Иммунитет бывает врожденный и приобретенный. Проведение сигналов с toll-подобных рецепторов. Повышение защитных свойств




Каждый знает, что организм имеет свою защиту, своеобразную «службу безопасности» — иммунитет. Эта тема на сегодняшний день интересна многим. Действительно, иммунитет очень важен для человеческого организма — чем устойчивее и крепче иммунитет, тем лучше здоровье. Работа иммунной системы четко слажена, но с возрастом и под воздействием неблагоприятных факторов окружающей среды она ослабевает. Это приводит к развитию различных патологических процессов. Все механизмы и свойства иммунной системы изучает специальная наука – иммунология.

Иммунитет – слово из латинского языка, которое означает «освобождение». Медицина объясняет иммунитет как способность организма защищать себя от многих чужеродных агентов – вирусов, бактерий, гельминтов, различных токсинов, атипичных (например, раковых) клеток и т.д.

Защитную функцию выполняют специальные антитела, иммуноглобулины. Если антител хватает, если они «сильные», то у болезни нет шансов развиться.

Иммунная система – это сложная защитная структура. Общеизвестно, что в борьбе чужеродными агентами принимают участие многие органы. Но основных всего два – красный костный мозг, в котором рождаются лимфоциты, и вилочковая железа (тимус), находящаяся в верхней части грудины. Иммунные клетки появляются в лимфоузлах, а созревают полностью в селезенке. В ней же уничтожаются старые лимфоциты, которые уже сделали свое дело. Внешняя защита организма – это, прежде всего, кожа, на которой погибают различные болезнетворные бактерии под воздействием специальных веществ, содержащихся в кожном сале. Другим барьером являются слизистые оболочки, пропитанные лимфоидной тканью и вырабатывающие специальные жидкости (слезы, слюна), которые тоже уничтожают инфекционных агентов. Уничтожают бактерии также сальные и потовые железы, ворсинки дыхательных путей, ресницы и др. По крови и лимфе все время передвигаются фагоциты (лейкоциты), которые поглощают болезнетворную микрофлору. Если лейкоцитов в крови много, то это сигнал того, что развивается заболевание. Когда у человека хорошее кровообращение, хороший состав крови, то это говорит о том, что иммунитет в порядке. Иммунитет подразделяют на врожденный и приобретенный.

Что такое врожденный иммунитет

Уже из названия понятно, что врожденный иммунитет (его называют еще неспецифическим) есть у человека с самого рождения. Врожденный иммунитет – это иммунитет к заболеваниям, которые характерны только для одного вида организмов. Например, человек имеет врожденный иммунитет к собачьей чуме и никогда ею не заболеет. А собака никогда не заболеет корью или холерой, потому что у нее есть врожденный иммунитет к этим заболеваниям. Исходя из этого, врожденный иммунитет можно назвать видовой иммунитет, поскольку он характерен для конкретного вида живых организмов.

Врожденный иммунитет есть у каждого человека, он передается от родителей, т.е. закреплен генетически. Поэтому его часто называют еще и наследственным иммунитетом. Антитела, которые составляют основу начальных защитных сил человека, когда он рождается, передаются от матери. Вот почему очень важное значение играют правильное внутриутробное развитие и естественное (грудное) вскармливание ребенка – только в этом случае формируется хороший врожденный иммунитет. Кровоток ребенка, находящегося в утробе матери, тесно связан с ее кровеносной системой за счет плацентарного барьера. За счет этого барьера ребенок с кровью получает от матери кислород, белки, жиры, углеводы, витамины, гормоны и др. необходимые вещества, в том числе факторы иммунной системы. Они защищают ребенка. Поэтому, когда ребенок рождается, он уже имеет некоторый иммунитет. Как только малыш начинает питаться материнским молоком (причем молоком именно биологической матери), поступление этих веществ в организм продолжается. В желудке они не разрушаются, потому что желудочный сок младенца низкой кислотности. Далее эти вещества иммунной системы поступают в кишечник, из которого всасываются в кровь, а затем разносятся кровью по всему организму. Именно этот механизм и обеспечивает врожденный иммунитет.

Отмечено, что дети, которые первые 6 месяцев питаются материнским молоком, практически не болеют в первый год жизни. Те же дети, которые вынуждены были находиться на искусственном вскармливании с первых дней жизни, болеют часто как в первый год жизни, так и в последующем. Если формирование естественной защиты нарушено, то это может привести к иммунодефицитному состоянию.

Факторы врожденного иммунитета

Механизм действия врожденного иммунитета – это совокупность определенных факторов, которые создают линию защиты человеческого организма от чужеродных агентов. Она состоит из нескольких защитных барьеров:

  1. Первичные барьеры – кожа и слизистые оболочки – при проникновении чужеродного агента развивается воспалительный процесс.
  2. Лимфатические узлы – эта защита борется с инфекционным агентом до попадания его в кровь. Если она ослаблена, то инфекция попадает в кровь.
  3. Кровь – когда инфекция попадает в кровь, то в работу включаются специальные элементы крови. В том случае, если они не в силах сдержать инфекцию, то она попадает во внутренние органы.

Кроме того, врожденный иммунитет имеет еще гуморальные и клеточные факторы. Гуморальные факторы делят на специфические и неспецифические. К специфическим относят иммуноглобулины, а к неспецифическим – жидкости, которые способны уничтожать бактерий (сыворотка крови, лизоцим, секреты разных желез). К клеточным факторам относят те клетки организма, которые принимают участие в защите от чужеродных агентов – Т- и В-лимфоциты, базофилы, нейтрофилы, эозинофилы, моноциты.

Итак, врожденный иммунитет имеет некоторые характерные особенности:

  • не меняется в течение жизни, определен генетически;
  • передается по наследству от поколения к поколению;
  • является видовым, т.е. как сформирован, так и закреплен для каждого отдельного вида в процессе эволюции;
  • распознаются строго определенные антигены;
  • устойчивость к определенным антигенам носит определенный характер;
  • врожденный иммунитет всегда включается в тот момент, когда внедряется антиген;
  • антиген самостоятельно удаляется из организма;
  • не формируется иммунная память.

Приобретенный иммунитет

Кроме врожденного, у человека есть еще и так называемый приобретенный иммунитет.

Он формируется в течение всей жизни и, в отличие от врожденного иммунитета, не передается по наследству. Приобретенный иммунитет начинает формироваться во время первой встречи с антигеном, запуская иммунные механизмы, которые запоминают этот антиген и вырабатывают специфические антитела к этому антигену. Благодаря этому, когда организм встречается в следующий раз с этим же антигеном, иммунный ответ возникает намного быстрее и становится более эффективным. В этом случае не происходит повторного заболевания. Например, если человек переболел один раз корью, ветрянкой или свинкой, то второй раз он уже не заболеет. В отличие от врожденного, приобретенный иммунитет:

  • не передается по наследству;
  • формируется в течение всей жизни, при этом изменяет набор генов;
  • индивидуален для каждого человека;
  • распознает любые антигены;
  • устойчивость к определенным антигенам строго индивидуальна;
  • когда происходит первый контакт, то иммунитет включается, в среднем, с 5-го дня;
  • чтобы удалить антиген, требуется помощь врожденного иммунитета;
  • формирует иммунную память.

