Периферические и центральные механизмы ноцицепции. Нервные механизмы боли Типы и виды нарушений чувствительности. Центральные и




БОЛЬ. ЭКСТРЕМАЛЬНЫЕ СОСТОЯНИЯ

Составили: д.м.н., профессор Д.Д.Цырендоржиев

к.м.н., доцент Ф.Ф.Мизулин

Обсуждено на методическом совещании кафедры патофизиологии "____" _______________ 1999 г.

Протокол №

План лекции

I. БОЛЬ, МЕХАНИЗМЫ РАЗВИТИЯ,

ОБЩАЯ ХАРАКТЕРИСТИКА И ВИДЫ

Введение

С незапамятных времен люди смотрят на боль как на сурового и неизбежного спутника. Не всегда человек понимает, что она верный страж, бдительный часовой организма, постоянный союзник и деятельный помощник врача. Именно боль учит человека осторожности, заставляет его беречь свое тело, предупреждая о грозящей опасности и сигнализируя о болезни. Во многих случаях боль позволяет оценить степень и характер нарушения целостности организма.

«Боль – это сторожевой пес здоровья», - говорили в Древней Греции. И в самом деле, несмотря на то, боль всегда мучительна, несмотря на то, что она угнетает человека, снижает его работоспособность, лишает сна, она необходима и до известных пределов полезна. Чувство боли предохраняет нас от обморожения и ожогов, предупреждает о грозящей опасности.

Для физиолога боль сводится к аффективной, эмоциональной окраске ощущения, вызываемого грубым прикосновением, теплом, холодом, ударом, уколом, ранением. Для врача проблема боли решается относительно просто – это предупреждение о нарушении функций. Медицина рассматривает боль с точки зрения пользы, которую она приносит организму и без которой болезнь может стать неизлечимой еще до того, как ее удается обнаружить.

Победить боль, уничтожить в самом зародыше это подчас непонятное «зло», преследующее все живое, - постоянная мечта человечества, уходящая корнями в глубь веков. За всю историю цивилизации найдены тысячи средств унять боль: травы, лекарства, физические воздействия.

Механизмы возникновения болевого ощущения одновременно и просты, и необыкновенно сложны. Не случайно до сих пор не затихают споры между представителями разных специальностей, изучающими проблему боли.

Итак, что же такое боль?

1.1. Понятие о боли и ее определения

Боль - сложное понятие, включающее в себя своеобразное ощущение боли и реакцию на это ощущение с эмоциональным напряжением, изменениями функций внутренних органов, двигательными безусловными рефлексами и волевыми усилиями, направленными на избавление от болевого фактора.

Боль реализуется специальной системой болевой чувствительности и эмоциональными структурами мозга. Она сигнализирует о воздействиях вызывающих повреждение, или об уже существующих повреждениях возникших вследствие действия экзогенных повреждающих факторов или развития патологических процессов в тканях.

Боль представляет собой результат раздражения в системе рецепторов, проводников и центров болевой чувствительности на разных уровнях неровной системы. Наиболее выраженные болевые синдромы возникают при поражении нервов и их ветвей чувствительных задних корешков спинного мозга и корешков чувствительных черепных нервов и оболочек головного и спинного мозга и, наконец, зрительного бугра.

Различают боли:

Местные боли – локализуются в очаге развития патологического процесса;

Проекционные боли ощущаются по периферии нерва при раздражении ее проксимальном участке;

Иррадиирующими называют болевые ощущения в области иннервации одной ветви при наличии раздражающего очага в зоне другой ветви того же нерва;

Отраженные боли возникают по типу висцерокутанного рефлекса при заболеваниях внутренних органов. При этом болезненный процесс во внутреннем органе, вызывая раздражение афферентных вегетативных нервных волокон ведет к появлению болевых ощущений в определенном участке кожи, связанном с соматическим нервом. Территории, где возникают висцеросенсорные боли, именуются зонами Захарьина-Геда.

