Каждый человек имеет индивидуальную частоту вибраций. Какая частота Ваша? Лечение частотами




Токи высокой частоты находят в настоящее время широкое применение в промышленности, связи, радиовещании, на транспорте, а также в медицине (высокочастотная терапия). Различают токи сверхвысокой частоты (СВЧ), ультравысокой частоты (УВЧ) и высокой частоты (ВЧ).

При работе с токами высокой частоты имеет место воздействие на организм радиочастотного излучения.

У генераторов высоких и ультравысоких частот человек подвергается воздействию электрических и магнитных полей, которые периодически сменяют друг друга. При работах у генераторов сверхвысоких частот человек подвергается облучению потока энергии волн.

Патологические изменения в организме, вызванные высокочастотными токами

При работе с токами высокой частоты в неблагоприятных условиях могут развиться патологические изменения в организме.

В этих случаях работающие жалуются на головную боль, головокружение, повышенную утомляемость, ослабление памяти, раздражительность, бессонницу ночью, сонливость днем, парестезии, боли в конечностях, снижение аппетита, жажду, боли в эпигастральной области, неприятные ощущения в области сердца в ряде случаев с иррадиацией в левую руку, понижение работоспособности. У женщин отмечается нарушение менструального цикла, мужчины иногда страдают импотенцией. Чаще всего, однако, отмечаются жалобы на слабость, головную боль, нарушение сна (сонливость днем и бессонница ночью), повышенную утомляемость, боли в области сердца.

Более выраженные субъективные расстройства имеют место у лиц со значительным стажем работы. Среди них относительно чаще отмечаются и жалобы сердечного характера.

Наиболее характерное клиническое проявление длительного воздействия радиочастотного излучения на организм в неблагоприятных производственных условиях представляет собой функциональное расстройство центральной нервной системы в форме вегетативной дистонии, нередко на астеническом фоне. Отмечается нарушение терморегуляции, потливость, стойкий красный дермографизм, повышенная возбудимость вестибулярного аппарата, легкий тремор вытянутых рук. У некоторых лиц наблюдается цианоз дистальных отделов конечностей с понижением кожной чувствительности по полиневритическому типу. Иногда имеют место нарушения трофики: выпадение волос, ломкость ногтей, похудание.

Физиологическими исследованиями, проведенными на производстве у лиц, имеющих дело с токами высокой частоты, установлено, что у них наблюдаются изменения высшей нервной деятельности, выражающиеся в нарушении равновесия между процессами возбуждения и торможения.

У работающих с токами высокой частоты также отмечаются изменения со стороны внутренних органов. Прежде всего обращает на себя внимание лабильность сердечно-сосудистой системы, наклонность к брадикардии, артериальной гипотензии, особенно в отношении систолического давления.

При длительном воздействии радиоволн, в особенности диапазонов сверхвысоких частот значительной интенсивности, отмечаются явные изменения со стороны сердца. На электрокардиограмме нередко выявляется синусовая аритмия, удлинение внутрипредсердной и внутрижелудочковой проводимости, снижение вольтажа зубцов R и T в стандартных и грудных отведениях). Таким образом, наряду с явными экстракардиальными влияниями ваготонического типа обычно отмечаются и определенные изменения со стороны сердечной мышцы типа миокардиодистрофии.

Могут наблюдаться и коронарные нарушения.

В ряде случаев у лиц, подвергавшихся воздействию радиоволн, выявляются эндокринные нарушения, в частности гиперфункция щитовидной железы у женщин.

Не совсем выясненным представляется характер изменений крови у работающих с токами высокой частоты. Во всяком случае можно считать, что изменения со стороны крови в разбираемых случаях носят неспецифический, маловыраженный и нестойкий характер. Отмечается тенденция к эритроцитозу и ретикулоцитозу.

При работах с токами сверхвысоких частот в условиях значительной интенсивности облучения наблюдаются сдвиги со стороны белой крови (лейкопения, или лейкоцитоз, лимфопения, эозинофилия, повышенное содержание нейтрофилов с патологической зернистостью протоплазмы).

Для работающих с токами высокой частоты характерна неустойчивость отдельных показателей белой крови. Чаще отмечается лейкопения, наблюдается и тромбопения.

Изменения со стороны крови, отмечаемые у лиц, работающих с токами высокой частоты, скорее являются выражением нейрорегуляторных нарушений, чем расстройств кроветворных органов. Есть указания на наличие у соответствующих лиц некоторых сдвигов биохимического характера: повышение РОЭ, содержания сахара и гистамина в крови, снижение альбумин-глобулинового коэффициента за счет повышения глобулиновых фракций.

По имеющимся клиническим наблюдениям, при работах с сантиметровыми волнами могут развиться изменения в хрусталике. В литературе имеются единичные указания, что женщины более чувствительны к воздействию радиоволн.

У работающих в условиях воздействия СВЧ отмечаются изменения в состоянии здоровья, которые характеризуются астеническим симптомокомплексом, рядом ваготонических реакций, нарушениями эндокринно-гуморальных процессов. Отмечаются изменения возбудимости обонятельного анализатора, незначительные и нестойкие отклонения в составе периферической крови, изменения в хрусталике.

При случайном контакте с проводниками тока высокой частоты (100 килоциклов и выше) могут иметь место ожоги кожи. Ожоги эти обычно бывают глубокими и болезненными, но вначале они менее болезненны, чем ожоги от огня. Иногда такие ожоги развиваются под кожей или под одеждой, которая остается неизмененной. В области эпифизов костей, например на концевых фалангах пальцев, ожоги носят более выраженный характер, чем на участках с развитыми мягкими тканями.

Механизм действия радиочастотного излучения на организм

Механизм действия радиочастотного излучения на организм еще не может считаться окончательно выясненным. Несомненно, они оказывают термическое действие вследствие поглощения тканями высокочастотной энергии и превращения ее в тепло.

Наряду с термическим действием радиоволны, очевидно, оказывают на организм и специфическое влияние, сущность которого еще не выяснена.

Характер изменений, которые отмечаются в организме при воздействии электромагнитных полей различных частотных диапазонов, одинаков, однако выраженность их действия возрастает с увеличением мощности электромагнитного поля, длительности воздействия и укорочения длины волны.

Наряду с общими признаками воздействия радиоволн отмечаются и некоторые особенности, характерные для различных диапазонов волн. Так, например, у работающих с миллиметровыми волнами изменения со стороны сердечно-сосудистой системы являются наиболее выраженными.

Как показывают экспериментальные данные, при воздействии СВЧ на организм животных развиваются умеренные дегенеративные и пролиферативные процессы в нервной системе и внутренних органах, нарастающие с увеличением интенсивности облучения.

Экспериментальные данные свидетельствуют также об изменениях обмена веществ под влиянием облучения СВЧ (углеводный обмен).

В современных производственных условиях встречаются технологические процессы, при которых работающие с генераторами токов высокой частоты подвергаются облучению не только электромагнитных полей радиочастот, но и рентгеновыми лучами. В этих случаях у работающих отмечаются более выраженные функциональные нарушения со стороны центральной нервной системы и более демонстративные изменения со стороны крови (лейкопения, тромбопения, анемия, качественные изменения белой и красной крови).