Приобретенный иммунитет может быть как активным, так и пассивным.

Активный — формируется тогда, когда человек перенес какое-либо заболевание или ему была введена специфическая вакцина с ослабленными микроорганизмами или их антигенами. В результате может развиться пожизненная, длительная или кратковременная невосприимчивость. Это зависит от свойств возбудителя. Например, от кори – пожизненная, от брюшного типа – длительная, а от гриппа – кратковременная невосприимчивость. Активный приобретенный иммунитет не может реализоваться в случае иммунодефицита. Чтобы активный приобретенный иммунитет работал, иммунная система должна быть здоровой. Именно этот вид иммунитета формирует иммунную память.

Пассивный – формируется тогда, когда в организм вводят готовые антитела (например, от переболевшего человека) или антитела передаются новорожденному с молозивом матери. Приобретенный пассивный иммунитет развивается мгновенно и формируется в условиях иммунодефицита. Однако по сравнению с активным, приобретенный пассивный иммунитет имеет более низкую эффективность, не формирует иммунную память и имеет более низкую эффективность.

Врожденный и приобретенный иммунитет – это единая система защита, о которой надо постоянно заботиться и которую нужно постоянно укреплять. Потому что хороший иммунитет – это залог крепкого здоровья. Подходить к укреплению иммунной системы необходимо комплексно. Человеку жизненно необходим крепкий и здоровый иммунитет, который избавит организм от проникших чужеродных агентов и не позволит развиться различным заболеваниям.

ХАРАКТЕРИСТИКА

ВРОЖДЕННЫЙ ИММУНИТЕТ

АДАПТИВНЫЙ ИММУНИТЕТ

Условия формирования

Формируется в онтогенезе вне зависимости от запроса

Формируется в ответ на запрос(поступление чужеродных агентов)

Объект распознавания

Группы чужеродных молекул, связанных с патогенностью

Индивидуальные молекулы(антигены)

Эффекторные клетки

Миелоидные, частично лимфоидные клетки

Лимфоидные клетки

Тип реагирования популяции клеток

Популяция клеток реагирует как целое (не клонально)

Реакция на антиген клональная

Распознаваемые молекулы

Образы патогенности,стрессорные молекулы

антигены

Распознающие рецепторы

Патогенраспознающие рецепторы

Антигенраспознающие рецепторы

Угроза аутоагрессии

минимальная

реальная

Наличие памяти

отсутствует

Формируется иммунологическая память

Сравнительная характеристика основных типов иммунологического распознавания

ХАРАКТЕРИСТИКА

ПАТТЕРНОЕ(ГРУППОВОЕ)

ИНДИВИДУАЛЬНОЕ(антигенное)

Объект распознавания

Молекулярные структуры-образы патогенности

Антигенные эпитопы(антигены)

Особенности дискриминации «свой-чужой»

Совершенная,сложилась в филогенезе

Несовершенная, формируется в онтогенезе

Потребность в костимуляции

Время реализации эффекта

немедленно

Требует времени(адаптивный иммунный ответ)

Формирование генов рецепторов

Детерминировано генетически

Формируется в процессе дифференцировки клеток

Клетки,несущие рецепторы

Любые ядерные клетки

Только В- и Т-лимфоциты

Распределение на клетках рецепторов

Все клетки в популяции экспрессируют одинаковые рецепторы

клональное

Рецепторы

TLR,NLR,CLR,RIG,DAI, Scavenger-рецептор, растворимые рецепторы

BCR (на В-клетках),TCR-гд,(на

гд Т-клетках),TCR-бв

(набвТклетках)

Аббревиатуры

BCR -- антигенраспознающий рецептор В-лимфоцитов (B-cell reseptor)

TCR -- антигенраспознающий рецептор Т-лимфоцитов(T-cell receptor)

TLR -- Toll-подобный рецептор (Toll-like receptor)

Характеристика теорий иммунитета

Теория «истощения среды»

Теория «истощения среды», предложенная Луи Пастером в 1880 году, была одной из первых попыток объяснить причину возникновения приобретенного иммунитета. Невосприимчивость, наступившая в результате

перенесенного однажды заболевания, объясняется тем, что микробы полностью использовали необходимые для их жизни вещества, бывшие до заболевания в организме, и поэтому не размножались в нем вновь, подобно тому, как они перестают размножаться на искусственной питательной среде после длительного культивирования в ней.

К этому же времени относится и рецепторная теория иммунитета, предложенная Шово, согласно которой задержка роста бактерий объяснялась накоплением в организме особых продуктов обмена, препятствующих

дальнейшему размножению микробов. Хотя рецепторная теория иммунитета, так же как и гипотеза «истощения среды», были умозрительными, все же они в какой - то степени отражали объективную действительность. В гипотезе Шово содержались уже намеки на возможность появления в результате инфекции или иммунизации, каких - то новых веществ, тормозящих активность микробов в случае вторичного заражения. Таковыми, как было показано позднее, являются антитела.

Теория изгнания

Первое чёткое описание клиники оспы дал мусульманский врач Разес (IX век). Он не только впервые дифференцировал оспу от кори и других инфекционных заболеваний, но и уверенно утверждал, что выздоровление от оспы вызывает длительный иммунитет. Чтобы объяснить этот феномен, он предложил теорию иммунитета, которая является первой в известной нам литературе. Считалось, что оспа поражает кровь, и Разес утверждал, что болезнь связана с брожением крови, которое помогает избавиться от «избытка влаги», свойственной, по его мнению, крови молодых. Он полагал, что оспенные пустулы, которые возникают на коже, а потом лопаются с истечением жидкости, - это механизм, который освобождает тело от излишка влаги в крови. Такими процессами «изгнания», «освобождения» крови от избытка влаги объяснял он последующую длительную невосприимчивость переболевшего человека к оспе. Повторное заражение, по Разесу, невозможно, так как отсутствует субстрат для заражения. Невозможно заражение и стариков, у которых процесс старения «высушил» кровь.

Таким образом, концепция Разеса объясняла не только приобретённый, но и естественный иммунитет.

В XI веке Авицина предложил другую теорию, которая спустя 500 лет была развита итальянским врачом Джироламо Фракастро в его книге «О заразе»(1546 г.).

Различие концепций Разеса и Фракастро в субстратрате «изгоняемого вещества»: у Разеса изгоняется избыток влаги, а у Фракастро - остатки менструальной крови матери.

В каждом случае суть болезни видели в загнивании примеси и изгнание её через пустулы, результатом чего является пожизненный иммунитет, основанный на отсутствии в организме субстрата для возникновения болезни при новом заражении.

