Канцерогенные свойства. Производственные канцерогенные факторы. Воздействие канцерогена на теплокровных животных




Важным элементом окружающей среды, способным оказать существенное влияние на здоровье населения, является жилище.

Гигиенистам давно известен термин «жилищные болезни», т.е. болезни, возникновение которых в значительной мере определяется характером жилищных условий человека.

К ним относили туберкулез , ревматизм, некоторые психические и сердечно-сосудистые заболевания и т.п.

В специфических условиях XXI века, характеризующихся, в частности, активной химизацией быта, внедрением многих сотен и тысяч новых соединений, использованием новых строительных материалов и т.п., перечень болезней, на возникновение и развитие которых могут влиять жилищные условия (в широком смысле слова), увеличивается.

Воздушный фактор

Есть серьезные основания считать, что качество внутренней среды современного жилища (прежде всего воздуха) в ряде случаев также может способствовать возникновению рака у человека.

Дело не только в том, что в помещениях непроизводственного типа, в частности в жилище, человек проводит до 7,0% своего времени, что уже само по себе делает необходимым оценить возможность влияния внутренней среды помещения на организм человека.

Важно также то, что качество воздуха непроизводственных помещений зачастую хуже качества наружного воздуха и даже воздуха производственных помещений.

Воздушная среда жилища формируется под влиянием ряда факторов: образующиеся при пользовании газовыми плитами продукты неполного сгорания газа; вещества, возникающие в процессе приготовления пищи; антропотоксины, выделяющиеся в результате жизнедеятельности организма человека; продукты деструкции полимерных материалов, из которых изготавливаются предметы домашнего обихода, полы, покрытия стен и т.п.; соединения, выделяющиеся из строительных конструкций (бетонные изделия и пр.) и почвы; продукты курения; вещества, образующиеся при пользовании средствами личной гигиены, моющими средствами и другой бытовой косметикой; вещества, поступающие из атмосферного воздуха.

Уже один этот перечень источников формирования качества воздушной среды жилища свидетельствует о большом разнообразии соединений, способных влиять на организм человека (число токсичных веществ, присутствовавших в воздушной среде жилых помещений, колеблется от 45 до 70). В помещениях, в которых курят, число загрязняющих воздух соединений многократно увеличивается.

Среди этого многообразия химических веществ есть такие, которые привлекают особое внимание онкологов ввиду их потенциальной канцерогенной опасности для человека.

Полициклические ароматические углеводороды

Одним из основных источников полициклических ароматических углеводородов (ПАУ) в жилище является сжигание газа в бытовых приборах, а также курение и атмосферный воздух.

Особенно велик «вклад» атмосферного воздуха в аэрогенную дозу ПАУ в населенных пунктах, около которых расположены предприятия коксохимической, металлургической и т.п. промышленности. В обычных условиях влияние атмосферного воздуха намного меньше.

Радон

Радон (222Rn) и продукты его распада являются промежуточными продуктами распада урана земной коры. Их источником могут быть строительные конструкции жилых помещений, радон может непосредственно поступать из земли в подвальные, а затем и жилые помещения.

Радон и торон, вдыхаемые с воздухом помещений, являются одним из основных источников облучения и составляют более половины дозы естественной радиации, воздействующей на людей, проживающих в умеренных климатических зонах. Эпидемиологическими исследованиями показана роль радона и продуктов его распада в повышении смертности шахтеров от рака легких.

Это позволило предположить существование реальной опасности радона и для населения в своих жилищах. Во многих работах приводятся данные, подтверждающие такую возможность, особенно в холодных климатических зонах, где помещения проветриваются редко.

При этом возможная роль радона и его продуктов в помещениях в возникновении рака легкого оценивается в 2-10% случаев, а для курильщиков вероятность развития опухоли возрастает более чем в 25 раз.

Проблема радиоактивности жилища не нова. Ее изучением занимались гигиенисты еще 30-40 лет назад. Уже тогда были известны основные источники радиоактивности воздуха жилища: строительные конструкции и почва под зданием, суммарный «вклад» которых в формировании уровня радона в жилище составляет 78%.

Именно из них радон и торон поступают в жилые помещения, где могут накапливаться. Повышенную радиоактивность имеет большинство строительных материалов, содержащих отходы промышленности (доменные и фосфатные шлаки, летучая зола и т.п.).

Из горных пород наиболее радиоактивны гранит и глина. Радиоактивные вещества могут поступать в воздух квартир с продуктами сгорания газа. При этом уровень радиоактивности воздуха кухонь примерно в 5 раз может превышать уровень естественной радиоактивности жилых комнат.

Формальдегид

Формальдегид (СН2O) привлек особое внимание в последнее десятилетие после появления работ, в которых была показана его канцерогенность для крыс. По оценке экспертов международного агентства по изучению рака (МАИР) в настоящее время имеются достаточные доказательства канцерогенности газообразного формальдегида для экспериментальных животных и ограниченные - для человека - в возникновении назофарингеального рака. Формальдегид обладает выраженными токсическим и раздражающим слизистые оболочки свойствами.

Он широко распространен в окружающей среде, может присутствовать в воздухе жилых помещений, куда поступает из древесностружечных плит, сделанных с использованием формальдегидных клеев, из других склеенных древесных продуктов, пеноизоляционных материалов, ковровых и текстильных изделий и т.д. На основе формальдегида изготавливают карбамидные, фенольные, полиацетатные и другие пластики и смолы. Он образуется при курении табака.

Эти данные позволяют сделать вывод, что загрязнение формальдегидом воздуха жилых и других помещений превратилось в настоящее время в достаточно серьезную проблему. Для осуществления предупредительного санитарного надзора за применением в строительстве полимерных материалов введена среднесуточная предельно допустимая концентрация канцерогенов (ПДК) формальдегида для атмосферного воздуха.

Окислы азота

Окислы азота (NOx) - широко распространенные в окружающей среде соединения как природного, так и антропогенного происхождения. Применительно к жилищу основными источниками окислов азота являются бытовые нагревательные приборы, работающие на газе, курение и атмосферный воздух. Окислы азота являются предшественниками N-нитрозосоединений (НС) .

В воздухе жилых помещений обнаружены и сами НС, основными источниками которых являются курение и жарение пищи, в меньшей степени - продукты сгорания природного газа, атмосферный воздух, и плохо проветриваемых помещениях концентрация НС может достигать относительно высоких значений. Канцерогенная опасность НС изложена выше.

Асбест

Асбест широко применяется в строительстве. Он используется при изготовлении более чем 3 тыс. изделий, в том числе асбестоцементных листов и труб, изоляционных материалов, настилов для полов, перекрытий, прокладок. Не удивительно поэтому, что асбест часто обнаруживается в воздухе разных помещений.

По оценке ряда авторов, с загрязнением воздуха помещений асбестом может быть связан онкологический риск, соответствующий 1 случаю рака легких на 100000 населения при длительности экспозиции 20 лет для взрослых и 10 лет для детей. Не вдаваясь в более детальное рассмотрение вопроса, подчеркнем, что загрязнение асбестом воздушной среды может представлять реальную канцерогенную опасность.

Рассмотренными соединениями не ограничивается перечень канцерогенно опасных загрязнителей воздуха жилища. Здесь следует также назвать бензол, мышьяк, галогеносодержащие органические соединения (хлороформ, четырех-хлористый углерод, дихлорметан) и т.д.

В целом вырисовывается достаточно серьезная картина. Конечно, нельзя себе представить, что опасности подвержено практически все население. Она, однако, может стать вполне реальной для людей, проживающих в малопроветриваемых газифицированных помещениях, при строительстве которых были использованы асбестосодержащие материалы и строительные конструкции, являющиеся источниками радона.