Сложный характер действия электромагнитных полей на организм дает возможность при определенных условиях успешно использовать их для терапевтических целей. Токи УВЧ оказывают противовоспалительное и болеутоляющее действие. Болеутоляющий эффект особенно выражен при воспалительных процессах. Установлено также сосудорасширяющее действие УВЧ терапии. Наибольший эффект отмечается при использовании УВЧ при острых гнойных процессах (фурункулы и т. д.), остеомиелитах, инфицированных ранах и отморожениях. УВЧ терапия показана при ангиоспастических явлениях, бронхиальной астме, облитерирующем эндартериите и болезни Рейно.

Противопоказаниями являются злокачественные опухоли, гипотония, активный туберкулез.

Лечебно-профилактические мероприятия

С учетом характера клинических явлений, развивающихся при длительном воздействии радиоволн, проводится курс вливаний раствора глюкозы с витамином В1 и аскорбиновой кислотой в сочетании с приемом небольших доз брома и кофеина, назначается глутаминова я кислота (1 г 3 раза в день), гидротерапия, в дальнейшем - общее санаторно-курортное лечение.

Важным лечебно-профилактическим мероприятием является перерыв в работе, продолжительность которого зависит от состояния больного.

Изменения, развивающиеся при воздействии радиоволн, обычно носят нестойкий функциональный характер и чаще всего ликвидируются после временного перевода на другую работу и соответствующего лечения. Однако обращает на себя внимание отмечаемая иногда стойкость изменений со стороны сердечно-сосудистой системы, в некоторых случаях склонных даже к прогрессированию после прекращения воздействия. В подобных случаях, а также при наличии других отягощающих обстоятельств, в особенности, если не проведены необходимые оздоровительные мероприятия на производстве, возвращение на прежнюю работу нужно считать противопоказанным. В случае если перевод на другую работу связан со значительным понижением квалификации, больной должен быть направлен на ВТЭК. для определения группы инвалидности (профессиональной). Лица с изменениями, вызванными воздействием радиоволн, нуждаются в длительном наблюдении. Все поступающие на работу с токами высокой частоты подлежат предварительному медицинскому осмотру, а работающие - периодическому осмотру один раз в год.

Из лабораторных исследований обязательными являются анализы крови на гемоглобин, лейкоциты и РОЭ. По показаниям проводится электрокардиография.

Противопоказаниями к приему на работу с токами высокой являются:

1) все болезни крови и выраженное вторичное малокровие (гемоглобин ниже 60%);

2) органические заболевания нервной системы;

3) выраженные эндокринно-вегетативные заболевания;

4) эпилепсия;

5) выраженные астенические состояния;

6) выраженные неврозы;

7) катаракта;

8) общие хронические заболевания.

Выраженные изменения со стороны сердечно-сосудистой системы также должны служить противопоказанием. Эти же изменения являются противопоказанием к продолжению работы с ТВЧ.

Эффективным методом защиты работающих является экранировка установок - генераторов токов высокой частоты, а также некоторые методы индивидуальной профилактики - защитные очки из мелкой латунной сетки или из металлической решетки. При высоких интенсивностях ТВЧ рекомендуется применение защитного шлема из латунной сетки.

Выделяют острое и хроническое поражение организма.

Острое поражение развивается в том случае, если работающий оказывается в мощном электромагнитном поле. Обычно это связано с авариями на производстве или грубым нарушением правил техники безопасности.

У пациентов с острым состоянием отмечаются гипертермия до 39-40 град. С, одышка, гипертензия, чувство ломоты в конечностях, мышечная слабость, головная боль, иногда потливость, жажда.

Хроническое поражение. У лиц, в течение длительного периода находящихся в условиях действия токов высокой частоты, ведущим синдромом является астенический синдром на фоне дисфункции вегетативной нервной системы. Характерны жалобы на общую слабость, быструю утомляемость, головные боли тупого характера, нарушения сна, головокружения, расстройства памяти. Ближе к концу рабочего дня больные становятся раздражительными, не могут сосредоточить внимание на выполняемой работе. Некоторых больных беспокоят боли за грудиной, дрожание конечностей, боли в кистях рук и стопах ног.

При объективном обследовании выявляется сосудистая гипотония, асимметрия артериального давления, брадикардия, увеличение границ сердца, приглушение сердечных тонов. На ЭКГ можно отметить синусовую аритмию, снижение вольтажа зубца Т, замедления внутрипредсердной, внутрижелудочковой и предсердно-желудочковой проводимости. Такого рода изменения — результат дистрофического процесса в миокарде, который может длительное время компенсированным. Нарушения деятельности сердечно-сосудистой системы развиваются главным образом на фоне функциональных расстройств центральной нервной системы.

С помощью клинического неврологического обследования можно обнаружить мышечную гипотонию, красный, стойкий дермографизм, вазомоторную лабильность, усиление пиломоторного рефлекса, цианоз дистальных отделов конечностей, парестезии и снижение кожной чувствительности по полиневритическому типу.

Длительное воздействие электромагнитных колебаний высоких частот появляются экстрасистолия, некоторые трофические расстройства (ломкость ногтей, выпадение волос), кровоточивость десен, похудание, чувство онемения в конечностях, похолодание пальцев, расстройства менструального цикла у женщин и половая слабость у мужчин. Лабораторно иногда определяют гипергликемию, диспротеинемию, лейкопению или лейкоцитоз с лимфоцитозом, гипокоагуляцию.

Функциональные изменения нервной системы при прекращении воздействия токов высокой частоты способны регрессировать.

Токам сверхвысокой частоты соответствуют дециметровые, сантиметровые и миллиметровые длины волн, непосредственно примыкающих к УВЧ.

В клинической картине хронического воздействия электромагнитных волн указанного диапазона прежде всего стоит выделить функциональные нарушения сердечно-сосудистой системы, протекающие на ваготоническом фоне. Наиболее выраженные проявления заболевания наблюдаются у работающих в условиях постоянного воздействия дециметровых волн малых интенсивностей.

На ранних стадиях больные жалуются на головную боль, боли в сердце утомляемость, бессонницу. Объективно отмечаются симптомы вегетативной дисфункции: гипергидроз, повышение сухожильных рефлексов, тремор пальцев вытянутых рук, красный дермографизм, усиленный пиломоторный рефлекс. Также имеют место нарушения болевой чувствительности, терморегуляционной функции, нарушение чувствительности кожи к ультрафиолетовым лучам. Практически патогномоничным признаком хронического воздействия сантиметровых волн малой и, особенно, сравнительно большой интенсивности, является снижение обоняния.

Кроме вегетативных изменений, в случае воздействия СВЧ сантиметрового диапазона, может развиться так называемые астенический симптомокомплекс. В него входят: ухудшение показателей сенсомоторной реакции, темновой адаптации, световой чувствительности, различительной чувствительности глаза и других отклонений.