Фагоцитарная теория иммунитета

Основоположником был И.И. Мечников, она была первой экспериментально обоснованной теорией невосприимчивости. Высказанная впервые в 1883 году в Одессе она в дальнейшем успешно разрабатывалась в Париже И.И. Мечниковым и его многочисленными сотрудниками и учениками. Мечников утверждал, что способность подвижных клеток беспозвоночных животных поглощать пищевые частицы, т.е. участвовать в пищеварении, есть фактически их способность поглощать вообще все «чужое», не свойственное организму: различных микробов, инертные частицы, отмирающие части тела. У человека также существуют амебоидные подвижные клетки - макрофаги, нейтрофилы. Но «едят» они пищу особого рода - патогенных микробов.

Эволюция сохранила поглотительную способность амебоидных клеток от одноклеточных животных до высших позвоночных, включая человека. Однако функция данных клеток у высокоорганизованных стала иной - это борьба с микробной агрессией.

Было установлено, что захват и переваривание фагоцитами болезнетворных агентов далеко не единственный фактор защиты организма. Имеются микробы, например вирусы, для которых фагоцитоз сам по себе не имеет столь большого значения, как при бактериальных инфекциях, и только лишь предварительное воздействие на вирусы антител может способствовать их захватыванию и разрушению.

И.И. Мечников подчеркивал одну сторону клеточной защитной реакции -фагоцитарную. Последующее развитие науки показало, что функциит фагоцитарных клеток более разнообразны: кроме фагоцитоза, они участвуют в продукции антител, интерферона, лизоцима и других веществ, имеющих большое значение в формировании иммунитета. Более того, установлено, что в иммунных реакциях принимают участие не только клетки лимфоидной ткани, но и другие. Интерферон, способны вырабатывать все клетки.

Гликопротеиновый фрагмент секреторных антител продуцируется эпителиальными клетками слизистых оболочек. Одновременно с фагоцитарной теорией иммунитета развивалось гуморальное направление, которое главную роль в защите от инфекции отводило жидкостям и сокам организма (крови, лимфе, секретам), в которых содержатся вещества, нейтрализующие микробы и продукты их жизнедеятельности.

Гуморальная и рецепторная теории иммунитета

Гуморальную теорию иммунитета создали многие крупные исследователи, поэтому связывать ее только с именем П. Эрлиха несправедливо, хотя ему и принадлежат многие фундаментальные открытия, связанные с антителами.

Й. Фодор (1887), а затем Дж. Наттолл (1888) сообщили о бактерицидных свойствах сыворотки крови. Г. Бухнер (1889) установил, что это свойство зависит от наличия в сыворотке особых термолабильных «защитных веществ», названных им алексинами. Ж. Борде (1898), работавший в лаборатории И.И. Мечникова, представил факты, свидетельствующие об участии в цитоцидном эффекте двух различных по своим свойствам субстратов сыворотки - термолабильного комплемента и термостабильного антитела. Большое значение для формирования теории гуморального иммунитета имело открытие Э. Берингом и С. Китазато (1890) способности иммунных сывороток нейтрализовать столбнячный и дифтерийный токсины, а П. Эрлихом (1891) - антител, нейтрализующих токсины растительного (рицин, абрин) происхождения. В иммунных сыворотках, полученных от резистентных к холерному вибриону морских свинок, Р. Пфейффер (1894) обнаружил антитела, растворяющие микробов; введение этих сывороток не иммунным животным сообщало им устойчивость к холерному вибриону. Открытие антител, агглютинирующих микробы (Грубер, Дархем, 1896), а также антител, прецинитирующих продукты их жизнедеятельности (Краус, 1897), подтверждало прямое действие гуморальных факторов на микробы и продуктыих жизнедеятельности. Получение Э. Ру (1894) сыворотки для лечения токсической формы дифтерии окончательно укрепило идею о роли гуморальных факторов в защите организма от инфекции.

Сторонникам клеточного и гуморального иммунитета казалось, что эти направления находятся в резком, непримиримом противоречии. Однако дальнейшее развитие науки показало, что между клеточными и гуморальными факторами иммунитета существует тесное взаимодействие. Например, такие гуморальные вещества, как опсонины, агглютинины и другие антитела способствуют фагоцитозу: присоединяясь к патогенным микробам, они делают их более доступными для захватывания и переваривания фагоцитарными клетками. В свою очередь фагоцитарные клетки принимают участие в кооперативных клеточных взаимодействиях, ведущих к продукции антител.

С современных позиций видно, что и клеточная, и гуморальная теории иммунитета правильно отражали отдельные его стороны, т.е. были односторонними, а не охватывали явление в целом. Признание ценности обеих теорий явилось одновременное присуждение в 1908 году И.И. Мечникову и П. Эрлиху Нобелевской премии за выдающиеся заслуги и развитии иммунологии.

Инструктивные и селективные теории иммунитета

В самой сжатой форме все появившиеся со времен П. Эрлиха гипотетические построения, касающиеся феномена иммунологической специфичности, можно разбить на две группы: инструктивные и селективные.

Инструктивные теории рассматривали антиген в качестве пассивного материала - матрицы, на которой формируется антигенсвязующий участокантител. По этой теории все антитела имеют одну и ту же последовательность аминокислотных остатков. Различия касаются третичной структуры и возникают в процессе окончательного формирования молекулы антитела вокруг антигена. С иммунологических позиций они не объясняли, во-первых, почему количество антител в молярном отношении значительно больше количества проникшего в организм антигена, и, во-вторых, не отвечали на вопрос, за счет чего формируется иммунологическая память. Теории противоречат современным фактам иммунологии и молекулярной биологии и представляют лишь исторический интерес.

Более плодотворными оказались селективные теории вариабельности антител. В основе всех селективных теорий лежит представление о том, что специфичность антител предопределена, и антиген выступает лишь в качестве фактора отбора соответствующих по специфичности иммуноглобулинов.

В 1955 г. вариант селективной теории выдвинул Н. Ерне. По его представлениям, в организме постоянно присутствуют антитела самой разнообразной специфичности. Антитело после взаимодействия с соответствующим антигеном поглощается фагоцитирующими мононуклеарами, что приводит к активной продукции этими клетками антител исходной специфичности.

Особое место в иммунологии занимает клонально-селекционная теория иммунитета М.Ф. Бернета (1959). Она гласит, что при дифференцировке лимфоцитов от стволовой кроветворной клетки и при параллельно идущем

процессе мутационных изменений в генах, ответственных за синтез антител, возникают клоны, которые способны взаимодействовать с антигеном одной конкретной специфичности. В результате подобного взаимодействия формируется отобранный по специфичности клон, который либо секретирует антитела заданной специфичности, либо обеспечивает строго специфическую клеточную реакцию. Клонально-селекционный принцип организации иммунной системы, выдвинутый Бернетом, полностью подтвердился в настоящее время. Недостатком теории являются представления о том, что многообразие антител возникает только за счет мутационного процесса.