С этой точки зрения, наибольший интерес вызывает изучение внутрижилищной среды в северных климатических зонах, хотя и в средних климатических поясах также могут возникнуть достаточно серьезные ситуации.

Водный фактор

О степени опасности для населения канцерогенных веществ, присутствующих в воде, высказываются разные точки зрения. Не исключая возможности ситуаций, когда водный фактор действительно может оказать существенное влияние на распространенность среди населения злокачественных опухолей, все-таки в целом это влияние, по-видимому, относительно менее значительно, чем влияние, например, загрязненного атмосферного воздуха.

Оценивая роль загрязнения питьевой воды в формировании онкологической заболеваемости надо, вероятно, делать это очень осторожно, помня, что длительная экспозиция к действию даже малых (следовых) количеств канцерогенов, содержащихся в питьевой воде, может усиливать действие канцерогенных веществ, поступающих в организм любым другим путем.

С учетом сказанного ниже приводятся данные о возможной роли отдельных веществ и групп соединений, распространяющихся водным путем, в формировании онкологической заболеваемости.

Мышьяк

Мышьяк, признанный экспертами МАИР безусловно канцерогенным для человека, является пока, по-видимому, единственным соединением, для которого можно считать доказанной роль водного пути распространения в возникновении опухолевых заболеваний человека. По оценке специалистов, воздействие в течение всей жизни мышьяка, поступающего с питьевой водой в концентрации 0,2 мг/л, дает 5% риск развития рака кожи.

Нитраты и нитриты

Изучение возможной канцерогенной опасности, связанной с загрязнением питьевой воды нитратами и нитритами не дало пока убедительных данных для того, чтобы определить их уровень, с которого может увеличиваться потенциальная канцерогенная опасность для населения.

В целом же, оценивая с онкогигиенической точки зрения проблему нитратно-нитритного загрязнения воды, следует подчеркнуть, что содержание нитратов и нитритов в водоемах большинства стран мира продолжает увеличиваться, и есть серьезные основания считать их потенциально опасными с канцерогенной точки зрения для человека. Галогеносодержащие соединения (ГСС) - продукты хлорирования воды. В середине 70-х годов XX века в США появились первые работы, в которых ставился вопрос о существовании связи между онкологической заболеваемостью населения и присутствием в воде хлорорганических соединений, образующихся в процессе хлорирования воды. Наиболее важными среди них являются гуминовые кислоты, таннины, хиноны, фенолы и т.д.

Основными локализациями опухолей, которые связывают с действием ГСС, являются мочевой пузырь, толстая кишка, однако сделать окончательный вывод пока не представляется возможным. По-видимому, нужна трезвая оценка реальной опасности ГСС для человека, основанная на новых методических подходах.

Асбест

Асбест поступает в водоемы главным образом из асбестосодержащих месторождений, а также со сточными водами, хотя возможно попадание и из загрязненного атмосферного воздуха. Для питьевой воды источником асбестовых волокон могут служить и асбестоцементные трубы.

Асбест, несомненно, канцерогенен для человека в случае его ингаляционного поступления в организм. Что касается асбестосодержащей воды, подавляющее большинство исследователей склоняются к тому, что асбест в питьевой воде не опасен для здоровья человека.

Фтор

Еще более не ясна ситуация с возможным влиянием фтора на онкологическую заболеваемость населения. Эпидемиологические исследования по выявлению возможной связи между раком и содержанием фтора в воде проводились в течение почти 30 лет, но вопрос о канцерогенной опасности фторирования воды остается пока открытым.

В воде присутствует множество других соединений. По данным американских авторов, питьевую воду могут загрязнять более 700 летучих органических соединений. Из всего этого многообразия соединений выше рассмотрено лишь несколько, но они, правда, согласно современным представлениям, могут быть отнесены к числу наиболее значимых и изученных.

Очевидно, что по мере углубления знаний о возможной роли водного фактора в формировании онкологической заболеваемости интерес к этой проблеме будет возрастать.

Экологические аспекты циркуляции канцерогенов

Контакт человека с различными канцерогенными агентами может осуществляться самыми различными путями. Как уже указывалось выше, в организм человека канцерогены попадают с воздухом, водой, пищей и лекарствами, а также путем прямого контакта через кожу и слизистые оболочки.

Основным источником загрязнения атмосферного воздуха являются дымовые выбросы предприятий, преимущественно химической промышленности, и выхлопные газы автомобильного транспорта. При этом обнаруживают повышенные концентрации ПАУ, бензола, НС, винилхлорида и других канцерогенов.

Индексом загрязнения воздуха служит содержание бензопирена. Из атмосферного воздуха канцерогены попадают на почву, растения, в водоемы. Кроме этого, в почву канцерогены поступают в результате применения минеральных удобрений и пестицидов.

В сельском хозяйстве используются азотные, калийные и фосфорные минеральные удобрения. Калийные удобрения не представляют канцерогенной опасности. Не существует убедительных доказательств канцерогенного эффекта фосфорсодержащих удобрений.

Опасны азотсодержащие удобрения, количество которых в последнее время удваивается через каждые 6-7 лет. Около 50% вносимого в почву азота усваивается растениями, остальная часть вымывается из почвы и увеличивает содержание нитратов в сельскохозяйственных растениях, поверхностных водоемах и грунтовых водах.

Канцерогенным действием обладают также многие пестициды, которые, в основном, являются химически стойкими соединениями, хорошо растворимыми в жирах, благодаря чему они накапливаются в растениях, тканях животных и человека. Кроме того, с дождевой и грунтовой водой канцерогены из почвы поступают в водоисточники.

Экспертами МАИР признано канцерогенными 22 пестицида, что обусловлено их токсичностью, а также наличием в составе некоторых из них нитрозаминов и их предшественников.

В эксперименте на животных пестициды вызывали опухоли печени, почек, легких, кожи, молочной железы и других органов. Загрязнение растений, используемых в качестве корма для скота, приводит к появлению канцерогенов в молочных и мясных продуктах.

Последние загрязняются также промышленными и городскими отходами. В загрязненной воде обнаруживают соединения, относящиеся ко всем группам химических канцерогенов, что представляет потенциальную опасность для человека.

В жилых помещениях главная причина загрязнения воздуха - курение , а на кухнях - термическая обработка пищи. В комнатной пыли помещений с недостаточной вентиляцией обнаруживают асбестовые нити, радиоактивный полоний, радон, а концентрация кадмия и других металлов иногда оказывается значительно выше, чем в почве.

Угляница К.Н., Луд Н.Г., Угляница Н.К.

Производственные канцерогенные факторы

Производственным канцерогенным факторам относят физические и химические факторы воздействие которых на организм человека в процессе его труда приводит к развитию профессиональных опухолей. Эти опухоли по качественным признакам невозможно отличить от новообразований, вызываемых другими причинами, главным критерием при решении этого вопроса являются количественные показатели – более раннее и более частое развитие опухолей у работающих в определенных производственных условиях. Установление связи опухоли с воздействием производственных факторов затрудняет длительный латентный период возникновения опухолей. Ко времени образования опухоли человек уже может прекратить работу в контакте с канцерогенными факторами. Поэтому очень важен правильный сбор анамнеза и установление профмаршрута, а также учет интенсивности производственной экспозиции.

Наиболее часто встречаются профессиональные опухоли, связанные с прямым контактом организма с канцерогенным фактором (опухоли кожи у трубочистов, опухоли легких у представителей пылевых профессий и т. д.), или на путях концентрации (печень) и выведения канцерогенного вещества (мочевой пузырь). Большое значение имеет высокая чувствительность тканей (кроветворная ткань) к бластомогенному действию радиации.