Каузалгия (жгучая, интенсивная, нередко непереносимая боль) – особая категория болей, возникающих иногда после ранения нерва (чаще срединного богатого симпатическими волокнами). В основе каузалгии лежит частичное повреждение нерва с неполным нарушением проводимости и явленями раздражения вегетативных волокон. При этом в процесс вовлекаются узлы пограничного симпатического ствола и зрительный бугор.

Фантомные боли – иногда появляются после ампутации конечности. Боли обусловлены раздражением рубцом нерва в культе. Болевое раздражение проецируется сознанием в те области, которые были связаны с этими корковыми центрами ранее, в норме.

Помимо физиологической боли существует и патологическая боль – имеющее дизадаптивное и патогенетическое значение для организма. Непреодолимая, тяжелая, хроническая патологическая боль вызывает психические и эмоциональные расстройства и дизинтеграцию деятельности ЦНС, нередко приводит к суицидальным попыткам.

Патологическая боль имеет ряд характерных признаков, которых нет при физиологической боли.

К признакам патологической боли относятся:

    каузалгия;

    гиперпатия (сохранение сильной боли после прекращения провоцирующей стимуляции);

    гипералгезия (интенсивная боль при ноцицитивном раздражении зоны повреждения – первичная гипералгезия); либо соседних, или отдаленных зон – вторичная гипералгезия):

    аллодиния (провокация боли при действии не ноцициптивных раздражителей, отраженные боли, фантомные боли и т.д.)

Периферическими источниками раздражений, вызывающих патологически усиленную боль, могут быть тканевые ноцицепторы. При их активации – при воспалительных процессах в тканях; при сдавлении рубцом или разросшейся костной тканью нервов; при действии продуктов распада тканей (например, опухолей); под влиянием БАВ, продуцирующихся при этом, занчительно повышается возбудимость ноцицепторов. Причем, последние приобретают способность реагировать даже на обычные, неноцицивные воздействия (явление сенситизации рецепторов).

Центральным источником патологически усиленной боли может быть измененные образования ЦНС, которые входят в систему болевой чувствительности или модулируют ее деятельность. Так, агрегаты гиперактивных ноцициптивных нейронов, образующих ГПУВ в дорсальных оргах или в каудальном ядре тройничного нерва служат источниками, вовлекающий в процесс систему болевой чувствительности. Подобного рода боли центрального происхождения возникают и при изменениях в других образованиях системы болевой чувствительности – например, ретикулярными формациями продолговатого мозга, в таламических ядрах и др.

Все эти центрального происхождения болевые информации появляются при действии на указанные образования при травме, интоксикации, ишемии и др.

Каковы механизмы боли и ее биологическое значение?

1.2. Периферические механизмы боли.

До настоящего времени нет единого мнения о существовании строго специализированных структур (рецепторов) воспринимающих боль.

Существуют 2 теории восприятия боли:

Сторонники первой теории, так называемой «теории специфичности», сформулированной в конце 19 века немецким ученым Максом Фреем, признают существование в коже 4-х самостоятельных воспринимающих «приборов» – тепла, холода, прикосновения и боли – с 4-мя раздельными системами передачи импульсов в ЦНС.

Приверженцы второй теории – «теории интенсивности» Гольдшейдера соотечественника Фрея – допускают, что одни и те рецепторы и те же системы отвечают в зависимости от силы раздражения как неболевым так и болевым ощущениям. Чувство прикосновения, давления, холода, тепла может сделаться болевым, если вызвавший его раздражитель отличается чрезмерной силой.

Многие исследователи считают, что истина находится где-то посередине и большинство современных ученых признают, что болевое чувство воспринимается свободными окончаниями нервных волокон, разветвляющихся в поверхностных слоях кожи. Эти окончания могут иметь самую разнообразную форму: волосков, сплетений, спиралей, пластинок и т.д. Они и являются болевыми рецепторами или ноцицепторами.