Основной принцип селекции специфических клонов сохранен в теории зародышевой линии Л. Худа и соавт. (1971). Однако первопричину многообразия клонов авторы видят не в повышенной мутабельности иммуноглобулиновых генов, а в исходном зародышевом их предсуществовании. Весь набор V - генов, контролирующих вариабельную область иммуноглобулинов, представлен изначально в геноме и передается из поколения к поколению без изменений. В процессе развития В-клеток происходит рекомбинация иммуноглобулиновых генов, так что отдельно взятая созревающая В-клетка способна синтезировать иммуноглобулин одной специфичности. Такая моноспецифическая клетка становится источником клона В-клеток, продуцирующих определенный по специфичности иммуноглобулин.

Теория Эрлиха. Изучение реакции антиген - антитело

иммунологический распознавание антиген фагоцитарный

Эрлих впервые ввёл в иммунологическое исследование статистический метод - метод титрования антител и антигенов. Во-вторых, в статье декларировалось, что специфичность антител и их реакции опираются на законы структурной химии. В-третьих, в ней была предложена теория образования антител, оказавшая сильное влияние на иммунологическое мышление в течение многих последующих лет.

Непосредственная практическая сторона исследований Эрлиха состояла в том, что в них было показано, как следует проводить количественное определение дифтерийного токсина и антитоксина, что позволило создать рациональную основу для важной в те годы иммунотерапии. При этом Эрлих ввел в молодую область иммунологии множество терминов, которые стали потом общепринятыми. Он утверждал, что антитело - это самостоятельный вид молекул, существующих вначале в виде рецепторов (боковых цепей) на поверхности клеток и обладающих особой химической конформацией, которая обеспечивает специфическое взаимодействие с комплементарной конфигурацией на молекуле антигена. Он полагал, что как у антигена, так и у антител имеются функциональные домены, каждый из которых обладает гаптофорной группировкой, обеспечивающей химическое взаимодействие в результате взаимного соответствия по типу «замка и ключа», т. е. аналогично взаимодействию фермент - субстрат, которое такой образной метафорой охарактеризовал Эмиль Фишер. Антигенная молекула токсина имеет также отдельную токсофорную группировку, разрушение которой превращает ее в токсоид, сохраняющий способность к специфическому взаимодействию с антителом. Эрлих установил единицы для количественного определения токсина и антитоксина и полагал, что валентность последнего равна примерно 200. В связи с вариабельностью кривых титрования для различных препаратов токсина Эрлих предположил, что они представляют собой смесь не только токсина и токсоида, но и других веществ с различным сродством к антительному рецептору. Принималось также, что молекула антитела имеет различные домены, один из которых отвечает за присоединение к антигену, а другие обеспечивают такие вторичные биологические явления, как агглютинация, преципитация и связывание комплемента. На протяжении нескольких десятилетий антитела с разной биологической активностью считали различными видами молекул, пока не восторжествовала унитарная теория Ганса Цинсера, согласно которой одно и то же антитело может обусловливать разнообразные биологические эффекты.

Эрлиховская теория взаимодействия антиген-антитело основывалась на положениях структурной органической химии тех дней. Эрлих не только полагал, что специфичность антитела зависит от химического состава и конфигурации молекулы, но считал взаимодействие антигена с антителом необратимой реакцией, основанной на образовании прочных химических связей определенного типа,названных позднее ковалентными. По мнению Сванте Аррениуса и Торвальда Мадсена, взаимодействие токсин - антитоксин в высокой степени обратимо и напоминает нейтрализацию слабой кислоты слабой щелочью. Эта идея получила дальнейшее развитие в написанной Аррениусом в 1907 г. книге «Иммунохимия», которая дала название новому разделу иммунологии. Соответственно Эрлиху эти исследователи утверждали, что взаимодействие антиген-антитело является строго стехиометрическим и подчиняется закону действующих масс. Однако вскоре было обнаружено, что соотношение между антигеном и антителами, которые участвуют в реакции, может сильно варьировать, и наконец в конце двадцатых и начале тридцатых годов Марак и Гейдельбергер выдвинули положение о том, что антиген и антитела являются мультивалентными и поэтому могут образовывать «решетку», содержащую антиген и антитела в разных пропорциях.

Эрлих полагал, что антитела представляют собой макромолекулы, специфичность которых для антигена и комплемента зависит от присутствия определенных стереохимических конфигураций, обладающих комплементарностью к аналогичным структурам антигена, что обеспечивает специфическое взаимодействие между ними. По его мнению, антитела - это естественный компонент организма, играющий роль специфического рецептора поверхностной мембраны клеток, где они выполняют в норме такие же физиологические функции, как гипотетические рецепторы для питательных веществ или как рецепторы для лекарственных препаратов, существование которых утверждал Эрлих в своих более поздних теориях химиотерапии. Один из постулатов Эрлиха заключался в том, что антиген специфически отбирает соответствующие антительные рецепторы, отрывающиеся затем от поверхности клеток. Это приводит к конденсаторной гиперпродукции рецепторов, которые накапливаются в крови в виде циркулирующих антител. Блестящая теория, предложенная Эрлихом, оказала глубокое и длительное влияние и - особенно в Германии - определила развитие идей в самых разных областях медицины. Однако в последующие десятилетия в иммунологии произошли два события, бросившие тень сомнения на теорию Эрлиха. Первым из них был целый поток исследований, показавших, что антитела можно получить против огромного количества разнообразных вполне безвредных природных веществ. Кроме того, в двадцатые годы появились, данные Ф. Обермайера и Е. П. Пика, значительно развитые затем Карлом Ландштейнером, согласно которым антитела могут образовываться против почти любого искусственного химического соединения, если его присоединить в качестве гаптена к белку-носителю. После этого стало казаться невероятным, чтобы организм мог вырабатывать специфические антитела против такого огромного количества чужеродных и даже искусственно созданных структур.

Общая теория иммунитета

Значительный вклад в развитие общей иммунологии внесли экспериментально - теоретические исследования М.Ф. Бернета (1972) - автора клонально-селекционной теории образования антител. Эта теория способствовала изучению иммунокомпетентных клеток, роли их в специфическом распознавании антигенов, продукции антител, возникновение иммунологической толерантности, аллергии.

Несмотря на определенный прогресс в изучении специфических и неспецифических факторов и механизмов иммунитета, многие стороны его далеко еще не раскрыты. Неизвестно, почему в отношении одних инфекций

(корь, оспа, паротит, туляремия и др.) организм способен формировать напряженный и длительный иммунитет, а в отношении других инфекций приобретаемый организмом иммунитет непродолжителен, и один и тот же в

антигеном отношении тип микроба может вызвать повторные заболевания через относительно короткие промежутки времени. Не известны также причины малой эффективности иммунных факторов и отношении бактерионосительства, а также хронических и латентных инфекций, например вируса простого герпеса, который в течение длительного времени, а иногда и пожизненно может персистировать в организме и вызывать периодические обострения инфекции, в то время как другие заболевания заканчиваются стерильным иммунитетом. Не установлено, почему в одних случаях факторы и механизмы иммунитета способны ликвидировать инфекционный процесс и освободить организм от патогенных агентов, а в других случаях на долгие годы устанавливается состояние своеобразного равновесия между микробом и организмом, периодически нарушаемое то в ту, то в другую сторону (туберкулез).