Для выявления производственных канцерогенных факторов используют эпидемиологический и экспериментальный методы. Только эпидемиологический метод не дает достаточной информации, т. к. действие любого фактора на производстве и в быту не бывает изолированным. С помощью экспериментов были выявлены бластомогенные свойства ряда химических веществ, и это дало начало новому научному направлению – онкогигиене. Из неорганических веществ лучше всего изучено канцерогенное действие металлов (никеля, хрома, бериллия, кадмия), а также волокнистых материалов (асбест), вызывающих канцерогенный эффект преимущественно на месте аппликации. Основными канцерогенными факторами физической природы являются ионизирующие излучения и УФ-лучи. При общем облучении проникающей радиацией (гамма-лучами, жесткими рентгеновскими лучами, протонами, нейтронами) новообразования индуцируются практически в любом органе. При действии непроникающих ионизирующих излучений (мягких рентгеновских лучей, α- и β-частиц) опухоли развиваются на месте первичного и наиболее длительного контакта ткани с радиацией. Среди органических веществ канцерогенным эффектом обладают 3,4-бенз(а)пирен, галогенированные углеводороды, ароматические амины, смолы, минеральные масла и т. д.

Начальной фазой любого вида канцерогенеза является инициация- индукция генетически измененных клеток. Следующая фаза – промоция, период до обнаружения опухоли, связана с селекцией инициированных клеток и проявлением у них трансформированного фенотипа. Необходимым звеном обоих этапов канцерогенеза является клеточная пролиферация. Большинство канцерогенов обладает инициирующим эффектом, и лишь для некоторых из них главным является промоцирующий эффект. Такие канцерогены называемыми условными (четыреххлористый углерод, некоторые металлы, возможно - асбест), приводят к учащению опухолей, по-видимому, в результате стимуляции пролиферации клеток, инициированных другими агентами, скорее всего – эндогенными. На канцерогенез оказывает влияние множество факторов, называемых модифицирующими. Важное место среди них занимает неспецифическое повреждение тканей (механическое, термическое, химическое), ведущее к стимуляции процесса, что обозначают как «канцерогенный эффект».

Возникновение опухолей в значительной степени зависит от индивидуальной чувствительности организма, в частности генетически детерминированного уровня активности метоболизирующих систем и ферментов, осуществляющих репарацию ДНК.

Таким образом, канцерогенная опасность определяется не только природой канцерогена, но и различными экзо- и эндогенными факторами.

По классификации Международного агентства по изучению рака (МАИР, 1982) химические вещества по канцерогенной опасности для человека разделены на 2 большие группы:

Группа I- вещества с доказанной канцерогенностью для человека; 4-амидофенил; мышьяк и его соединения; асбест, бензол; бензидин; бис (хлорметиловый) и хлорметиловый эфир (технической чистоты); хром и некоторые его соединения; серный иприт; 2-нафтил-амин; сажи, смолы и минеральные масла; винилхлорид.

Группа II- вещества с вероятной канцерогенностью для человека (подразделяется на 2 подгруппы): IIа – для которой эта вероятность высока, и подгруппу IIб, для которой степень вероятности невысока.

К подгруппе IIа относятся: акрилонитрил, бенз(а)пирен, бериллий и его соединения, диэтилсульфат, диметилсульфат, никель и его соединения, о-толуидин.

К подгруппе IIб относятся: амитрол, аурамины (технической чистоты); бензотрихлорид; кадмий и его соединения; четыреххлоритсый углерод; хлороформ; хлорфенолы (производственная экспозиция); ДДТ; 3,3-трихлорбензидин; 3,3-диметоксибензидин (ортодианизидин); диметилкарбамоилхлорид; 1,4-диаксин; прямой черный 38 (технической чистоты); прямой миний 6 (технической чистоты); эпихлоргидрин; этиленоксид; этилентиомочевиина; формальдегид (газ); гидразин; гербициды; производные феноксиуксусной кислоты (производственная экспозиция); полихлорированные бифенилы; тетрахлордибензо-n-диоксин-2,4,6-трихлорфенол.

Большинство веществ обеих групп канцерогенны для животных.

В отношении группы IIб эпидемиологические данные противоречивы.

Канцерогенное действие химических факторов зависит от их структуры.

Пути профилактики рака на производстве: Различают 2 основных пути профилактики рака: первичную профилактику, направленную на устранение этиологических факторов, и вторичную профилактику, основанную на раннем выявлении и лечении предраковых заболеваний. При этом используют производсвенно-технические, санитарно-гигиенические и медико-профилактические мероприятия.

Производственные мероприятия включают разнообразные инженерно-технические, правовые и организационные решения, осуществляемые на стадии проектирования и реконструкции производства. Они состоят в герметизации оборудования и автоматизации технологических процессов, изменении технологии, деканцерогенизации промышленных продуктов путем очистки их от канцерогенных примесей или разрушения канцерогенов, запрещение использования некоторых видов сырья и материалов и т. д.

Санитарно-гигиенические мероприятия направлены главным образом на выявление производственных канцерогенных факторов с помощью экспериментальных и эпидемиологических исследований, а также выявление загрязнений производственной среды канцерогенами. Для быстрого отбора (скриннинга) веществ, подозрительных на наличие канцерогенных свойств, используют экспресс-тесты на мутагенность (между мутагенностью и канцерогенностью химических веществ выявлена корреляция).



По отношению к наиболее опасным канцерогенным соединениям основным средством является ограничение их производства и применения. Для канцерогенов, которые распространены повсеместно, необходимо гигиеническое нормирование на основании связи «доза-эффект» на животных, выявления минимально эффективной дозы и дальнейшей экстрополяции полученных данных на человека.

При нормировании учитываются также результаты эпидемиологических исследований.

Целям профилактики служат соблюдение правил личной гигиены и техники безопасности (в частности, регулярное и правильное использование средств индивидуальной защиты), чему способствуют хорошо организованная санитарно-просветительная работа и своевременно проводимый инструктаж.

Медицинская профилактика включает предварительные при приеме на работу и периодические медицинские осмотры работающих, а также диспансеризацию населения, направленные на выявление и лечение фоновых и предопухолевых заболеваний.

Учитывая длительный латентный период возникновения рака, на онкоопасные производства следует принимать лиц не моложе 40-45 лет.

Благодаря проведению профилактических мероприятий снижена частота профессионального рака в коксохимической, сланцеперерабатывающей, нефтеперерабатывающей, анилинокрасочной и других отраслях промышленности.

Ограничение стажа работы в виброопасной профессии, так же, как и режимы труда, является одной из форм «защиты временем» – метода широко применяемого для профилактики вредного воздействия виброакустических факторов.

4.8. Промышленные канцерогены

Канцероген – это фактор, под воздействием которого возрастает частота развития злокачественных новообразований (рака) или сокращается время их появления.

Промышленные канцерогены (или канцерогенные производственные факторы) – это канцерогенные факторы, воздействие которых обусловлено профессиональной деятельностью человека.

Ещё в 1775 г. английским врачом П. Потом впервые была описана роль промышленного канцерогена в развитии рака мошонки от действия печной сажи – « болезни трубочистов». В конце Х1Х в. в Германии были зарегистрированы онкологические заболевания мочевого пузыря среди работников красильной фабрики при воздействии ароматических аминов. В последующем было описано канцерогенное действие десятков химических, физических и биологических факторов производственной среды.

Экспертами Международного агентства изучения рака (МАИР) в 2001 г. было разработано ранжирование факторов по степени доказательности канцерогенности для человека (табл. 4.6).