Передача болевого сигнала передаются 2 типами болевых нервов: толстыми миелинизированными нервными волокнами типа А, по которым сигналы передаются быстро (со скоростью около 50-140 м/с) и, более тонкими безмиелиновыми нервными волокнами типа С - передаются сигналы значительно медленннее (со скоростью приблизительно 0,6-2 м/с). Соответствующие сигналы называют быстрой и медленной болью. Быстрая жгучая боль является реакцией на ранение или иное повреждение и обычно строго локализована. Медленная боль часто представляет собой тупое болевое ощущение и обычно менее четко локализована.

Типы и виды нарушений чувствительности. Центральные и

Рецепторы на периферии воспринимают раздражение → афферентные системы → кора → анализ → формирование ощущения (общая чувствительность).

Чувствительность :

1) Поверхностная – экстрацептивная. Экстерорецепторы расположены в коже и слизистых оболочках. Формы : болевая, тепловая, холодовая, тактильная. Экстерорецепторы делятся на: контактрецепторы (непосредственные) и дистантрецепторы (на расстоянии).

2) Глубокая – проприорецепторы расположены в мышцах, сухожилиях, суставах, надкостнице. Формы: мышечно-суставное чувство, вибрационное чувство и чувство давления.

3) Интерорецептивная чувствительность – при раздражении внутренних органов и стенок кровеносных сосудов. Вегетативная иннервация. Мало осознается.

Системы анализаторов – специфические рецепторы периферии, нервные проводники и корковые отделы. Различают: кожный, слуховой, зрительный и другие анализаторы.

Протопатическая чувствительность – сильные, резкие раздражения, грубые болевые, температурные. Волокна безмиелиновые, небольшая скорость импульса. Связь с ретикулярной формацией ствола, с таламусом. Чувствительность возникает после длительного скрытого периода. Имеет нечеткую локализацию.

Эпикритическая чувствительность – для тонкого распознавания качества, характера, степени, локализации раздражения: осязание, тонкие колебания температуры, форма предметов. Волокна миелиновые, большая скорость следования импульса.

Описательная классификация видов чувствительности в зависимости от вида раздражения:

1) Тактильная – чувство осязания. Исследуется путем прикосновения.

2) Болевая – проверяют с помощью иглы (острое или тупое ощущение).

3) Температурная – различение чувства тепла или холода.

4) Чувство локализации – определение места раздражения.

5) Двумерно-пространственное чувство – написание цифр, знаков на коже.

6) Суставно-мышечное чувство – распознавание пассивных движений в суставах.

7) Вибрационное чувство – исследуют с помощью камертона.

8) Чувство давления – пальцами производят нажим.

9) Чувство веса – с помощью набора гирь.

10) Дискриминационное чувство – одновременное нанесение двух раздражений, больной должен их различить на минимальном расстоянии.

11) Стереогностическое чувство – определение предметов на ощупь.

Ход проводников болевого и температурного чувства: клетки спинального ганглия (1 нейрон), Т-образный дендраксон → дендриты идут в составе спинального нерва → нервное сплетение → периферический нервный ствол → дерматом – зона иннервации кожи от одного сегмента спинного мозга.


Аксон → спинномозговой нерв → задний корешок → вещество спинного мозга → основание заднего рога (2 нейрон) → аксон 2 нейрона → передняя белая спайка → другая половина спинного мозга → боковой столб. Перекрест осуществляется не горизонтально, а косо вверх (в среднем на 2 сегмента). Боковой столб → спиноталамический путь → ствол головного мозга. Волокна с этом пути имеют особенность: от дерматома расположенного ниже волокна лежат снаружи, выше – внутри – закон эксцентрического расположения более длинных проводников. Это имеет значение для диагностики интра- и экстрамедуллярных процессов. Если интрамедуллярный – нарушение начинается с рук и распространяется вниз; и наоборот.