Выраженное действие волн СВЧ (миллиметровых волн или сантиметровых волн высокой интенсивности) приводит к существенным изменениям в сердечно-сосудистой системе: значительная артериальная гипотония, брадикардия, положительная реакция на глазо-сердечный рефлекс, изменения на ЭКГ, свидетельствующие о миокардиодистрофическом процессе. В некоторых случаях отмечаются коронарные нарушения. Иногда наблюдаются сдвиги в функциональном состоянии щитовидной железы по типу ее гиперфункции.

Может выявиться неустойчивость показателей периферической крови. Обнаруживается тенденция к лейкопении, нейтропении и лимфоцитозу. В лейкоцитах обнаруживаются качественные нарушения: патологическая зернистость нейтрофилов, вакуолизация протоплазмы, пикноз, фрагментизация ядер и т. д. Нередко можно увидеть сфероциты, ретикулоциты. Воздействие миллиметровых волн приводит к лейкопении, ретикулопении, тромбоцитопении.

Отклонения биохимических показателей крови включают в себя гипопротеинемию, диспротеинемию, электролитный дисбаланс, повышение уровня гистамина. Некоторые авторы указывают на гиперхолестеринемию и гипохлоремию, нарушение минерального обмена, а также нарушение окислительно-восстановительных процессов в тканях.

Хроническое воздействие микроволн вызывает развитие СВЧ-катаракты. Помутнения хрусталика могут иметь вид белых точек, отдельных нитей, цепочек, пятен, бляшек, а также могут иметь диффузный характер и полностью нарушать зрение. Чаще всего помутнения локализуются в переднезаднем корковом слое вблизи экватора. СВЧ-катаракта в основном поражает лиц, работающих в условиях СВЧ-поля высокой интенсивности. У таких больных может возникнуть ангиопатия сетчатки.

Работники сферы электровакуумной техники могут подвергаться комбинированному воздействию физических факторов производства, поскольку имеют контакт с кенотронными лампами, которые в некоторых режимах становятся источниками не только СВЧ, но и мягкого рентгеновского излучения. Такие больные предъявляют жалобы на утомляемость, общую слабость, раздражительность, сонливость, головную боль, кровоточивость десен и т. д. При объективном обследовании выявляются функциональные расстройства нервной системы в виде астеновегетативного и неврастенического синдромов. Отмечаются артериальная гипотония, симптомы дистрофии миокарда. В крови определяется лейкопения, нейтропения, тормбоцитопения.

Э. А. Дрогинина и М. Н. Садчикова в 1964 г. предложили выделить пять синдромов в клинике поражения электромагнитными полями.

Вегетативный.

Характерен для начальных проявлений процесса, проявляется ваготонической направленностью вегетативных и сердечно-сосудистых нарушений.

Астенический.

Возникает в начальной стадии воздействия СВЧ.

Астеновегетативный.

Выражается в сочетании вегетативного симптомокомплекса и выраженной астении. Сопровождает вторую стадию заболевания.

Ангиодистонический.

Наблюдается в более выраженных стадиях процесса (II и III). Преобладают явления сосудистой дисфункции, при этом отмечаются лабильность артериального давления, пульса, приступы резких головных болей, эмоциональная неустойчивость и т. д., часто имею место лейкопения тромбоцитопения.

Диэнцефальный.

Этот синдром присущ выраженным формам поражения полей СВЧ. Отличительной особенностью являются пароксизмы, протекающие в виде нейроциркуляторных кризов с головными болями, кратковременной потерей сознания, тахикардией, неприятными ощущениями в области сердца, беспокойством, ознобом, чувством страха.

Выделяют три стадии заболевания: начальную, характеризующуюся легкими астеническими реакциями; умеренно выраженную, при которой астения сочетается с явлениями невроза, сердечно-сосудистыми, обменными нарушениями, изменениями крови; выраженную — синдром вазопатии с диэнцефальными кризами на фоне тяжелой астении.

Начальные и умеренно выраженные формы хорошо поддаются терапии и являются обратимыми. Выраженные стадии болезни требуют стационарного лечения.

Как работает метод аудио резонанса?

Чтобы ответить на этот вопрос, о том, почему одни чувствуют себя довольно комфортно в жизни, а другие находятся длительный период на "черной полосе", придется обратиться к некоторым физиологическим особенностям работы нашего мозга, благодаря которым события в нашей жизни выстраиваются определенным образом.

Известно, что серотонин - это вещество, вырабатываемое шишковидной железой из триптофана.
Серотонин часто называют "гормоном счастья", поскольку он является передатчиком импульсов между нервными клетками мозга и активно контролирует эмоциональную сферу человека, вызывая те или иные желания, не объяснимые логическим путем.
Произведенный шишковидной железой серотонин не может накапливаться в организме, подобно жиру.
На биоэнергетическом уровне он должен быть израсходован в виде удовольствий, испытываемых человеком.

Итак, произведенный серотонин должен быть израсходован в эмоциональной сфере. Независимо от того, осознаете вы это или нет, этот процесс внутри вас постоянно происходит.
Одни, этот "гормон удовольствия" тратят самым быстрым и наименее трудоемким путем: переедание, пристрастие к сладким газированным напиткам, к алкоголю в любых видах, курение. Благодаря десяткам мелких удовольствий, которые возникают у нас постоянно непонятным образом, наш мозг расходует произведенный серотонин.
Постепенно вырабатываются устойчивые привычки для затрат серотонина, которые преодолеть чрезвычайно сложно. Типичный тому пример - это пристрастие к алкоголю, курению, наркотикам.

Так почему же к отдельным людям удача и деньги "притягиваются", словно к магнитам?
Суть феномена в том, что для этих людей удовольствие от того, чтобы пользоваться неизменным успехом в обществе, получать все большую и большую прибыль, имеет устойчивый психофизиологический характер.
Основную долю производимого серотонина их мозг расходует на материализацию ситуаций, ведущих к получению новой, еще большей прибыли, поскольку такой расход серотонина для него является "каналом получения яркого удовольствия".

Перенастроить энергетические потоки психической энергии, чтобы круто изменить свою жизнь, далеко не просто.
Для этого нужна активизация областей мозга, отвечающих за расходование психической энергии в определенном направлении. Наш мозг формирует устойчивые зоны повышенной активности, через которые происходит расход серотонина.

Многократно проверенный наукой факт говорит о том, что работе мозга свойственны частоты, называемые низкими и сверхнизкими.
Для тех, кто с этим не знаком, кратко напомним общедоступные данные о том, что головному мозгу человека присущи несколько видов активности, соответствующих биологическому и психическому состоянию организма.

Дельта-ритм. Состоит из высоко-амплитудных волн порядка 500 мкВ, частотой 1-4 Гц. Проявляется в состоянии глубокого сна.

Тета-ритм. Волны частотой 4-7 Гц с амплитудой 70 - 150 мкВ. Возникает в состоянии медленного сна.

Альфа-ритм. Соответствует полосе частот от 8 до 13 Гц, средняя амплитуда 30-70 мкВ. Наблюдается в состоянии спокойного бодрствования, при закрытых глазах.