По - видимому, единого, универсального для всех инфекций механизма невосприимчивости и освобождения организма от микробов не существует. Особенности патогенеза различных инфекций находят свое отражение и в особенностях механизмов, обеспечивающих иммунитет, однако существуют общие принципы, характеризующие способ защиты от микробов и других, чужеродных антигенных веществ.

Это дает основание для построения, общей теории иммунитета. Выделение двух аспектов иммунитета - клеточного и гуморального - оправдано методическими и педагогическими соображениями. Однако ни один из этих подходов не дает достаточных оснований для создания теории иммунитета, которая бы всесторонне отражала суть наблюдаемых явлений. Как клеточные, так и гуморальные факторы, искусственно изолируемые, характеризуют лишь отдельные стороны явления, но не весь процесс в целом. В построении современной теории иммунитета должны найти также место и общефизиологические факторы и механизмы: повышение температуры, секретно - выделительная и ферментативная функции, нейрогормональные влияния, активность обмена веществ и т.д. Молекулярные, клеточные и общефизиологические реакции, обеспечивающие защиту организма от микробов и других, чужеродных антигенных веществ, должны быть представлены как единая, взаимосвязанная, эволюционно сложившаяся и генетически детерминированная система. Отсюда естественно, что генетическая детерминация иммунного ответа на чужеродный антиген, так же как вновь приобретаемые факторы и механизмы, должна учитываться при построении современной теории иммунитета.

Иммунные реакции выполняют не только специальную функцию защиты от микробов и продуктов их жизнедеятельности, но несут и другую, более разнообразную физиологическую функцию. Иммунные реакции принимают участие и в освобождении организма от различных немикробных антигенных веществ, проникающих через респираторный и пищеварительный тракт, через поврежденную кожу, а также искусственно вводимых с врачебными целями (сыворотки крови, лекарства). На все эти субстраты, генетически отличающиеся от антигенов реципиента, организм отвечает комплексом специфических и неспецифических клеточных, гуморальных и общефизиологических реакций, способствующих их деструкции, отторжению и выведению.

Доказано значение иммунных реакций и в предотвращении возникновения у экспериментальных животных злокачественных опухолей вирусной этиологии.

Высказана гипотеза (М.Ф. Бернет 1962; Р.В. Петров 1976), что иммунная система организма осуществляет функцию надзора за генетическим постоянством совокупности соматических клеток. Специфические и неспецифические защитные реакции играют важную роль в сохранении жизнина земле.

Однако совершенство иммунных реакций, как и всех других, относительно, и при определенных условиях они могут приносить и вред. Например, на повторное поступление больших доз чужеродного белка организм отвечает бурной и стремительной реакцией, которая может закончиться смертельным исходом. Относительным несовершенством может характеризоваться и такая мощная защитная реакция, как воспаление, которое в случае локализации его в жизненно важном органе приводит иногда к большим и непоправимым разрушениям тканей.

Функция отдельных защитных факторов может быть не только ослаблена, но и изменена. Если в норме иммунные реакции направлены на уничтожение чужеродных агентов - бактерии, токсинов, вирусов и др., то в патологии эти реакции начинают действовать и против собственных нормальных, неизмененных клеток и тканей.

Таким образом, иммунные реакции, защитные по своей природе, могут при определенных условиях быть причиной и патологических состояний: аллергии, аутоиммунных процессов и др.

Общая система иммунитета человека состоит из неспецифического (врожденного, переданного генетическим путем) и специфического иммунитета, который формируется в течение его жизни. На неспецифический иммунитет приходится 60-65% от всего иммунного статуса организма. Система врождённого иммунитета осуществляет основную защиту у большинства живых многоклеточных организмов. представляют собой две взаимодействующие части одной очень сложной системы, обеспечивающей развитие иммунного ответа на генетически чужеродные субстанции. Долгие годы сосуществовали два противоположных «полюса» и взгляда на вопрос, кто же важнее и главнее в защите от инфекций - врожденный иммунитет или приобретенный.

Иммунитет врожденный и приобретенный

Система врожденного иммунитета представляет собой совокупность различных клеточных рецепторов, ферментов и интерферонов, обладающих противовирусными свойствами и создает мощный заслон попаданию в организм бактерий, вирусов, грибков и так далее. Врожденный иммунитет характерен тем, что для развития неспецифических иммунных реакций ему не требуется предварительного контакта с инфекционным агентом. Существует удивительно тесное сходство между системами врожденного иммунитета у самых различных животных. Это свидетельство того, что эволюционно самая древняя система неспецифического иммунитета имеет жизненно важное значение. Система врождённого иммунитета намного более эволюционно древняя, чем система приобретённого иммунитета, и присутствует у всех видов растений и животных, но подробно изучена только у позвоночных. Было время, когда система врожденного иммунитета у позвоночных животных считалась архаичной и устаревшей, однако сегодня доподлинно известно, что от состояния врожденного иммунитета во многом зависит функционирование системы приобретенного иммунитета. Действительно неспецифический иммунный ответ определяет эффективность специфического иммунного ответа. Теперь уже считается общепринятым, что система врожденного иммунитета инициирует и оптимизирует реакции специфического иммунитета, которые развиваются более медленно. Иммунитет врожденный и приобретенный тесно взаимодействуют друг с другом. Своеобразным посредником во взаимодействии обеих систем является система комплемента. Система комплемента состоит из группы сывороточных глобулинов, которые, взаимодействуя в определенной последовательности, разрушают стенки клеток как самого организма, так и клетки микроорганизмов, проникших в тело человека. Одновременно система комплемента активизирует специфический иммунитет человека . Система комплемента способна разрушить неправильно построенные клетки эритроцитов и опухолевых клеток. Система комплемента обеспечивает непрерывность иммунного ответа. Именно неспецифический иммунитет отвечает и несет контроль за уничтожение раковых (опухолевых) клеток. Поэтому создание различных вакцин против рака - это элементарная биохимическая безграмотность и профанация, поскольку никакая вакцина не способна формировать неспецифический иммунитет. Любая вакцина, наоборот, формирует исключительно специфический иммунитет.