От ствола головного мозга → мост → медиальная петля → зрительный бугор (вентролатеральное ядро) (3 нейрон), здесь заканчивается путь → далее волокна идут в заднее бедро внутренней капсулы (позади пирамидного тракта) → лучистый венец → кора, постцентральная извилина. Проекция проводников – обратная: сверху нога, затем туловище, рука, лицо. Площадь иннервации зависит от функции, а не от площади тела.

Общая характеристика пути:

1. путь афферентный,

2. трехнейронный,

3. перекрещенный,

4. перекрест совершают аксоны второго нейрона.

Ход проводников глубокой и тактильной чувствительности: 1 нейрон – клетки спинального ганглия. Дендрит → периферия → спиралевидный рецептор веретен мышц или рецептор сухожилия (Гольджи). Аксон → задний столб спинного мозга, не заходя в серое вещество → продолговатый мозг → восходящие пучки Голля (от ног) и Бурдаха (от рук). Вновь поступающие волокна оттесняют кнутри нижележащие, → ядра Голля и Бурдаха (2 нейрон) → перекрест на уровне нижних олив продолговатого мозга в межоливном слое → присоединение к волокнам поверхностной чувствительности → медиальная петля → путь заканчивается в вентролатеральных ядрах таламуса (3 нейрон) → задняя треть заднего бедра внутренней капсулы → лучистый венец → кора, постцентральная извилина, частично прецентральная.

Общая характеристика пути:

1. путь афферентный,

2. трехнейронный,

3. перекрещенный,

4. перекрест совершают аксоны второго нейрона на уровне продолговатого мозга.

Изменения чувствительности:

1) Анестезия – полная утрата чувствительности. Может быть:

Тотальная (все виды),

Аналгезия (только болевая),

Термоанестезия (только температурная),

Астереогноз (только стереогностическая).

2) Гипестезия – частичная утрата чувствительности.

3) Гиперестезия – чрезмерное раздражение, повышенная чувствительность.

4) Анестезия Долороза – возникает при перерезке нерва, нарушение в зоне иннервации.

5) Гиперпатия – повышение порога восприятия боли, возникает через скрытый период. Потом – неадекватная реакция. Страдают тонкие виды чувствительности. Возникает при поражении периферических нервов, задних столбов, таламуса, коры головного мозга.

6) Диссоциация – расщепление чувствительных расстройств, один вид чувствительности выпадает, а другой сохраняется.

7) Дизестезия – извращение восприятия. Холод воспринимается как тепло и наоборот.

8) Аллодиния – восприятие неболевых раздражителей (холод, прикосновение), как боли.

9) Полиестезия – при нанесении одного раздражения возникает представление о множественных раздражителях.

10) Синестезия – ощущение не только в месте раздражения, но и в других областях, чаще симметрично.

11) Астереогноз – утрата способности распознавать предметы. Поражение теменной доли.

12) Гемианестезия – нарушение чувствительности на половине тела.

13) Паранестезия – нарушение на симметричных конечностях.

Боль – неприятное чувствительное и эмоциональное переживание, связанное с реальным или предполагаемым повреждением ткани, и одновременно реакция организма, мобилизирующая защитные силы. Боль бывает острая и хроническая.

По локализации боли:

1. местная – ощущения совпадают с локализацией нерва (неврит),

2. проекционная – зона поражения не совпадает с локализацией боли (при остеохондрозе). Фантомные боли.

3. иррадиирующие – боль распространяется с одного нерва на другой (невралгия второй ветви тройничного нерва – боль идет на другие ветви).

4. отраженные – боль чаще при заболеваниях внутренних органов, за счет вегетативной и соматической иннервации.

Каузалгия – жгучая боль в конечностях после ранения периферических нервов, связана с перераздражением вегетативных волокон – симпаталгия.

Ноцицептивная система – болевые рецепторы и все отделы чувствительных путей.