Бета-ритм. Диапазон от 14 до 30 Гц с амплитудой 5-30 мкВ. Соответствует состоянию активного бодрствования.

Гамма-ритм. Диапазон частот от 30 Гц до 50 Гц. Данному типу волн свойственна очень низкая амплитуда - менее 10 мкВ. Этот ритм наблюдается в состоянии максимальной сосредоточенности, тревоги, во время вспышек гнева.

Не трудно заметить, что с уменьшением частоты волн головного мозга, увеличивается их электрический потенциал с 10 мкВ в Гамма - ритме, до 500 мкВ и выше в Дельта - ритме.
Из вышесказанного ясно, то для активизации тех или иных зон подсознания необходим особого рода сигнал, который должен иметь частоту от 0,01 до 7 Гц, соответствующую состоянию медленного сна, поскольку для достижения состояния медитации и высшего восприятия необходимо полное расслабление мышц тела и отстраненность от эмоций.
Однако, наш с вами слуховой аппарат воспринимает акустические колебания нижняя граница которых составляет 16 Гц. Частоты ниже этого уровня ухо не воспринимает.

Как же с помощью звукового файла, имеющего частоты в сотни герц, активизировать мозг так, чтобы в резонансе с воспринимаемым звуком он работал на частоте, которая, как минимум, в два раза ниже порога слышимости?

Подобная задача давно решена, например, в радиотехнике. Любой из вас без труда может записать на магнитофон голос или другие звуки, воспринимаемые ухом.
Сделать это позволяет микрофон - устройство, для преобразования колебаний воздуха в электрический сигнал. Независимо от устройства, все микрофоны имеют один и тот же элемент - мембрану, которая совершает колебательные движения в такт звуковым колебаниям.

Можно ли записать на магнитофон колебания воздуха, которые ухо человека не воспринимает?
Да, можно. Но, для этого придется пойти на небольшие технические ухищрения.
Записанный низкочастотный сигнал нужно воспроизвести со скоростью, в несколько раз выше обычной. Тогда он становится слышимым. Сжимая сигнал во времени, мы фактически увеличиваем его частоту.
Благодаря этому, он оказывается в диапазоне частот, воспринимаемых ухом.

Вы слышали, как звучит солнечная погода или приближающийся дождь?
В обычном состоянии мы не можем это услышать, поскольку наше ухо не воспринимает колебания атмосферного давления, которые происходят очень медленно. Однако, есть прибор, который "слышит" погоду.
Этот прибор - хорошо всем известный барометр,-прибор для измерения атмосферного давления. По сути барометр - это мембрана, реагирующая на изменение давления воздуха и она подобна той, что имеется в микрофоне.

Чтобы "услышать" предстоящую погоду, нужно в один конец трубки жидкостного барометра, который должен быть запаян, вмонтировать чувствительный микрофон. В запаянном конце трубки изменения атмосферного давления будут вызывать медленные колебания мембраны микрофона. Эти колебания вызывают изменение индукции в катушке микрофона.

Если несколько часов подобной записи воспроизвести со скоростью в несколько раз выше обычной, то колебания атмосферного давления становятся слышимыми звуками, которые трудно назвать гармоническими.
Подобный эффект, но уже в визуальной форме, каждый из вас не раз наблюдал по телевидению в виде ускоренной съемки, например, когда росток снимается с интервалом в несколько часов на протяжении недели или месяца. Воспроизводя съемку, на которую потребовался месяц, за несколько минут, мы как бы "сжимаем время". То, что в обычном состоянии наш глаз не в силах зафиксировать, становится зримым и понятным.

Экспериментируя подобным образом, мы накопили целую серию "сжатых звуков" , в виде цифровых файлов, которые соответствовали различным состояниям погоды.
В таком "сжатом" виде подобные записи они могут воспроизводиться на любом бытовом проигрывателе.
Сжав в 15 раз огибающую волну "звука погоды" и наложив ее на гармонический слышимый звук таким образом, чтобы огибающая соответствовала "границе" колебаний слышимой частоты, мы дали прослушать мелодии совершенно посторонним людям.
Все, без исключения, смогли точно определить, какому состоянию погоды соответствует каждая из услышанных фонограмм.
Это свидетельствует о том, что подсознание обладает свойством напрямую воспринимать информацию, минуя ее анализ сознанием.

В отличие от радиотехники, где низкочастотный сигнал для передачи на большие расстояния "наполняется" высокочастотными колебаниями фиксированной частоты, в нашем случае использованы гармонические колебания на основе "розового шума".
Этот вид звуковых волн характеризуется тем, что его спектральная плотность уменьшается с уменьшением частоты.
Такой звуковой сигнал не вызывает раздражения при воспроизведении поскольку является гармонической последовательностью приятных для слуха звуков.
Особенностью модулированного звукового сигнала, активизирующего подсознание, является то, что "огибающая" волна не воспринимается сознанием, поскольку имеет частоту ниже 16Гц. Она проникает сразу в подсознание и там расшифровывается.
Слышимая часть сигнала, воспринимаемого сознанием, является наполнителем, роль которого аналогична функциям опор в "американских горках".

Гиппокамп нашего мозга, отвечающий за "включение" областей подсознания, ответственных за интуицию, в тот период, когда человек бодрствует, занят распределением в мозге информации"на вход", ежесекундно поступающей от органов чувств. В этом состоянии он не работает в режиме обратного вывода информации.
Канал "на выход" информации из подсознания активизируется при работе мозга на частотах ниже 8 Гц т.е в состоянии медленного и глубокого сна.
Когда вы бодрствуете - интуиция отключена, когда она включается - вы спите.
Если с помощью аудио файлов, модулированных сигналами 0,01 до 8 Гц в состоянии бодрствования активизировать гиппокамп, то можно включить интуицию в период, когда она жизненно необходима, в период, когда вы активны, бодры и полны сил.
Более того, можно с помощью модулированных аудио сигналов направить психическую энергию в нужное направление, позволять ей вступать в резонанс с другими видами природной энергии, в том числе с волнами Шумана.

С помощью модулирования звука волнами сверхнизкой частоты можно "выключать" в подсознании "зоны тревожности", разрушать страхи, усиливать ощущение счастья и удовольствия от процесса жизни, активизировать подсознание таким образом, чтобы быть привлекательным для других людей и т.д.

Сначала был взрыв,
потом свет и звук! Потом из них сложилась
свето-музыка необъятно-конечной Вселенной,
гармонии колебаний Галактики млечного пути,
системы Солнца, песен и ритмов Земли, загадок и
смысла краткого мига существования цивилизации!

От времени возникновения науки и до последних дней она бьется над проблемой гармонических колебаний Мира. Гармоническими называются колебания, периоды которых имеют целочисленные или близкие к ним соотношения. Устойчивые колебания струны музыкального инструмента или тетивы первобытного лука укладываются целое число раз в их длине (1, ½, 1/3, ¼ и т. д.), а отношения их периодов, например,

соответствуют отношению целых чисел 4 и 3. То есть, поперечные колебания струн являются чисто гармоническими. Эти пространственные волны можно видеть при движении струны или на поверхности воды в стакане, если уронить на нее каплю. Волны характеризуются длиной L, м (растоянием между впадинами), амплитудой A, м (отклонением от состояния покоя) и скоростью распространения V, м/с.