Таблица 4.6

Ранжирование канцерогенных факторов

Группа факторов

Количество

Канцерогенные для человека

2А. Вероятно канцерогенные для человека

2В. Возможно канцерогенные для человека

Не классифицируемые в отношении канцерогенности

для человека

Вероятно не канцерогенные для человека

Ниже приводится перечень канцерогенных факторов (с доказанной канцерогенностью), включённых в национальный Перечень (ГН 1.1.725-98).

Соединения и продукты, производимые и используемые в промышленности

4-амидофенил Асбесты

Афлатоксины (В1, а также природная смесь афлактоксинов) Бензидин Бензол Бенз(а)пирен

Бериллий и его соединения Бихлорметиловый и хлорметиловый (технический) эфиры Винилхлорид Иприт сернистый

Кадмий и его соединения Каменноугольные и нефтяные смолы, пеки и их возгоны

Минеральные масла (нефтяные, сланцевые) неочищенные и не полностью очищенные Мышьяк и его нерганические соединения

1-нафтиламин технический, содержащий более 0,1 % 2-нафтиламина 2-нафтиламин Никель, его соединения и смеси соединений никеля

Производственные процессы

Деревообрабатывающее и мебельное производства с использованием фенолформальдегидных и карбамидформальдегидных смол в закрытых помещениях Медеплавильное производство (плавильный передел, конвертерный передел, огневое рафинирование)

Производственная экспозиция к радону в условиях горнодобывающей промышленности и работы в шахтах.

Производство изопропилового спирта Производство кокса, переработка каменноугольной и сланцевой смол, газификация угля Производство резины и резиновых изделий

Производство технического углерода

Производство угольных и графитовых изделий, анодных и подовых масс с использованием пеков, а также обожжённых анодов Производство чугуна и стали (агломерационные фабрики, доменное и сталелитейное производство, горячий прокат)

Электролитическое производство алюминия с использованием самоспекающихся анодов Производственные процессы, связанные с экспозицией к аэрозолю сильных

неорганических кислот, содержащих серную кислоту

Бытовые и природные факторы

Алкогольные напитки Радон Сажи бытовые

Солнечная радиация Табачный дым

Табачные продукты, бездымные (жевание нюхательного табака, а также табачной смеси, содержащей известь)

В первую группу включены факторы, имеющие безусловные доказательства канцерогенной опасности. К ним отнесены 87 наименований факторов химической природы, промышленные технологические процессы, вредные привычки, инфекции, лекарства и др. В группе 2А – агенты с высокой степенью доказательности для животных, но ограниченной для организма человека. Группа 2В включает вещества с вероятной канцерогенностью для человека и группа 3 содержит соединения, которые не могут быть достаточно точно оценены в отношении их канцерогенности (фтор, селен, диоксид серы и др.).

К группе 2А относятся 20 производственных химических соединений (акрилонитрил, красители на основе бензидина, 1, 3-бутадиен, креозот, формальдегид, кристаллический кремний, тетрахлорэтилен и др.), к группе 2В – большое число веществ, включающих ацетальдегид, дихлорметан, неорганические соединения свинца, хлороформ, керамические волокна и т. д.

К производственным канцерогенным факторам физической природы относятся ионизирующее и ультрафиолетовое излучения, электрические и магнитные поля, к биологическим факторам – некоторые вирусы (например, вирусы гепатита А и С), микротоксины (например, афлотоксины).

В общей структуре онкологических заболеваний промышленные канцерогены как первопричина занимают от 4 до 40 % (в развитых странах от

Проведение профилактики онкологических заболеваний включает:

- снижение воздействия канцерогенных производственных факторов путём модернизации производства, разработок и реализации дополнительных индивидуальных и коллективных мер защиты;

- введение схемы ограничений допуска к работе с канцерогенными производственными факторами;

- постоянный мониторинг за качеством окружающей среды и состоянием здоровья работников канцерогенно опасных работ и производств;

- осуществление целевых программ оздоровления работников и своевременное их освобождение от канцерогенно опасных работ на основе результатов производственного контроля и аттестации рабочих мест по условиям труда.

4.9. Аэроионизация воздуха в условиях производственной среды

Фактор ионизации воздуха является важным критерием его качества. Аэроионный состав воздуха относится к группе физических факторов, роль и значение которого особенно интенсивно изучались в начале и середине XX столетия.

Приоритет научных исследований в этой области принадлежит советскому учёному профессору А.Л. Чижевскому, открывшему в 1919 г. биологическое и физиологическое действия униполярных аэроионов и затем в последующие годы всесторонняя разработка этого открытия применительно к медицине, сельскому хозяйству, промышленности и т. д. Впервые в эксперименте на животных он установил действие положительных и отрицательных униполярных аэроионов на функциональное состояние нервной, сердечно-сосудистой, эндокринной систем, на кроветворные органы, на морфологию, физику и химию крови (на количество и качество белой и красной крови), на температуру тела, его пластическую функцию,

обмен веществ и др. При этих исследованиях оказалось, что аэроионы отрицательной полярности сдвигают все функции в благоприятную сторону, а аэроионы положительной полярности часто влияют крайне неблагоприятно. Эти исследования позволили А.Л. Чижевскому глубоко проникнуть внутрь живой клетки и впервые показать, какое значение имеют положительные и отрицательные заряды в её жизнедеятельности. Ионы воздуха им были названы аэроионами , процесс их возникновения –аэроионизацией , искусственное насыщение ими воздуха закрытых помещений –аэроионификацией , лечение ими –аэроионотерапией . Эта терминология укрепилась в мировой науке и широко применяется в настоящее время в различных аспектах как научной, так и практической деятельности.

Физическая основа этого явления заключается в том, что под воздействием ионизатора молекула газа в атмосферном воздухе (чаще всего кислорода) теряет электрон с наружной оболочки атома, который может оседать на другом атоме (молекуле). В результате возникают два иона, несущие по одному элементарному заряду – положительный и отрицательный. Присоединение к образовавшимся двум ионам нескольких нейтральных молекул даёт начало лёгким аэроионам . Адсорбция ионов на ядрах конденсации (высокодисперсные аэрозольные частицы, в том числе и микроорганизмы) ведёт к образованиютяжёлых аэроионов (или «псевдоаэроионов»).

Источники ионизации воздуха (ионизаторы) подразделяются на естественные и искусственные. Естественная ионизация происходит повсеместно и постоянно во времени в результате воздействия различных излучений (космического, ультрафиолетового, радиоактивного) и атмосферного электричества. Искусственная ионизация воздуха создаётся в результате деятельности человека и является либо нежелательной, как продукт тех или иных технологических процессов (фотоэлектрический эффект, процесс горения и т. д.), либо специально создаваемой для определённых целей, например, при помощи аэроионизаторов – для компенсации аэроионной недостаточности. Несмотря на то что ионообразование является непрерывным процессом, число ионов не растёт безгранично, так как наряду с этим процессом происходит непрерывное исчезновение аэроионов за

счёт рекомбинации, диффузии, адсорбции на различных фильтрах и в системах очистки воздуха. Вследствие того, что в воздухе постоянно идут ионообразование и ионоуничтожение, возникает состояние равновесия между двумя процессами и в зависимости от соотношения их скоростей устанавливается определённое состояние ионизированности воздушной среды как одного из важнейших аспектов качества воздуха, комфортной и «здоровой» среды обитания в целом. При гигиенической характеристике содержания аэроионов используется так называемый коэффициент униполярности – отношение числа лёгких ионов с отрицательным зарядом к их числу с зарядом положительным. Фильтрация воздуха через высокоэффективные фильтры приводит к потере легких ионов, но нарушенное равновесное состояние за счёт природного радиационного фона восстанавливается за несколько минут.