Боль, или ноцицеция, активирует антиноцицептивную систему – ее основные структуры – ядра гипоталамуса, ядра шва, перивентрикулярные ядра, серое вещество вокруг водопровода мозга.

Нейротрансмиттеры антиноцицептивной системы:

Эндорфины,

Серотонин,

Болевые синдромы в неврологической практике Александр Моисеевич Вейн

1.3. Механизмы перцепции и формирования боли

Экспериментальные работы и психофизиологические исследования боли у человека позволяют выделить два типа боли: первичную - хорошо локализуемую и вторичную - диффузную, имеющую четкие негативные эмоциональные и вегетативные проявления. Первичная боль возникает преимущественно при активации периферических рецепторов быстропроводящих миелинизированных А-дельта-волокон и передается, главным образом, по неоспиноталамическому тракту (латеральная система болевой афферентации) через вентролатеральный отдел таламуса и достигает соматосенсорной коры. Благодаря быстрой передаче информации обеспечиваются точная локализация боли, ее сенсорная дискриминация, оценка длительности и интенсивности ноцицептивного стимула. Вторичная боль проводится по медленным слабомиелинизированным С-волокнам, затем передается по палеоспиноталамическим (спиноретику-лоталамическому и спиномезенцефалическому) афферентным системам (медиальная система болевой афферентации). По мере афферентного проведения ноцицептивных сигналов происходит активация ряда супрасегментарных структур - ретикулярной формации, гипоталамуса, лимбической системы. Болевой поток, пройдя через медиальные, интраламинарные и задние ядра таламуса, достигает коры мозга. Результатом прохождения болевого сигнала по этой сложноорганизованной системе является ощущение труднодифференцируемой по качеству и локализации боли с многообразными эмоциональными и вегетативными проявлениями.

Современные представления о механизмах проведения и формирования боли являются в определенной степени дальнейшим развитием и углублением представлений Геда о двух видах чувствительности: протопатической (более древней, реализующей грубые труднолокализуемые недифференцируемые по характеру воздействия с выраженным аффективным компонентом) и эпикритической (более молодой, обеспечивающей тонкие и дифференцированные воздействия). Любопытно отметить, что в основу своей классификации Гед положил наблюдения, сделанные на самом себе. Он перерезал и затем сшил у себя кожный нерв предплечья, после чего исследовал изо дня в день чувствительность до полного ее восстановления.

Опираясь на вышеописанные особенности двух типов боли, можно полагать, что две различные, проводящие болевую афферентацию системы (латеральная и медиальная) лежат в основе обеспечения так называемых эпикритического и протопатического видов боли. Возможность привыкания (габитуация) при повторных стимулах при эпикритической боли и феномен усиления боли (сенситизация) при протопатической боли позволяют говорить о различном участии двух афферентных ноцицептивных систем в формировании острой и хронической боли. Различное эмоционально-аффективное и соматовегетативное сопровождение при этих типах боли также указывает на различное участие систем болевой афферентации в формировании острой и хронической болей: доминирование активности латеральной системы в первом случае и медиальной системы - во втором.

Однако следует подчеркнуть, что предложенное подразделение достаточно условно. Имеются клинико-экс-периментальные данные, где повреждение и перерезка различных трактов и структур головного мозга на разных уровнях, связанных с ноцицепцией, не дает выраженной и стойкой аналгезии. Это может свидетельствовать о том, что не существует абсолютно специфических болевых афферентов, болевых трактов, болевых структур. При длительных болевых синдромах могут существенно изменяться не только периферические, но и центральные механизмы боли, включая перестройку процессов формирования и передачи ноцицептивной информации.