Скорости распространения звука и радиоволн имеют свои обозначения: V и С, м/с. Они зависят от характеристик среды распространения и частоты колебаний F 1/с, измеряемой числом колебаний в одну секунду [Герц]. Гармонические колебания струн вызывают колебания воздуха, которые мы можем слышать в диапазоне частот от 16 до 22000 Гц (рис. 1). Писк комара близок к верхней границе, рокот морских волн — к нижней границе слышимости. Мы можем слушать музыку на концертах или в передачах по радио- и телеприемникам, куда звуковые колебания доставляются с помощью высокочастотных электромагнитных волн со скоростью С = 300000 км/с. Длина земного экватора равна 40000 км, то есть, музыка, изображение и содержание новостей долетают до любого человека, примерно, через 0,1 с, после чего их можно слушать, видеть, записывать и обсуждать всем миром.

Человек различает звуки при изменении их частоты на 1%, то есть, частоты в 100 и в 101 Гц, 20000 и 20200 Гц будут слышны как разные звуки. Кроме того, музыкальные звуки, отличающиеся по частоте в два, четыре, восемь раз, кажутся человеку сходными, но отличающимися по тональнности. Таким образом слух и мозг позволяют человеку воспринимать гармонию звуков в широком диапазоне частот и классифицировать их. Некоторые сочетания звуков человеку нравятся, некоторые - раздражают, а низкие частоты порядка 8 Гц вызывают страх. Низкие частоты пугают и животных. Они предшествуют штормам и волнам цунами, поэтому, чтобы спасти жизнь, медузы отплывают от берега в открытое море, а змеи и слоны перемещаются подальше от океана на возвышенности.

Рояль.
Фото: Чёрный рояль/vk.com

Частоты нот слева направо изменяются от 27,500 Гц до 4186,0 Гц, примерно в 150 раз. Соседние ноты отличаются по частоте, примерно, на 6%. Семь октав рояля покрывают почти все слышимые человеком звуки от 16 до 22000 Гц. Отсутствуют только звуки в области низких частот (16 - 27,5 Гц) и звуки почти двух октав высоких частот (4186,0- 22000 Гц). При ударе молоточком по струне в ней возникает множество колебаний, но большинство из них быстро взаимно гасятся. Сохраняются только гармонические колебания, которые укладываются в длине струны целое число раз.

Колебания приятных гармонических звуков и изображений записываются и воспроизводятся с помощью изобретенных и изобретаемых человеком устройств, начиная с границы XIX–XX веков. Поэтому понятно, что мы отлично знаем это время, хорошо знакомы с историей человечества со времен существования устных легенд, письменности и даже можем себе представить, как жили люди до возникновения письма по наскальным рисункам и другим следам их жизни.

Сведения о более ранних геологических и биологических процессах мы получаем из пространственно-временных волн, записанных в чередовании слоев разных геологических осадков и содержащихся в них окаменелых отпечатках древней растительности и животного мира. Осадочные и магматические породы Земли, содержащие крупицы железа, как ленты магнитофона записывают доисторические гармонические колебания электромагнитных полей Земли, Солнца и Космоса. Распад радиоактивных химических элементов позволяет точнее привязать полученные изменения земных условий к абсолютной шкале времени.

Исследования ритмов микро- и макромира, растительности и животных, колебаний климата и геологических процессов, строения и периодов движений элементарных частиц, Солнечной системы, нашей Галактики Млечного пути и других галактик говорят о существовании единой серии гармонических колебаий Вселенной во всём диапазоне частот. В работе обсуждаются стабильные ритмы природы и закономерности распределения их периодов [Берри, 1987, 1991, 1992, 1993, 2010, Berry, 1991, 1993, 1998, 2011]. Автор предупреждает читателей, что краткость и относительная простота изложения (предполагается, в основном, знание школьных курсов физики и химии) этой необъятной области знания достигается за счет пропуска многих важных исторических фактов и научных результатов, которые не изменяют сути Гармонии Мира.

1. Гармонические колебания макро- и микро-мира

В конце концов остановятся на теории,
в которой закономерно связанными вещами
будут не вероятности, а факты
А. Эйнштейн

Перед изучением гармонических колебаний просто посмотрим с высоты «птичьего полета», как устроен этот Мир [Берри, http://geoberry.ru/zemlja%20colnce.html ]. Хочу обратить внимание зрителей на то, что увидеть Вселенную целиком можно только отлетев от нее на расстояние в 10 млрд световых лет. Имеено на это расстояние ушел свет с момента ее образования. В конце фильма на YouTube при демонстрации всей Вселенной кратко упоминается о расстоянии, с которого показано её изображение. То есть, так выглядела гармония Мира 10 млрд лет назад! Если посмотреть с расстояния примерно в 14 млрд световых лет, то можно увидеть вспышку от первичного взрыва. Именно на это расстояние ушёл свет с момента её образования.

Взрываясь, взаимодействуя и постепенно изменяясь окружающий нас макро- и микромир подчиняется физическим законам И. Ньютона и А. Энштейна. В начале XX века М. Миланкович , А. Л. Чижевский и другие исследователи показали, что одних внутренних факторов для объяснения происходящих на Земле процессов недостаточно. Следует учитывать и внешние влияния на нашу планету гармонических колебаний от движения небесных тел Солнечной системы [Берри, 2010, Berry, 2011]. Вопрос о влиянии на гелиогеофизические процессы взаимодействий Солнечной системы и Галактики вообще не рассматривался из-за априорного признания их несущественности. Открытие явления струйного истечения газопылевого вещества из центра спиральных галактик и разработка на его основе галактоцентрической парадигмы радикально изменили ситуацию [Баренбаум, 1991, 2002, 2010].

Было показано, что геологические события, которые безуспешно пытались объяснить с геоцентрических позиций, являются на самом деле порождением мощных гармонических космических процессов галактического масштаба. Связи между процессами Земли и Галактики оказались столь многогранными и тесными, что открылась возможность по геологическим данным изучать проблемы строения и физики Галактики, а на базе астрономических наблюдений объяснять причины и последовательности геологических и геохимических явлений [Баренбаум, 2010; Берри, 2010, Berry, 1998].

Галактоцентрическая парадигма, изучающая в частности периодические орбитальные движения Солнечной системы вокруг центра Галактики и вращения её ветвей, после 2500-летнего перерыва позволяет снова объединить знания о гармонических процессах «Земли» и «Неба». В отличии от динамической модели движений Галактики и СС, которая подтверждается геологическими процессами Земли [Баренбаум, 2010], физико-математические теории струн [Теория струн] и инфляционной космологии [Линде, 2007] объясняют одновременно устройство микро- и макромира, но носят пока гипотетический характер.