Система врожденного иммунитета

Неспецифический иммунитет формируется в организме человека, начиная с внутриутробного развития. Так на 2 месяце беременности уже обнаруживаются первые фагоциты - гранулоциты, а моноциты появляются на 4 месяце. Эти фагоциты формируется из стволовых клеток, которые синтезируются в костном мозге, а затем эти клетки, попадают в селезенку, где с целью их активирования к ним добавляется углеводный блок системы рецепции "свой-чужой". После рождения ребенка, врожденный иммунитет поддерживается за счет работы клеток селезенки, где формируются растворимые компоненты неспецифического иммунитета. Таким образом, селезенка является местом постоянного синтеза клеточных и неклеточных компонентов неспецифического иммунитета. Врожденный иммунитет сегодня считают абсолютным, так как в подавляющем большинстве случаев этот иммунитет не удаётся нарушить заражением даже громадными количествами вполне вирулентного материала. Вирулентность (лат. Virulentus — «ядовитый»), степень болезнетворности (патогенности) данного инфекционного агента (вируса, бактерии или другого микроба). Вирулентность зависит, как от свойств инфекционного агента, так и от чувствительности инфицированного организма. Однако могут быть и исключения, свидетельствующие об относительности врожденного иммунитета. Врожденный иммунитет в некоторых случаях может быть снижен действием ионизирующей радиации и созданием иммунологической толерантности. Врожденный иммунитет является первой линией защиты организма млекопитающих против агрессоров. Инфекционные агенты и их структурные компоненты, которые добрались до слизистых кишечника, носоглотки, легких или попали внутрь организма, «запускают» врожденный иммунитет. Через рецепторы врожденного иммунитета происходит активация фагоцитов - клеток, которые «заглатывают» чужеродные микроорганизмы или частицы. Фагоциты (нейтрофилы, моноциты и макрофаги, дендритные клетки и другие) - основные клетки врожденной иммунной системы. Фагоциты обычно циркулируют по организму в поисках чужеродных материалов, но могут быть призваны в конкретное место при помощи цитокинов. Цитокины - сигнальные молекулы играют очень важную роль на всех этапах иммунного ответа. Одни цитокины выступают в качестве медиаторов реакций врожденного иммунитета, а другие контролируют реакции специфического иммунитета. В последнем случае цитокины регулируют активацию, рост и дифференцировку клеток. К числу наиболее важных цитокинов относятся и молекулы трансфер факторы , которые составляют основу линейки американских препаратов, которые получили название Трансфер Фактор .

NК-клетки и Трансфер Фактор

Цитокины регулируют и активность NK-клеток. Нормальные киллеры или NK-клетки - это лимфоциты, обладающие цитотоксической активностью, то есть способные прикрепляться к клеткам-мишеням, секретировать токсичные для них белки, таким образом, их уничтожая. NK-клетки распознают клетки, пораженные некоторыми вирусами, и опухолевые клетки. Они содержат на мембране рецепторы, реагирующие со специфическими углеводами поверхности клеток-мишеней. Снижение НК-клеточной активности и снижение общего числа НК-клеток связаны с развитием и быстрым прогрессированием таких заболеваний, как рак, вирусный гепатит, СПИД, синдром хронической усталости, синдром иммунодефицита и целый ряд аутоиммунных заболеваний . Повышение функциональной активности натуральных киллеров напрямую связано с проявлением противовирусного и противоопухолевого действия. Сегодня ведется активный поиск лекарственных средств, способных стимулировать именно NK-клетки. В этом специалисты видят перспективу для разработки противовирусных препаратов широкого спектра действия. Но на сегодняшний день создан только один препарат, который способный стимулировать NK-клетки - и это Трансфер Фактор! Доказано, что Трансфер Фактор максимально повышают активность NK-клеток. Трансфер Фактор классик повышает активность этих клеток на 103%, а это значительно больше по сравнению с другими адаптогенами , в том числе, с обычным молозивом , которое повышает активность NK-клеток на 23%. Но только подумайте, Трансфер Фактор плюс, повышает активность NK-клеток на 283%! А сочетание Трансфер фактор плюс и Трансфер фактор Эдвенсд еще больше усиливает данный эффект - повышает активность NK-клеток на 437%, практически в 5 раз, полностью восстанавливая их активность в нашем организме. Именно поэтому Трансфер Фактор сегодня актуален в современном мире, а для жителей мегаполисов Трансфер Фактор вообще жизненно необходим, так как активность NK-клеток у жителей городов в 4-5 раз меньше нормы. И это доказанный факт! Так как у «условно здоровых» людей в нашей стране уровень активности NK-клеток в несколько раз снижен, то повышение ее даже на 437% — всего лишь выход на норму компетентности. Следует помнить, что активность NK-клеток оценивается не по их количеству, которое возрастает незначительно, а по числу актов цитолиза — уничтожения мутировавших или инфицированных клеток. Речь идет не о «подстегивании» иммунной системы, а о повышении ее компетентности, то есть способности различать «врагов». Компетентная иммунная система достигает больших результатов и гораздо меньшими усилиями. Производство линейки препаратов Трансфер Фактор началось в соединенных Штатах более пятнадцати лет назад. Компания 4 life , заинтересовавшись исследованиями специалистов, получила патент на производство этого иммуномодулятора. В нашей стране Трансфер Фактор сегодня чрезвычайно востребован и среди врачей, и среди простых людей. Трансфер Фактор также получил высочайшую оценку Министерства Здравоохранения Украины, которая отражена в методическом письме МЗ Украины от 29.12.2011г. «Эффективность применения Трансфер Факторов в комплексе иммунореабилитационных мероприятий». Сегодня у наших врачей появилась возможность следовать за природой, действовать в согласии с иммунной системой, а не за нее с помощью препарата Трансфер Фактор. Такой подход позволяет получать результаты, не достижимые прежде.

Иммунитет - это невосприимчивость организма к чужеродному агенту, в частности инфекционному.

Наличие иммунитета связано с наследственными и индивидуально приобретенными факторами, которые препятствуют проникновению в организм и в нем различных патогенных агентов ( , вирусы), а также действию выделяемых ими продуктов. Иммунитет может быть не только против патогенных агентов: любой чужеродный для данного организма антиген (например, белок) вызывает иммунологические реакции, в результате которых этот агент тем или иным путем удаляется из организма.

Иммунитет отличается многообразием по происхождению, проявлению, механизму и другим особенностям. По происхождению различают врожденный (видовой, естественный) и приобретенный иммунитет.

Врожденный иммунитет является видовой особенностью животного и обладает очень высокой напряженностью. Человек обладает видовой невосприимчивостью к ряду инфекционных заболеваний животных ( рогатого скота и др.), животные невосприимчивы к , брюшному тифу, и др. В ряде случаев напряженность естественного иммунитета относительна (при искусственном снижении температуры тела птиц удается заразить их , к которой они обладают видовой невосприимчивостью).

Приобретенный иммунитет не является врожденным признаком и возникает в процессе жизни. Приобретенный иммунитет может быть естественным или искусственным. Первый появляется после перенесенного заболевания и, как правило, является достаточно прочным. Искусственно приобретенный иммунитет подразделяется на активный и пассивный. Активный иммунитет возникает у людей или животных после введения вакцин (с профилактической или лечебной целью). Организм сам вырабатывает защитные противотела. Подобный иммунитет возникает через сравнительно продолжительный период времени (недели), но сохраняется долго, иногда годами, даже десятилетиями. Пассивный иммунитет создается после введения в организм готовых защитных факторов - антител (иммунных сывороток, ). Возникает он быстро (через несколько часов), но сохраняется непродолжительный период времени (обычно несколько недель).