Нормальное течение нейроэндокринных, физиологических, метаболических и других процессов в организме, во многом определяется присутствием ионов во вдыхаемом воздухе. Длительный (и тем более хронический) дефицит аэроионов может приводить к серьёзным нарушениям здоровья, в частности, к широко распространённым среди работников современных офисных помещений заболеваниям, связанным с пребыванием в зданиях (Building – Related Illnesses, BRI).

Искусственную ионизацию воздуха помещений с оздоровительной (профилактической) целью целесообразно осуществлять биполярно, обеспечивая присутствие в воздушной среде ионов обоих знаков полярности и поддерживая аэроионный фон помещений, близким к природному, когда биологическое действие «активных» отрицательных ионов будет гармонично сбалансировано действием положительных ионов. Для современных офисных помещений задачу нормализации аэроионного состава воздуха целесообразно решать, используя ионизаторы (биполярные), встраиваемые в приточные воздуховоды вентиляционных систем (вблизи воздухораспределительных решёток), тогда распределение аэроионов по помещению происходит равномерно и минимизируются потери генерирующих ионов.

Нормируемые значения содержания аэроионов регламентированы СанПиН 2.2.4.1294-03 «Гигиенические требования к аэроионному составу воздуха производственных и общественных зданий», учитывающие следующие показатели концентраций лёгких ионов в 1 см3 : минимально допустимая концентрация (положительных – 400, отрицательных – 600); оптимальная концентрация (соответственно, 1 500–3 000 и 3 000–5 000); максимально допустимая концентрация (50 000 для обоих знаков).

В условиях производственной деятельности ряд технологических процессов становятся ведущими в генерировании аэроионов. Например, при сварочных работах (газовая и электродуговая сварки) число тяжёлых аэроионов в зоне дыхания работника может достигать 60 000 и более в 1 см 3 . Интенсивному ионообразованию в производственных помещениях способствуют применение лазерного и ультрафиолетового излучений, процессы горения, плавки металлов, шлифовки и заточки материалов.

В отдельных случаях искусственная аэроионизация используется в производственных условиях для улучшения качества продукции и повышения продуктивности труда. Например, в текстильной промышленности – для снятия электростатического заряда с нитей искусственного (полимерного) волокна. При этом в зоне дыхания работающих число отрицательно заряжённых аэроионов в течение смены может достигать десятков тысяч в 1 см 3 . И, напротив, в отдельных случаях при наличии электромагнитных полей и электростатического электричества в помещениях с персональными компьютерами, мониторами, концентрации аэроионов как отрицательной, так и положительной полярностей, могут не превышать 100 лёгких ионов в 1 см3 .

Аэроионный состав воздуха рекомендуется измерять в рабочих помещениях, воздушная среда которых подвергается специальной очистке или кондиционированию; где есть источники ионизации воздуха (УФизлучатели, плавка и сварка металлов), где эксплуатируется оборудование

и используются материалы, способные создавать электростатические поля (ВДТ, синтетические материалы и пр.), где применяются аэроионизаторы

и деионизаторы. Контроль и оценку фактора осуществляют в соответствии с

СанПиН 2.2.4.1294-03 и методическими указаниями МУК 4.3.1675-03 «Общие требования к проведению контроля аэроионного состава воздуха». При превышении максимально допустимой и (или) несоблюдении минимально необходимой концентрации аэроионов и коэффициента униполярности условия труда персонала по данному фактору, согласно гигиенической классификации, относятся к вредным (классу 3.1).

4.10. Тяжесть и напряжённость трудового процесса. Утомление. Фазы работоспособности.

Режимы труда и отдыха

К факторам трудового процесса относятся тяжесть и напряжённость труда.

Тяжесть труда – характеристика трудового процесса, отражающая преимущественную нагрузку на опорно-двигательный аппарат и функциональные системы организма (сердечно-сосудистую, дыхательную и др.), обеспечивающие его деятельность.

Показатели трудового процесса, характеризующие тяжесть труда.

1. Физическая динамическая нагрузка, выраженная в единицах внешней механической работы за смену, кг · м:

а) при региональной нагрузке; б) при общей нагрузке;

в) при перемещении груза на расстояние от 1 до 5 м; г) при перемещении груза на расстояние более 5 м.

2. Масса поднимаемого и перемещаемого груза, кг:

а) подъём и перемещение (разовое) тяжести при чередовании с другой работой;

б) подъём и перемещение (разовое) тяжести постоянно в течение рабочей смены;

в) суммарная масса грузов, перемещаемых в течение каждого часа смены с рабочей поверхности и с пола.

3. Стереотипные рабочие движения, количество за смену: а) при локальной нагрузке;

б) при региональной нагрузке.

4. Статическая нагрузка, кг · с: а) одной рукой; б) двумя руками;

в) с участием мышц корпуса и ног.

5. Рабочая поза.

6. Наклоны корпуса, количество за смену.

7. Перемещения в пространстве, обусловленные технологическим процессом:

а) по горизонтали; б) по вертикали.

Оценка тяжести физического труда проводится на основе учёта всех

показателей. При этом вначале устанавливают класс по каждому измеренному показателю, а окончательная оценка тяжести труда устанавливается по наиболее чувствительному показателю, получившему наиболее высокую степень тяжести.

Напряжённость труда – характеристика трудового процесса, отражающая нагрузку преимущественно на центральную нервную систему (ЦНС), органы чувств, эмоциональную сферу работника.

Показатели трудового процесса, характеризующие напряжённость труда.

1. Интеллектуальные нагрузки: а) содержание работы;

б) восприятие сигналов (информации) и их оценка; в) распределение функций по степени сложности задания; г) характер выполняемой работы.

2. Сенсорные нагрузки:

а) длительность сосредоточенного наблюдения (% времени смены); б) плотность сигналов (световых, звуковых) и сообщений в среднем

за 1 час работы; в) число производственных объектов одновременного наблюдения;

г) размер объекта различения (при расстоянии от глаз работающего до объекта различения не более 0,5 м) в миллиметрах при длительности сосредоточенного наблюдения (% времени смены);

д) работа с оптическими приборами (микроскопами, лупами и т. п.) при длительности сосредоточенного наблюдения (% времени смены);

е) наблюдение за экранами видеотерминалов (часов в смену); ж) нагрузка на слуховой анализатор; и) нагрузка на голосовой аппарат.

3. Эмоциональные нагрузки:

а) степень ответственности за результат собственной деятельности; б) степень риска для собственной жизни; в) степень риска за безопасность других лиц;

г) количество конфликтных ситуаций, обусловленных профессиональной деятельностью, в смену.

4. Монотонность нагрузок:

а) число элементов (приёмов), необходимых для реализации простого задания или в многократно повторяющихся операциях;

б) продолжительность выполнения простых заданий или повторяющихся операций;

в) время активных действий (в % продолжительности смены); г) монотонность производственной обстановки (время пассивного на-

блюдения за ходом техпроцесса в процентах от времени смены). 5. Режим работы:

а) фактическая продолжительность рабочего дня; б) сменность работы;

в) наличие регламентированных перерывов и их продолжительность. По каждому из показателей в отдельности определяется свой класс условий труда. В том случае, если по характеру или особенностям профессиональной деятельности какой-либо показатель не представлен, то по данному показателю ставится 1 класс (оптимальный) – напряжённость

труда лёгкой степени.

Утомление – состояние, сопровождающееся чувством усталости, снижением работоспособности, вызванное интенсивной или длительной

деятельностью, которое выражается в ухудшении количественных и качественных показателей работы и прекращается после отдыха.

С давних пор физиологи пытались ответить на вопрос о сущности и механизмах утомления. Утомление рассматривалось как следствие «истощения» энергетических ресурсов мышцы (главным образом обмена углеводов) или как результат недостаточного снабжения кислородом и нарушение окислительных процессов – теория «задушения»; определялось как следствие засорения тканей продуктами обмена, т. е. «отравления» ими.