Теория струн описывает гармоническое поведение элементарных частиц и Вселенной в масштабах порядка 10 –35 м. Это на 20 порядков меньше диаметра протона (ядро атома водорода). Материя здесь превращается в серию полевых стоячих волн, подобных колебаниям струн музыкальных инструментов. Каждой гармонике соответствует собственное энергетическое состояние. Согласно теории А. Энштейна, чем выше частота, тем больше энергия колебаний и масса наблюдаемой частицы.

Представители Европейской организации ядерных исследований заявили 4.07.2012 года, что два детектора Большого Адронного Коллайдера наблюдали новую частицу с массой около 125–126 ГэВ, которая является бозоном Хиггса, передаёт Lenta.ru . Ниже будет показано, что среднее значение энергии обнаруженной частицы 125,5 ГэВ = 3,03629*10 25 Гц (~ 0,32935*10 -25 с) соответствует единой гармонической последовательности ритмов природы [Берри, 2010].

Модель происхождения Вселенной, включающая множество галактик, названа инфляционной космологией. Инфляция - это быстрое экспоненциальное расширение Вселенной в первые мгновения её существования от 10 – 43 до 10 –35 с после начального «взрыва». Высокочастотные волны квантовых флуктуаций, увеличиваясь вместе с Вселенной в размерах, формировали сложные системы гармонических низкочастотных волн разной длины. Увеличиваясь в размерах волны теряли энергию и застывали, заполняя Вселенную неоднородным интерференционным (суммарным) скалярным (числовым) полем. В неоднородностях этого поля впоследствии формировались галактики [Линде, http://elementy.ru/events/426960 ].

В настоящее время только эта фантастическая теория может объяснить возможность единообразного экспоненциального описания стабильных гармоник на всех иерархических уровнях материи [Берри, 2010]. Идеи автора, обоснованные эмпирическими закономерностями распределения природных периодов, соответствуют 1) представлениям древних мыслителей о гармоническом устройстве мира, 2) гелиогеофизическим и геологическим ритмам Земли, Солнечной системы и периодам её обращения вокруг центра Галактики, 3) современным парадигмам возникновения и существования Вселенной.

Периоды резонансных гармонических колебаний природы описываются геометрическими прогрессиями, подобными музыкальному ряду рояля R с частотами F R:

F R = F 0 *2 R/ n = 440*2 R/12 Гц,

где F 0 = 440 Гц - частота ноты ля 1-й октавы или начальный член геометрической прогрессии (1.1); R и n - последовательность целых чисел и число нот в октаве, как в любой геометрической прогрессии. В европейской музыке n = 12. Хорошая музыка оказывает благотворное влияние не только на людей, но и на животных (рис. 2).

Подушка
Фото: Черный рояль/vk.com

Октавы лунных модельных рядов природных ритмов состоят из 16-ти[Берри , 2006, 2010; Berry , 1998, 2006, 2011]:

T K = T 0 *2 K /N = 0,075*2 K / 16 лет (1.2 )

и 32-х нот:

T L = T 0 *2 L /M = 0,075*2 L / 32 лет (1.3 )

где T 0 =27,32 суток = 0,075 года - начальный период геометрических прогрессий, равныйсидерическому периоду обращения Луны; К и L - последовательности целых чисел и номера периодов T K и T L лунных прогрессий; N = 16 и M = 32 количества периодов (нот) Солнечной системы в октавах T K (1.2 ) и T L (1.3 ), где T K и T L - модельные гармонические периоды движения небесных тел и их природных процессов, включая гелио-геофизические колебания, Буквы N и M , обозначающие в формулах количество нот в октавах, также используются в приведенных ниже таблицах для обозначения номерoв нот.

Оказалось, что в качестве начального периода T 0 рядов природных ритмов можно использовать не только сидерический период Луны (1.2, 1.3 ), но и период физической постоянной Ридбергера (1/R=3,041314*10 -16 с). Kвант электромагнитной волны с таким периодом выбивает электрон из атома водорода. Ряды модельных периодов с октавами из 16 и 32 нот (T R 16 , T R 32 ) с начальным периодом Ридбергера (T R 0) записываются аналогично лунным прогрессиям (1.2, 1.3 ):

T R16 = T R 0 * 2 R /N = 3,041314 * 10 -16 * 2 R / 16 сек (1.4 )

T R32 = T R 0 * 2 R /M = 3,041314 * 10 -16 * 2 R / 32 сек (1.5 )

где T R 0 = 3,041314 * 10 -16 с - начальный период геометрических прогрессий Ридбергера; N = 16 и M = 32 - количество гармонических периодов (нот) в октавах прогрессий T R 16 (1.4 ) и T R 32 (1.5 ); R - последовательности целых чисел и номера периодов прогрессий Ридбергера T R 16 и T R 32 (1.4, 1.5 ).

Более того, начальным периодом прогрессий природных ритмов может служить и период элементарной частицы D 0 мезона (T D 0 = 2,22*10 -24 с):

T D16 = T D 0 * 2 D /N = 2,22 *10 -24 * 2 D / 16 сек (1.6 )

T D32 = T D 0 * 2 D /M = 2,22 *10 -24 * 2 D / 32 сек (1.7 )

где N = 16 и M = 32 – количество гармонических периодов в октавах рядовD 0 мезона; T D 16 (1.6 ) и T D 32 (1.7 ) - периодыпрогрессий природных ритмов; D - последовательности целых чисел и номера периодов прогрессий D 0 мезона T D 16 и T D 32 (1.6, 1.7 ) с октавами из 16-ти и 32-х нот. Массы, энергии и периоды (частоты) элементарных частиц взаимосвязаны, легко пересчитываются друг в друга и являются их равноправными физическими характеристиками.

Эмпирические последовательности (1.2 , 1.3 ) стабильных природных гармоник были получены при использовании 26-и и 34-х периодов планетарных систем Солнца и Юпитера в диапазоне времен от 8 часов до 250 лет, а затем, подобно тому, как это сделал Д.И. Менделеев, были распространены автором на весь диапазон природных колебаний [Сидорин , 2010] от значений галактического года Солнечной системы в 250 млн лет до обратной величины постоянной Ридберга (1/R = 3.04*10 -16 с) и периода t – кварка (9,19*10 -26 с) [Берри , 2010; Sch r oeder , 2010].

Возможность экстраполяции гармонических закономерностей (1.2 - 1.7 ) на весь известный временной (10 42) и пространственный диапазон (14 млрд световых лет) является одним из важнейших доказательств существования единой системы резонансных колебаний микро- и макромира. Общая резонансность Вселенной окончательно подтвердится при экспериментальном обосновании теории струн.

Последние статьи автора о гармонических колебаниях природы

Берри Б.Л. Гелио-геофизические и другие процессы, периоды их колебаний и прогнозы. // Геофизические процессы и биосфера. 2010 а. Т. 9, № 4. С. 21-66. http://geoberry.ru/geofizi4eskie%20procesy.html

Берри Б.Л. Гармонические модели движения Солнечной системы и гелио-геофизических процессов, реконструкции и прогнозы. 2011 г.