К приобретенному иммунитету относится так называемый инфекционный, или нестерильный, иммунитет. Он обусловлен не перенесением инфекции, а наличием ее в организме и существует только до тех пор, пока организм инфицирован (например, иммунитет к туберкулезу).

По проявлению иммунитет может быть антимикробным, когда действие защитных факторов, организма направлено против возбудителя, заболевания ( , чума, ), и антитоксическим (защита организма против при , дифтерии, анаэробных инфекциях). Кроме того, существует противовирусный иммунитет.

Большую роль в поддержании иммунитета играют следующие факторы: кожные и слизистые барьеры, воспаление, барьерная функция лимфатической ткани, гуморальные факторы, иммунологическая реактивность клеток организма.

Значение кожи и слизистых оболочек в невосприимчивости организма к инфекционным агентам объясняется тем, что в неповрежденном состоянии они являются непроницаемыми для большинства видов микробов. Эти ткани обладают также стерилизующим бактерицидным действием, обусловленным способностью продуцировать вещества, вызывающие гибель ряда микроорганизмов. В большинстве своем природа этих веществ, условия и механизм их действия изучены не вполне достаточно.

Защитные свойства организма во многом определяются (см.) и фагоцитозом (см.). К защитным факторам относится барьерная функция , (см.) которая препятствует проникновению бактерий в организм, что в известной степени связано с воспалительным процессом. Значительная роль в иммунитете принадлежит специфическим защитным факторам крови (гуморальные факторы)- антителам (см.), которые появляются в сыворотке после перенесенного заболевания, а также при искусственной (см.). Они обладают специфичностью в отношении антигена (см.), вызвавшего их появление. В отличие от иммунных антител, так называемые нормальные часто встречаются в сыворотке людей и животных, которые не переносили инфекции и не подвергались иммунизации. К неспецифическим факторам крови относится комплемент (алексин) - термолабильная субстанция (разрушается при t°56° в течение 30 мин.), обладающая свойством усиливать действие антител в отношении ряда микроорганизмов. Иммунологическая во многом зависит от возраста. У она резко снижена; у пожилых выражена в меньшей степени, чем в среднем возрасте.

Одним из наиболее важных обобщений в иммунологии конца XX и начала XXI в. стало создание научно обоснованного учения о врожденном (от англ. ита{е ттипНу), или естественном, природном, и адаптивном (от англ.

АйауИуе ттипНу), или приспособительном, приобретенном (от англ. асдшгес1 ттипНу), иммунитете. В иммунологической практике чаще используют термины «врожденный» и «адаптивный» иммунитет, врожденные и адаптивные компоненты иммунной системы, врожденный и адаптивный иммунный ответ. Оба варианта иммунитета реализуются через клеточные и гуморальные факторы. Ушли в прошлое такие термины, как «неспецифический иммунитет», «неспецифическая иммунологическая реактивность» и им подобные.

Врожденный и приобретенный иммунитет представляет собой две взаимодействующие части одной системы, обеспечивающей раз* витие иммунного ответа на генетически чужеродные субстанции.

Врожденный иммунитет - наследственно закрепленная система защиты многоклеточных организмов от любых патогенных и непатогенных микро­организмов, а также эндогенных продуктов тканевой деструкции.

Как самая ранняя форма иммунной защиты организма, врожденный иммунитет сформировался на начальных этапах эволюции многокле­точных организмов, до появления способности к перегруппировке генов иммуноглобулинов и ТСК, а также возможности узнавания «своего» и полноценной иммунной памяти. Доказательством этому служит наличие
разнообразных генов врожденной защиты у беспозвоночных животных и растений. Известно, что у беспозвоночных (например, у членистоногих) существуют клеточные элементы, обладающие фагоцитарной функцией, и гуморальные факторы типа противомикробных пептидов, лектинов и др., успешно распознающих и поражающих патогенные микроорганизмы. Все эти компоненты консервативны, наследуются и не подвергаются генетиче­ской модификации в течение жизни.

Охарактеризованы основные отличительные признаки системы врож­денного иммунитета.

* Врожденный иммунитет обеспечивает распознавание и элиминацию патогенов в первые несколько минут или часов после их проникнове­ния в организм, когда механизмы адаптивного иммунитета еще отсут­ствуют.

* Функция системы врожденного иммунитета осуществляется через раз­нообразные клеточные элементы (макрофаги, ДК, нейтрофилы, туч­ные клетки, эозинофилы, базофилы, ИК-клетки, ИКТ-клетки, некото­рые негемопоэтические клетки) и гуморальные факторы (естественные антитела, цитокины, комплемент, белки острой фазы, катионные противомикробные пептиды, лизоцим и др.) (см. табл. 1-1).

Клетки врожденной иммунной системы:

* не образуют клонов. Отсутствие клональности в организации врожден­ной иммунной системы - одно из ее основных отличий от адаптивной иммунной системы. В этом смысле каждая клетка врожденного имму­нитета действует индивидуально, тогда как при адаптивном иммунном ответе все клетки в пределах клона (сообщества) подчинены единой генетически детерминированной программе;

* не подвергаются негативной и позитивной селекции;

* участвуют в реакциях фагоцитоза, цитолиза, в том числе бактериолиза, нейтрализации, выработки цитокинов и др.

Распознавание патогенов клетками врожденного иммунитета реализу­ется через многочисленные рецепторные структуры, такие, как рецепторы- мусорщики (5шга?#ег-рецепторы), маннозные рецепторы, рецепторы ком­племента (СК1, СКЗ, СК4), лектиновые рецепторы и др. Особую группу рецепторов врожденного иммунитета составляют так называемые паттерн- распознающие рецепторы (англ. Раиет-Кесо%пШоп ЯесерШ - РКК).

Они распознают консервативные, общие для многих типов микроор­ганизмов структуры, так называемые патогенассоциированные молеку­лярные паттерны (англ. РаЪко%еп-А$$ос1а1ей Мо1еси1аг РаНетз - РАМР). В настоящее время интенсивно изучают структуру и функции рецепторов врожденного иммунитета, таких, как То11-подобные рецепторы (ТЪК), N00-1, N00-2, К1С и др. Рецепторы врожденной иммунной системы эво- люционно законсервированы.

То11-рецепторы впервые обнаружены у дрозофил. ТоИ-подобные (ТЬК) рецепторы у млекопитающих имеют сходную с ними структуру и функцию. Рецепторы этого семейства широко представлены на различных клетках иммунной системы (моноциты, ДК, лейкоциты и др.), а также на многих клетках организма (фибробласты, эндотелий, эпителий, кардиомиоциты и др.). Система ТЬК. более подробно рассмотрена ниже.

Факторы врожденного иммунитета не изменяются в процессе жизни организма, контролируются генами зародышевой линии и насле­дуются.

Активация врожденного иммунитета не формирует продолжи­тельной иммунной памяти, но служит обязательным условием раз­вития адаптивного иммунного ответа.