По одной из теорий развитие утомления связывалось с накоплением в мышцах молочной кислоты. Все эти теории были гуморальнолокалистическими, определяющими утомление как процесс, происходящий только в мышцах, не принимая во внимание координирующую роль центральной нервной системы. Изучению роли ЦНС в развитии утомления посвящены работы И.М. Сеченова, И.П. Павлова, Н.Е. Введенского, А.А. Ухтомского, М.И. Виноградова.

Так, И.М. Сеченов показал, что утомление возникает не в самом работающем органе, не в мышце, а в ЦНС: «Источник ощущения усталости лежит не в мышце, а в нарушении деятельности нервных клеток мозга». М.И.Виноградов считал необходимым различать два вида утомления: быстро наступающее, обусловленное центральным торможением, и медленно развивающееся, связанное со снижением уровней передачи нервных импульсов в самом двигательном аппарате.

По мнению И.П. Павлова торможение, возникающее при утомлении в ЦНС, носит охранительный характер, ограничивая работоспособность корковых центров мозга, оно охраняет нервные клетки от перенапряжения и гибели. До настоящего времени наиболее популярной является цен- трально-нервная теория утомления. Вместе с тем не исключается возможность влияния местных процессов, происходящих в мышцах и других работающих органах, на формирование процессов утоления (недостаток кислорода, истощение питательных веществ, накопление метаболитов и др.).

Они могут ускорять утомление, а за счёт обратных связей – изменять функциональное состояние ЦНС. Так, при тяжёлом физическом утомлении, умственная работа малопродуктивна, и, наоборот, при умственном

утомлении сохраняется мышечная работоспособность. При умственной деятельности постоянно наблюдаются элементы мышечного утомления: длительное пребывание в определённой статической позе приводит к значительному утомлению соответствующих звеньев двигательного аппарата.

При умственном утомлении отмечаются более выраженные функциональные сдвиги со стороны ЦНС: расстройство внимания, ухудшение памяти и мышления, ослабляется точность и координация движений. Возобновление работы на фоне медленно развивающегося утомления приводит к тому, что сохранившиеся следы утомления накапливаются и наступает переутомление, а вместе с ним головная боль, чувство тяжести в голове, вялость, рассеянность, снижение памяти, внимания, нарушение сна.

Фазы работоспособности

Эффективность трудовой деятельности человека в значительной степени зависит от двух главных факторов: нагрузки и динамики работоспособности.

Общая нагрузка формируется взаимодействием следующих компонентов: предмет и орудия труда, организация рабочего места, гигиенические факторы производственной среды, технико-организационные мероприятия. Эффективность согласования указанных факторов с возможностями человека во многом зависит от наличия определённой работоспособности.

Работоспособность – величина функциональных возможностей организма, которая характеризуется количеством и качеством работы, выполняемой за определённое время, при максимально интенсивном напряжении.

Уровень функциональных возможностей человека зависит от условий труда, состояния здоровья, возраста, степени тренированности, мотивации к труду и других факторов специфических особенностей каждой конкретной деятельности. Во время трудовой деятельности функциональная способность организма и производительность труда закономерно изменяются

на протяжении рабочего дня. При этом динамика работоспособности имеет несколько фаз или сменяющих друг друга состояний человека (рис. 4.1).

Рис. 4.1. Динамика работоспособности человека:

I, IV – периоды врабатывания; II, V – периоды высокой работоспособности; III, VI – периоды снижения работоспособности; VII – конечный порыв

Фаза врабатывания. В этот период ускоряется и увеличивается объём физиологических процессов, уровень работоспособности постепенно повышается по сравнению с исходным. В зависимости от характера труда и индивидуальных особенностей человека, этот период длится от несколько минут до 1,5 ч, а при умственном творческом труде – до 2–2,5 ч.

Фаза высокой устойчивой работоспособности. Для неё характерно сочетание высоких трудовых показателей с относительной стабильностью или даже некоторым снижением напряжённости физиологических функций. Продолжительность периода может быть 2–2,5 ч и более, в зависимости от степени нервно-эмоционального напряжения, физической тяжести и гигиенических условий труда.

Фаза снижения работоспособности. Падение работоспособности со-

провождается уменьшением функциональных возможностей основных работающих органов человека. К обеденному перерыву ухудшается состояние сердечно-сосудистой системы, снижается внимание, появляются лишние движения, ошибочные реакции, замедляется скорость решения задач.

Динамика работоспособности повторяется и после обеденного перерыва. При этом фаза врабатывания протекает быстрее, а фаза устойчивой работоспособности по уровню ниже и менее длительная, чем до обеда. Во второй половине смены снижение работоспособности наступает раньше и развивается быстрее в связи с более глубоким утомлением. Перед самым концом работы происходит кратковременное повышение работоспособности, так называемый конечный или «финишный» порыв.

Встречающиеся отклонения от типичной классической кривой работоспособности большей или меньшей выраженности свидетельствуют о наличии неблагоприятных внешних причин, характерных для конкретных видов деятельности, но при этом главной задачей является продление фа-

зы устойчивой работоспособности.

Режимы труда и отдыха. При разработке рациональных режимов труда и отдыха необходимо учитывать особенности профессиональной деятельности. Для современного состояния научно-технического прогресса характерно стирание граней между умственным и физическим трудом, увеличение доли умственного компонента. В чём же здесь особенности?

Умственный труд объединяет работы, связанные с приёмом и недоработкой информации, требующие преимущественного напряжения сенсорного аппарата, внимания, памяти, а также активации процессов мышления, эмоциональной сферы. Подразделяется на операторский, управленческий, творческий труд, труд медицинских работников, труд преподавателей, учащихся и студентов. Указанные виды труда отличаются по организации трудового процесса, равномерности нагрузки, степени эмоционального напряжения.

Например, управленческий труд – труд руководителей учреждений, организаций, предприятий характеризуется чрезмерным ростом объёма информации, возрастанием дефицита времени для её переработки, повышенной личной ответственностью за принятие решений, возможными конфликтными ситуациями. Труд преподавателей отличается постоянными контактами с людьми, повышенной ответственностью, часто дефицитом времени и информации для принятия правильного решения, что обусловливает высокую степень нервно-эмоционального напряжения. Для

труда студентов характерно напряжение основных психических функций (память, внимание, восприятие), наличие стрессовых ситуаций (экзамены, зачёты). Нервно-эмоциональное напряжение сопровождается усилением деятельности сердечно-сосудистой системы, дыхания, энергетического обмена, повышением тонуса мускулатуры.

Оптимизация умственного труда должна быть направлена на сохранение высокого уровня работоспособности и на устранение хронического нервно-эмоционального напряжения.

При разработке рациональных режимов труда и отдыха необходимо учитывать тот факт, что при умственной нагрузке мозг склонен к инерции, к продолжению мыслительной деятельности в заданном направлении. По окончании умственной работы «рабочая доминанта» полностью не угасает, обусловливая более длительное утомление и истощение ЦНС, чем при физической работе.

Существуют общие основные физиологические условия продуктивной умственной работы.

1. В работу следует «входить» постепенно. Это обеспечивает последовательное включение физиологических механизмов, определяющих высокий уровень работоспособности.

2. Необходимо соблюдать определённый ритм работы, что способствует выработке навыков и замедляет развитие утомления.

3. Следует придерживаться обычной последовательности и систематичности в работе, что обеспечивает более длительное сохранение рабочего динамического стереотипа.

4. Правильное чередование умственного труда с отдыхом. Чередование умственного труда с физическим предупреждает развитие утомления, повышает работоспособность.