  • Группировка компонентов горного комплекса по постоянству воздействия на человека
  • Уровни адаптации к гипоксии
  • Глава 6. Воспаление
  • Этапы функционирования нейтрофилов как клеточных эффекторов острого воспаления
  • Медиаторы острого воспаления, высвобождаемые в его очаге тучными клетками
  • Глава 7. Лихорадка и реакция острой фазы
  • Глава 8. Расстройства обмена воды и натрия
  • Наиболее частые причины дефицита объема внеклеточной жидкости
  • Содержания в жидкостях теряемых во внешнюю среду катионов натрия, калия и хлоридного аниона
  • Глава 9. Нарушения обмена калия и кальция
  • Причины гипокалии и гипокалиемии
  • Болезни и патологические состояния, которые вызывают диарею как причину гипокалиемии
  • Патологические состояния и болезни, связанные с высокой действующей концентрацией минералкортикоидов и гипокалиемией (без дефицита внеклеточной жидкости)
  • Изменения электрокардиограммы при расстройствах обмена калия
  • Устранение гиперкалиемии
  • Глава 10. Расстройства кислотно-основного состояния
  • Нормальные величины параметров кислотно-основного состояния
  • Глава 11. Дислипопротеинемии и атеросклероз
  • Глава 12. Реакции повышенной чувствительности
  • Эффекты проаллергических цитокинов
  • Глава 13. Аутоиммунные механизмы развития болезней
  • Глава 14. Артериальная гипертензия
  • Верхние пределы нормальных колебаний ад
  • Классификация тяжести артериальной гипертензии в зависимости от уровня диастолического ад
  • Классификация тяжести артериальной гипертензии
  • Частота видов вторичной артериальной гипертензии среди всех случаев аг у больных
  • Причины обструкции-окклюзии почечной артерии и реноваскулярной аг
  • Глава 15. Патология клетки
  • Звенья антиоксидантной системы и ее некоторые факторы
  • Глава 16. Канцерогенез
  • Иммунные и сывороточные опухолевые маркеры
  • Иммуномаркеры опухолей
  • Раздел II. Частная патофизиология
  • Глава 1. Патогенез дыхательной недостаточности, артериальной гипоксемии и заболеваний органов дыхания
  • Компенсация респираторного ацидоза ори гиперкапнии
  • Элементы системы терапии при одн
  • Эффекты проаллергических цитокинов
  • Связь признаков астматического статуса и обострения бронхиальной астмы со звеньями их па­тогенеза
  • Стадии обострения бронхиальной астмы и астматического статуса
  • Глава 2. Патофизиология сердечно-сосудистой системы
  • Классификация кардиомиопатий воз
  • Причины дилатационной кардиомиопатии
  • Связи патологических изменений клеток сердца при оим с изменениями электрокардиограммы
  • Дозы фибринолитических средств для тромболизиса при тромбозе венечных артерий
  • Степени восстановления проходимости обтурированной тромбом венечной артерии под действием тромболитичесих средств
  • Патогенетическая классификация симпатикотонической постуральной артериальной гипотензии
  • Симпатиколитическая артериальная гипотензия
  • Глава 3. Патофизиология органов пищеварения
  • Причины острого панкреатита
  • Критерии Ranson (Ranson j.H., Rifkind k.M., Roses d.F. Et al., 1974)
  • Летальность при остром панкреатите в зависимости от числа критериев
  • Наиболее частые причины внутрипеченочного и внепеченочного холестаза
  • Холестатический синдром
  • Связь клинических признаков цирроза печени со звеньями его патогенеза
  • Этиология и патоморфогенез циррозов печени
  • Расстройства высшей нервной деятельности и сознания у больных в печеночной коме
  • Этиопатогенетическая классификация осмотической диареи
  • Глава 4. Патофизиология крови
  • Франко-американо-британская классификация острого лимфоидного лейкоза (острой лимфоцитарной лейкемии)
  • Франко-американо-британская классификация острого миелоидного лейкоза
  • Связь симптомов и звеньев патогенеза хронического миелоидного лейкоза
  • Некоторые механизмы развития коагулопатии, связанной с острыми и хроническими лейкозами
  • Глава 5. Патофизиология почек
  • Отрицательные следствия олигурии
  • Различия между преренальной и ренальной острой почечной недостаточностью
  • Механические препятствия оттоку мочи вне почек как причины обструктивной уропатии
  • Лечебные воздействия, направленные на устранение и предупреждение действия факторов преренальной почечной недостаточности
  • Показания к гемодиализу
  • Патогенетическая терапия гипокалиемии при острой почечной недостаточности
  • Патогенетическая терапия метаболического ацидоза при острой почечной недостаточности
  • Патогенетическая терапия патологического увеличения объема внеклеточной жидкости при острой почечной недостаточности
  • Глава 6. Патофизиология эндокринопатий
  • Признаки и звенья патогенеза гипотиреоза
  • Патогенез и симптомы гипертиреоза
  • Признаки и патогенез болезни Аддисона
  • Патогенез и признаки недостаточности секреции эндогенных кортикостероидов
  • Глава 7. Патофизиология нервной системы
  • Принципы предупреждения и лечения патологической боли у тяжелых раненых
  • Глава 8. Иммунодефициты
  • Врожденные иммунодефициты
  • Глава 9. Патофизиология шока, комы, раневой болезни и синдрома множественной системной органной недостаточности
  • Шкала комы Глазго
  • Причины комы, связанной с локальными повреждениями структур головного мозга
  • Причины комы вследствие энцефалопатий, распространенных в пределах всего головного мозга
  • Элементы терапии больного, находящегося в коме
  • Признаки септического шока
  • Грамотрицательными бактериями
  • Раздел III. Патофизиология расстройств функциональных систем организма, связанных с военно-профессиональной детельностью
  • Глава 1. Изменение функций организма при действии факторов авиационного и космического полета
  • Факторы полета
  • Струк­тур­ные и функ­цио­наль­ные из­ме­не­ния, возникающие при действии удар­ных пе­ре­гру­зок
  • Резонансные частоты тела человека и его отдельных частей
  • Глава 2. Профессиональная патология специалистов военно-морского флота
  • Влияние гипербарии на функциональное состояние гипербарии
  • Глава 3. Психогенные расстройства в условиях боевых действий и чрезвычайных (экстремальных) ситуаций
  • Резонансные частоты тела человека и его отдельных частей

    Начальные механизмы действия вибрации определяются в основном тем, что она вызывает поток импульсов с экстеро- и интероцептивных зон. Рефлекторная дуга может замыкаться по типу аксонрефлекса через соединительные ветви симпатического пограничного ствола и клетки боковых рогов, а также более высокие отделы вегето-сосудистых центров. В развитии изменений участвуют ретикулярная формация, стволовые вегетативные образования, диэнцефальная область, корковые вегетативные клетки. При воздействии вибрации в спинном мозгу возникают очаги возбуждения (запредельное торможение "вибрационных центров"). В силу законов иррадиации возбуждение передается на соседние центры (сосудодвигательные). Возникают спастической реакции сосудов. Это создает условия для возникновения патологически замкнутого порочного круга в цепи рефлекторной дуги. Новое вибрационное раздражение приводит к усилению возбуждения "вибрационных центров" и к углублению сосудистой реакции. При послеполетном обследовании летного состава можно выявить симптом орального автоматизма, гиперестезию дистальных отделов рук и ног, пошатывание при сенсибилизированной пробе Ромберга. Реже отмечаются нистагм, более часто - анизорефлексия сухожильных и кожных рефлексов, снижение коленных и ахилловых рефлексов. Поперечно-направленные вибрации могут вызвать боли в поясничной области, так как при этом приходится большая нагрузка на связочно-мышечный аппарат позвоночника и вследствие этого - утомление околопозвоночных мышц.