Все перечисленные функции крайне важны для защиты от патогенных микроорганизмов, но недостаточны для жизнедеятельности высокооргани­зованных многоклеточных организмов, таких, как позвоночные. Именно у них в процессе эволюции возникли новые иммунные компоненты и сфор­мировалась иммунная система, главной функцией которой стал контроль над генетическим постоянством внутренней среды многоклеточного орга­низма. Перед иммунной системой возникла задача распознать и запомнить «свое». Всё, что антигенно «свое», должно сохраниться, а всё, что антигенно «чужое», подлежит удалению из организма. В условиях многомиллионно­го разнообразия чужеродных антигенных структур невозможно обойтись небольшим набором генов, передаваемых по наследству (так называемых зародышевых генов - англ. рт Ипё).

В связи с новыми задачами формируется приобретенная (адаптивная) иммунная система с появлением целого ряда новых структур и свойств:

Клеточные компоненты: антигенраспознающие Т- и В-лимфоциты, антигенпрезентирующие, регуляторные, цитотоксические и другие клетки; молекулы: антитела;

Система генов главного комплекса гистосовместимости (у человека НЬА - от англ. Нитап Ьеикосу1е Апй$еп5)\

Механизм соматической перегруппировки генов ТСК и иммуногло­булинов (антител) из первоначально небольшого числа зародышевых генов.

В результате этого механизма под влиянием регуляторов генной пере­группировки (КАС1 и КАС2) из первоначального небольшого набора генов зародышевой линии, передаваемых по наследству, в процессе соматической рекомбинации генных сегментов V, Б,} и С, кодирующих молекулы антител или ТСК, создается огромное разнообразие распознающих элементов, кото­рые охватывают все существующие в природе антигены. После рождения иммунная система человека потенциально способна к узнаванию любого антигена и может дифференцировать антигены, различающиеся одним или несколькими аминокислотными остатками. На уровне тимуса и кост­ного мозга происходит элиминация или блокада (селекция) Т- и В-клеток, потенциально способных реагировать с аутологичными антигенами.

Ключевую роль в реакциях адаптивного иммунитета выполня­ют субпопуляции Т- и В-лимфоцитов, узнающие антигены с помощью антигенраспознающих рецепторов (ТСК и ВСК соответственно).

Т-лимфоциты способны распознавать антиген, только если он представ­лен антигенпрезентирующими клетками собственного организма с участи­ем молекул главного комплекса гистосовместимости I или II класса. Такими уникальными свойствами в организме обладают только Т-лимфоциты, и в этом смысле они являются истинными иммунокомпетентными клетками (иммуноцитами, по терминологии основателя клонально-селективной тео­рии иммунитета Ф. Бернета).

В процессе развития центральных органов иммунной системы в них изначально формируются клеточные элементы с рецепторами к любому антигену, который, поступая в организм, активирует специфичный к нему клон лимфоцитов. Например, до инфекции частота специфических клеток (Т- и В-лимфоцитов) крайне низкая для протективного ответа и составля­ет примерно 1:10 000-1:100 000 клеток. Однако в течение 1-2 нед после распознавания антигена клетки интенсивно пролиферируют, и их число возрастает примерно в 1000 раз. После созревания они образуют клоны, клетки которых защищают хозяина, вырабатывая антитела, активируя макрофаги, убивая инфицированные клетки и выполняя другие функции. После завершения иммунного ответа антигенспецифические Т- и В-клетки сохраняются как «клетки памяти».

Таким образом,

Молекулы и рецепторы системы адаптивного иммунитета закладыва­ются на ранних этапах онтогенеза из небольшого набора зародышевых генов;

Эта система имеет огромное число антигенраспознающих вариантов (репертуар), достаточное для узнавания своих и чужеродных анти­генов в течение жизни. Иными словами, она формируется в течение жизни индивида под действием различных антигенов;

Основная особенность приобретенного или адаптированного иммуни­тета заключается в том, что соматически перегруппировавшиеся гены иммуноглобулинов и ТСК не наследуются. Потомство получает от родителей набор только зародышевых генов и затем формирует свой спектр элементов приобретенного иммунитета. Эмбрион, получивший зародышевые гены, начинает «строить» свою иммунную систему.

Естественно, что в организме млекопитающих врожденный и адаптив­ный иммунитет, осуществляющие разные задачи, функционируют коор­динированно. Активация врожденного иммунитета, как правило, служит обязательным условием инициации адаптивного иммунного ответа.

В историческом аспекте клиническая иммунология имеет дело с заболе­ваниями, вызванными нарушениями приобретенного иммунитета (иммуно­дефициты, аутоиммунная патология, аллергопатология, лимфопролифера­тивные заболевания и др.). Однако в последнее время активно выявляются и изучаются заболевания с преимущественными дефектами компонентов врожденного иммунитета, включая патологию рецепторов врожденного иммунитета, комплемента, цитокинов и их рецепторов, системы нормаль­ных киллеров и многие другие. Чаще всего такие заболевания проявляются в форме воспаления различного уровня - от системного до локального. Тем не менее в настоящее время целесообразно оба типа иммунного реа­гирования рассматривать в комплексе, делая акценты на наиболее важных сторонах каждого из них. В связи с этим по мере изложения материала мы приводим не только индивидуальные особенности врожденного и приобре­тенного иммунитета, но и общие закономерности их функционирования.

В табл. 1-1 приведены основные компоненты и свойства систем врожден­ного и адаптивного иммунитета.

Таблица 1-1. Компоненты и функции врожденного и приобретенного иммунитета
Компоненты и функции Врожденный иммунитет Приобретенный иммунитет
Клетки-зффекторы Моноциты/макрофаги, ден­дритные клетки, гранулоциты, ГЖ-клетки, [\1КТ-лимфоциты, эози- нофилы, тучные клетки Т- и В-лимфоцит&, их многочис­ленные субпопуляции (Т-хелперы, Т-регуляторы, Т-киллеры и др.)
Гуморальные факторы Комплемент, естественные антите­ла, катионные противомикробные пептиды, провоспалительные цитокины, интерфероны типа 1, белки острой фазы, белки тепло­вого шока, лектины и др. Антитела различных изотипов и подтипов: 1дМ. 1д6 (^6, 1д62,1д63, 1д6Д 1дА (1дАг 1дА2), 1дЕ, 1дй; цито­кины (ИЛ-2, ИЛ-4, ИФН-у и др.)
Основные функции Распознавание патогенов, прямое противомикробное действие, под­держание микробиоценоза, разви­тие воспаления, индукция приоб­ретенного иммунитета и др. Двойное распознавание антигена в комплексе с молекулами главного комплекса гистосовместимости (для Т-лимфоцитов), развитие иммунно­го ответа клеточного или гумораль­ного типа, иммунная память и др.

Компоненты врожденного и приобретенного иммунитета тесно связаны по многим параметрам:

* дендритные клетки (ДК), макрофаги и другие клетки врожденного иммунитета презентируют антиген Т- и В-лимфоцитам;