5. Высокая работоспособность сохраняется при систематической деятельности, обеспечивающей упражнение и тренировку. Оптимизации умственной деятельности, как и любой деятельности,

способствует благоприятное отношение общества к труду, а также благоприятный психологический климат в коллективе.

Основная задача научно обоснованных рациональных режимов труда и отдыха заключается в снижении утомления, достижении высокой производительности труда на протяжении всего рабочего дня с наименьшим напряжением физиологических функций человека и сохранении его здоровья и длительной работоспособности.

Сохранению высокой, устойчивой работоспособности способствует периодическое чередование работы и отдыха, которое предусматривается внутрисменными режимами труда и отдыха.

Существуют две формы чередования периодов труда и отдыха:

1) введение обеденного перерыва в середине рабочего дня, оптимальная деятельность которого устанавливается с учётом удалённости от рабочих мест санитарно-бытовых помещений, столовых, других мест приёма пищи;

2) введение кратковременных регламентированных перерывов, продолжительность и количество которых определяется на основании наблюдения за динамикой работоспособности, учёта тяжести и напряжённости труда. При работах, требующих большого нервного напряжения и внимания, быстрых и точных движений рук, целесообразны более частые, но короткие 5–10- минутные перерывы.

Кроме регламентированных перерывов существуют также микропаузы – перерывы в работе, обеспечивающие поддержание оптимального темпа работы и высокого уровня работоспособности. В зависимости от характера и тяжести работы микропаузы составляют 9–10 % рабочего времени.

В соответствии с суточным циклом работоспособности наивысший уровень её отмечается в утренние и дневные часы – с 8 до 12 ч в первой половине дня и с 14 до 17 ч во второй. В вечерние часы работоспособность понижается, достигая своего минимума ночью. В дневное время наименьшая работоспособность – в период между 12 и 14 ч, а в ночное время – с 3 до 4 ч.

Чередование периодов труда и отдыха в течение недели также должно регулироваться с учётом динамики работоспособности. Так, наивысшая работоспособность приходится на 2, 3 и 4-й день работы, а в после-

Канцерогены - это химические соединения, воздействие которых на организм человека является одной из основных причин появления и развития злокачественных опухолей или доброкачественных новообразований.

Свойства канцерогенов

Канцероген является вредоносным агентом, который ввиду собственных химических и физических свойств может приводить к необратимому повреждению генетического аппарата, что способствует потере организмом контроля над соматическим развитием клеток. Вредные токсичные вещества приводят к изменению клеток на генетическом уровне. В результате - ранее здоровая клетка перестает выполнять возложенные на нее функции.

Насыщение организма несет в себе опасность для здоровья и жизни, независимо от их характера и концентрации. При этом негативное воздействие может проявляться не сразу. Впрочем, канцерогены - это не одни лишь вредные химические составляющие, но также многочисленные физические факторы, невидимые излучения и некоторые микроорганизмы.

Пестициды

Впрочем, с каждым годом концентрация подобных химикатов в растительной пище все чаще поддается регламентации санитарными и эпидемиологическими учреждениями. Помимо прочего, существует целый список высокотоксичных пестицидов, использование которых для обработки находится под строжайшим запретом.

Оградить себя от потребления растительной пищи с содержанием вредных канцерогенных веществ можно при соблюдении следующих рекомендаций:

  • Прежде чем приобрести овощи или фрукты, необходимо поинтересоваться, в каких условиях они были выращены.
  • Покупать лучше экологически чистую продукцию, несмотря на повышенную стоимость.
  • Потреблять стоит тщательно очищенную растительную пищу без кожуры, так как канцерогены концентрируются на поверхности овощей и фруктов.
  • Обращать внимание рекомендуется на животную продукцию фермерского происхождения, выращенную на пастбищах.

Бензол

Одним из наиболее вредных, потенциально опасных для здоровья человека веществ является бензол. Отравление бензолом может происходить не только путем его попадания в дыхательные пути, но и через впитывание вещества посредством пор незащищенной кожи.

Даже воздействие вещества на организм в малых количествах может приводить к необратимым изменениям в его структуре. Если же говорить о хроническом отравлении бензолом, то в данном случае канцероген чаще всего становится первопричиной таких серьезных заболеваний, как анемия и лейкемия.

Отравление бензолом может происходить при вдыхании паров бензина, который является не только топливом для техники, но и широко применяется в различных сферах промышленного производства. Он выступает сырьевой основой при изготовлении пластмасс, красителей, резины, прочего.

Нитраты

Ежедневно организм человека подвергается воздействию внушительного количества токсичных нитратных соединений, которые содержатся в воде, овощах и фруктах, продукции животного происхождения. Такие вредные токсичные вещества опасны, прежде всего, способностью преобразовываться в различные нитросоединения, которые приводят к образованию опухолей самых различных внутренних органов.

Защитить организм от канцерогенного воздействия нитратов можно путем снижения потребления консервации, а также продукции с искусственно увеличенным сроком хранения.

Что касается воды, то из нее человек потребляет порядка 20% нитратных соединений. Поэтому настоятельно рекомендуется употреблять родниковую, минеральную или очищенную угольными фильтрами воду.

Процесс преобразования нитратов в опасные химические канцерогенные соединения значительно замедляется при хранении пищевых продуктов в замороженном или охлажденном виде.

Диоксиды

К диоксидным канцерогенам относится широкий список потенциально вредных веществ, которые входят в группу устойчивых загрязнителей. В данном случае канцерогенами являются опасные техногенные вещества, которые практически не выводятся из организма, расщепляясь на токсины из жировых тканей.

Негативное воздействие диоксидных канцерогенов на организм:

  • подавление защитных, иммунных свойств организма;
  • разрушение и изменение генетической клеточной структуры;
  • повышение вероятности развития опухолей и возникновения психических расстройств;
  • снижение уровня мужских гормонов, импотенция.

Уменьшить риск скопления и расщепления диоксидов в организме позволяет снижение потребления животных жиров, молочных продуктов сомнительного происхождения. Способствует снижению скопления диоксидов в организме сбалансированное, разнообразное питание.

Тяжелые металлы

К канцерогенам, которые присутствуют в окружающей среде в виде можно отнести свинец, никель, ртуть, мышьяк, кадмий, кобальт, асбест. Фото подобного рода загрязнений просто нельзя не увидеть повсеместно.

Основными источниками образования тяжелых металлов, которые попадают в организм человека, выступают промышленные предприятия, в частности, по переработке пластиковой и металлической тары, автомобилей, табачный дым.

Насыщение продуктов питания канцерогенными тяжелыми металлами происходит как из воздуха, так и воды. Металлические канцерогены - это в первую очередь вещества, которые вызывают рак кожи, злокачественные опухоли в легких, печени, прочих жизненно важных органах и системах.

Афлатоксины

К отдельной категории канцерогенных веществ относятся биологические вещества - афлатоксины. Источником их являются определенные виды грибов, произрастающих на зерновых, семенах растений и плодах со значительным содержанием масел.

Афлатоксины являются наиболее сильными биологическими канцерогенами, которые приводят к разрушению клеток печени. Хроническое насыщение организма афлатоксинами или их одноразовое поступление в концентрированном количестве приводит к летальному исходу в течение нескольких дней в результате необратимого поражения печени.

Глутаматы

Канцерогены - это также различные пищевые добавки, консерванты и красители. Категорически не рекомендуется потреблять продукты с содержанием глутамата натрия. Чтобы избежать нанесения непоправимого вреда здоровью, достаточно избегать покупки продуктов, в составе которых присутствуют вещества с обозначением Е.