    Влияние невесомости на организм

    Невесомость - биологически значимый фактор космического полета. Значение невесомости обусловлено необычностью для человека данного состояния. Невесомость - это такое физическое состояние тела, когда оно как бы теряет массу и характеризуется уменьшением или полным исчезновением механического напряжения всех его структур.

    В реальном космическом полете невесомость возникает при выполнении кругового полета вокруг Земли со скоростью 8 км/с. Именно при такой скорости полета на орбите создаются условия, когда центростремительное ускорение уравновешивается силами земного притяжения.

    Невесомость, как специфический фактор обитаемости, оказывает на космонавтов непосредственное и опосредованное влияние. Под непосредственным действием невесомости понимается неблагоприятное влияние отсутствия земной гравитации, приводящее к исчезновению массы тела, деформации и напряжению структур различных органов и рецепторов организма. Под опосредованным влиянием невесомости понимаются функциональные изменения, происходящие в ЦНС человека вследствие измененной афферентации, поступающей в кору головного мозга от рецепторов (вестибулярного, интероцептивного, проприоцептивного, тактильного и др.) и волюморецепторов, приводящие к ослаблению регулирующей роли ЦНС и нарушению функциональной системности анализаторов, участвующих в анализе пространственных отношений.

    Непосредственное влияние отсутствия земной гравитации порождает три основных причины изменений, происходящих в организме человека в условиях невесомости: изменение афферентации в ЦНС с механо- и волюморецепторов; снижение до нуля гидростатического давления крови и других жидких сред организма; отсутствие весовой нагрузки на костно-мышечную систему. Изменение и ослабление афферентации с механо- и волюморецепторов в ЦНС обусловлено потерей массы отолитов, снижением напряжения познотонической мускулатуры и мышечных усилий при перемещении тела в связи с отсутствием необходимости преодоления сил земного притяжения, отсутствием рефлекторных реакций, направленных на сохранение равновесия тела, уменьшением растяжения полых гладкомышечных органов и сосудов, уменьшением деформации паренхиматозных органов вследствие отсутствия массы этих органов и их содержимого, снижением нагрузки на костно-суставной аппарат и др.

    Указанные изменения афферентации в условиях невесомости приводят к нарушению привычного взаимодействия функциональных систем и возникновению сенсорного конфликта. Дефицит импульсации с механо- и волюморецепторов в остром периоде адаптации организма к невесомости может сопровождаться уменьшением активности дорсального отдела гипоталамуса, гипоталамо-гипофизарной системы и ретикулярной формации с ослаблением ее восходящего и нисходящего влияния, что приводит к установлению нового уровня корково-подкорковых взаимоотношений в виде снижения тонуса и уменьшения тормозящего влияния коры на подкорковые образования. В реальном космическом полете указанные изменения приводят к возникновению у космонавтов иллюзорных ощущений, повышению чувствительности рецепторов полукружных каналов вестибулярного анализатора и быстро наступающему укачиванию, а также к нарушению пространственной ориентировки и координации движений.

    Снижение в условиях невесомости до нуля гидростатического давления крови и других жидких сред организма приводит к существенным изменениям в системе кровообращения и водно-солевого баланса человека. В основе указанных изменений лежит перемещение крови и других жидких сред организма в краниальном направлении. Это приводит к увеличению объема крови и повышению ее давления в сосудах головы, растяжению и стимуляции механорецепторов предсердия и сосудов сердечно-легочного отдела, что в свою очередь обуславливает включение рефлекторных и гуморальных механизмов, направленных на сохранение гемодинамического и водно-солевого гомеостаза.

    Возникающие при этом срочные компенсаторно-приспособительные реакции связаны с торможением секреции антидиуретического гормона гипофиза, с уменьшением активности ренин-ангиотензин-альдостероновой системы и торможением вазомоторного центра. Это приводит к частичной потере организмом жидкости и электролитов путем учащения диуреза, уменьшению объема плазмы крови, рефлекторному сужению легочных сосудов, расширению сосудов большого круга кровообращения, депонированию крови во внутренних органах и ограничению ее поступления в сердечно-легочную область. В более поздние периоды пребывания в невесомости к ним присоединяются приспособительные реакции, проявляющиеся в снижении общего объема массы эритроцитов и гемоглобина и приводящие к дальнейшему уменьшению объема циркулирующей крови.

    Отсутствие нагрузки на костно-мышечную систему в условиях невесомости, а также снижение мышечных усилий при статической и динамической работе, связанных в условиях Земли с преодолением силы тяжести, обуславливают общую недогрузку мышц, дефицит мышечной активности и уменьшение общего объема проприоцептивной импульсации. Указанные изменения приводят к нарушению координации движений и ослаблению функции нервно-мышечного аппарата, снижению интенсивности общего метаболизма, процессов структурно-пластического обмена в костно-мышечной системе, а также к снижению роли мышечной системы в общей гемодинамике организма.

    При длительном нахождении в невесомости, особенно если не выполнять физические упражнения, в организме будут прогрессировать дальнейшее снижение мышечной работоспособности, развиваться детренированность сердечно-сосудистой и дыхательной систем, нарушаться процессы биологического окисления с разобщением окислительного фосфорилирования. В реальном космическом полете отсутствие нагрузки на костно-мышечную систему проявляется у космонавтов в нарушении координации движений, снижении мышечных усилий, замедлении выполнения двигательных актов и в нарушении соразмеренности движений по усилиям. В последующем может появиться функциональная атрофия как поперечно-полосатой, так и гладкой мускулатуры, что будет проявляться в снижении ортостатической устойчивости космонавтов.

    В целом, в условиях длительной невесомости у космонавтов, кроме перечисленных отклонений, наблюдается снижение обмена веществ, уменьшение массы тела, угнетение функциональной активности нейрогуморальной и иммунной систем, что сопровождается общей астенизацией организма и снижением его резистентности к неблагоприятному воздействию среды обитания.

    Организм человека, как сложная биологическая система, с первых минут воздействия невесомости включает все врожденные и приобретенные механизмы, обеспечивающие оптимальное приспособление к необычной среде существования. При этом реализуются все компоненты адаптации: регуляторный, пластический, энергетический и неспецифический.

    Адаптация организма космонавтов к условиям невесомости включает 4 последующих фазы (стадии): первичных адаптивных реакций продолжительностью до 2 дней, начальной адаптации продолжительностью около недели, относительно устойчивой адаптации продолжительностью до 4-6 недель, устойчивой адаптации.