов и являются важным источником энергии для клеток слизистой оболочки толстой кишки (колоноцитов).

Подытоживая представленные сведения, следует признать, что знания физиологии и биохимии пищеварения позволяют оптимизировать условия проведения искусственного (энтерального и перорального) питания, опираясь на основные принципы деятельности пищеварительного конвейера.