В настоящее время глутаматы могут присутствовать в самых неожиданных продуктах. Благодаря насыщению пищевой продукции глутаматами, производители не просто пытаются усилить их вкус и сделать более привлекательными для потребителя, но также «подсадить» население на определенные виды новых товаров. Поэтому, приобретая еду в супермаркетах, следует ознакомиться с составом продукции и всегда оставаться бдительным.

канцерогены вредны для организма

О канцерогенах сейчас говорят повсюду. В онкологии даже есть целый раздел, посвящённый взаимосвязи воздействия канцерогенных веществ и возникновения опухолей. Само название «канцерогены» говорит само за себя. Это вещества, вызывающие рак и другие новообразования.

Как образуются канцерогены? Где в повседневной жизни человек может с ними встретиться? Какие канцерогены являются самыми вредными и как обезопасить себя от их пагубного воздействия?

Описание канцерогенов

Канцерогены - это природные или созданные человеком вещества, которые могут в определённых условиях вызывать образование опухолей. Эти агенты могут индуцировать рак не только у человека, но и у животных. Природа канцерогенов может быть различна. Это не только химические соединения, как многие ошибочно думают. Биологические и физические объекты тоже считаются канцерогенами, если способны приводить к раку. Химические канцерогены являются наиболее распространёнными.

К биологическим канцерогенам можно отнести вирус гепатита B, Эпштейна-Барра или папилломавирус. Физическими канцерогенами являются ионизирующее и ультрафиолетовое излучения, рентгеновские и гамма-лучи.

эти продукты содержат канцерогены

Химические канцерогены относятся к веществам различных видов. По химическому строению они делятся на следующие виды:

  • полициклические ароматические углеводороды;
  • азотсодержащие ароматические вещества;
  • металлы и соли неорганического происхождения;
  • аминосоединения;
  • нитрозосоединения и нитрамины.

Классификация по характеру воздействия на организм выделяет:


Канцерогенным эффектом при воздействии на человека обладают следующие химические вещества:

Канцерогенные вещества образуются не только в процессе деятельности человека, но и в природе.

Где можно столкнуться с канцерогенами

Подвергнуться воздействию канцерогенов можно не только в производственных условиях, но и в быту. Где содержатся канцерогены? Многие из них образуются в результате деятельности человека, а некоторые производит сама природа. Городской воздух, а сейчас и не только городской, насыщен канцерогенами. При сжигании бытового мусора образуются диоксины, бензол и другие циклические углеводороды, формальдегид.

Канцерогенным веществом табачного дыма является бензапирен. Какие ещё канцерогены содержатся в табачном дыме? - мышьяк, радиоактивный полоний и радий. Винилхлорид, который также был обнаружен в сигаретах, обладает не только канцерогенным, но и тератогенным (вредным для плода) и мутагенным действиями. Бездымные табачные продукты, такие как нюхательный табак или жевательные табачные смеси, содержат известь, которая также может вызывать рак.

Алкогольные продукты также могут вызывать рак. Доказано, что ацетальдегид, образующийся в результате переработки этанола, способен вызывать повреждение ДНК. У людей, часто употребляющих алкоголь, заболеваемость раком пищевода, глотки и ротовой полости достоверно выше.

В быту с канцерогенами можно столкнуться при готовке продуктов. При жарке канцерогены образуются не только в результате перекаливания масла, но и при чрезмерном нагревании тефлоновых ёмкостей или их повреждении.

проверка фруктов и овощей на содержание нитратов

В настоящее время количество продуктов, содержащих различные добавки, такие как ароматизаторы, красители, усилители вкуса и т. д., превышает натуральные. А овощи и фрукты, продающиеся в супермаркетах и на рынках напичканы нитратами. Кроме того, все растения способны впитывать и накапливать вредные вещества из окружающей среды. Орехи и зерновые культуры также могут таить в себе опасность. Не всегда известно в каких условиях они хранились и не содержат ли эти продукты афлатоксин, который смертельно опасен для человеческого организма. Канцерогенные продукты запрещены требованиями СанПиН, но производители зачастую идут на различные хитрости, используя неполное название вредного вещества в составе или просто его не указывая.

Все используют лекарства. Но не каждый знает, что некоторые из них содержат канцерогены. Вот список лекарств, содержащих канцерогенные вещества:

Промышленные канцерогены выделяются в результате производственных процессов. Они попадают в воздух, воду, а также воздействуют непосредственно на людей, работающих с ними. Какие предприятия могут подвергать работников контакту с канцерогенами?

  1. Деревообрабатывающие и мебельные.
  2. Медеплавильные.
  3. Горнодобывающие предприятия и шахты.
  4. Перерабатывающие каменный уголь.
  5. Заводы по производству резины и изделий из неё.
  6. Учреждения, выпускающие углеродные и графитовые изделия, электропроводники.
  7. Заводы по производству чугуна, стали.
  8. Фармацевтические.

В результате длительного и систематического контакта с каменным углем может развиться рак кожи. А у работников лакокрасочных предприятий заметно выше распространённость рака мочевого пузыря.

Механизм канцерогенного действия

так выглядит раковая опухоль

Среди канцерогенных веществ органические составляют большую долю по сравнению с неорганическими.

Как уже сказано выше, канцерогенами называют вещества вызывающие опухоли. С латинского это слово переводится как «образующие рак». Как действуют эти агенты? Проникая в организм, канцерогены скапливаются в органе-мишени, если таковой есть либо распространяются по всему организму. Затем они связываются с клеточными ДНК или РНК. В процессе копирования генов возникают неполадки. Новая ДНК может иметь уже совсем другую (аномальную) структуру. Также чаще всего нарушается протекание процесса самоуничтожения старых клеток (апоптоз), и количество «неправильных» клеток увеличивается. В масштабах всего организма наблюдается опухолевый рост. В зависимости от вида канцерогенного вещества, длительности и периодичности воздействия, количества, могут возникать доброкачественные или злокачественные опухоли. Но отравление химическими веществами, которые содержат канцерогены, намного повышает риск развития рака.

Одними из самых сильных канцерогенов признаны:

  • пестициды;
  • бензол;
  • диоксиды;
  • винилхлорид;
  • афлатоксины;
  • тяжёлые металлы и их соли;
  • глутаматы.

Канцерогены в продуктах питания и их влияние на организм:


Как обезопасить себя от воздействия канцерогенов

мытье овощей перед употреблением в пищу

Чтобы не подвергаться канцерогенному эффекту некоторых продуктов, следует избегать их употребления. Нужно перейти на органически выращенные фрукты и овощи. Если это невозможно, следует очень тщательно мыть растения и снимать кожуру. Рыбу и мясо надо покупать из проверенных источников. От обработанных мясных продуктов лучше полностью отказаться. Избегать пищи, содержащей ГМО и подсластители. От газированных напитков, белого хлеба и кондитерской продукции, попкорна, сухих завтраков и чипсов лучше держаться подальше. Консервированные томаты лучше предпочесть в стеклянных банках, а не в жестяных. Не злоупотреблять алкоголем.

Как вывести канцерогены из организма? На это способна наша печень. Именно она «собирает», накапливает и выводит все вредные элементы из нашего тела. Питаться нужно часто и дробно, не менее 4–5 раз в сутки. Есть побольше овощей и фруктов. Использовать природные энтеросорбенты (отруби, подорожник, яблоки, капуста). Доказано несколькими исследованиями, что капуста выводит канцерогены, образующиеся при жарке мяса.

Основное место накопления канцерогенных веществ - жировая ткань. Соответственно, чтобы вывести их, нужно избавиться от избыточного веса. Различные диеты не всегда помогают, а иногда они даже вредны. Упор следует сделать на правильное питание и физические упражнения. Физическая нагрузка поможет не только похудеть, но и усилит обмен веществ, ускорит выведение канцерогенов.