На основании многолетних исследований болевых синдромов и, в частности, фантомных болей, R. Melzack (1990) выдвинул новую теорию боли, обозначив ее как теорию «нейроматрикса». Согласно этой теории, боль является многомерным переживанием, вызываемым характерными паттернами импульсации, генерируемыми в нервной сети, распространенной по всему мозгу и называемой нейроматриксом. Эти паттерны импульсации в нейроматриксе индуцируются периферической сенсорной стимуляцией и являются адекватной ответной реакцией церебральных систем, направленных на поддержание гомеостаза. Однако подчеркивается, что изменения или нарушения в работе нейроматрикса могут быть спровоцированы не только периферическими повреждениями, но и эмоциональным стрессом, заболеваниями внутренних органов и тканей и т.д. В этих случаях происходит неадекватное включение программ нервной импульсации в нейроматриксе и появление соответствующего болевого ощущения в отсутствии реального ноцицептивного воздействия. Особое значение теория нейроматрикса приобретает при рассмотрении механизмов формирования хронической боли.

Из книги Система здоровья Норбекова и Сам Чон До. Полный курс автора Юрий Хван

ТЕХНИКА ФОРМИРОВАНИЯ ОМЗ Техника формирования ОМЗ – ее фактически нет! Однако есть некоторые ориентиры, которые выводят на правильную дорогу практически каждого ученика. Если бы этого не происходило, эта книга не стоила бы и бумаги, на которой она издана, да и вряд ли бы

Из книги Животворящая сила автора Георгий Николаевич Сытин

ТЕХНИКА ФОРМИРОВАНИЯ НАСТРОЯ НОРБЕКОВА Итак, ты многое узнал об ОМЗ. Настало время познакомиться с настроем Норбекова. Мы уже говорили, что настрой и ОМЗ – это два полюса одного и того же феномена. Если ты нашел свой ОМЗ, то освоение настроя не вызовет у тебя никаких

Из книги Массаж для всей семьи автора Дебора Грейс

5. Божественный настрой на снятие головной боли и боли в области сердца Постоянным потоком вливается в мою голову ослепительно яркий святой Божественный свет. Ослепительно яркий-ослепительно яркий серебристый святой Божественный свет вливается в мою голову. Ярко-ярко

Из книги Пропедевтика внутренних болезней: конспект лекций автора А. Ю. Яковлева

Упражнения для формирования очаровательной груди Полная грудь привлекательна, но дело не только в ее величине. Красивая грудь наряду с хорошим размером должна быть еще упругой, а также иметь гладкую кожу, округлую форму и т. д.Грудь можно назвать действительно

Из книги Язвенная болезнь. Что делать? автора Александр Геннадьевич Елисеев

2. Пальпация области сердца. Исследование верхушечного толчка, механизм его формирования, его свойства в норме и патологии После перкуссии необходимо провести пальпаторное определение верхушечного толчка – он соответствует левой границе относительной тупости сердца.

Из книги Грыжа позвоночника. Безоперационное лечение и профилактика автора Алексей Викторович Садов

3. Синусовая тахикардия. Пароксизмальная тахикардия. Блокада левой, правой ножек пучка Гиса. Механизм их формирования, объективные, субъективные ЭКГ-признаки Синусовая тахикардия представляет собой нарушение ритма, возникающее в синусовом узле и характеризующееся

Из книги Стройность с детства: как подарить своему ребенку красивую фигуру автора Аман Атилов

Причины формирования язвенного дефекта Разрушение участка слизистой оболочки и образование язвы происходят из-за нарушения равновесия между факторами агрессии и защиты.Основными факторами агрессии являются: соляная кислота пепсин - пищеварительный фермент,

Из книги Точка боли. Уникальный массаж пусковых точек боли автора Анатолий Болеславович Ситель

Стадии формирования грыжи Первая стадия формирования грыжи получила название протрузии межпозвоночного диска, во время которой травмируются внутренние волокна фиброзного кольца, но без разрыва внешней оболочки, удерживающей студенистое ядро в своих границах.Вторая

Из книги Правильная осанка. Как спасти ребенка от сколиоза автора Лилия Мефодьевна Савко

Упражнения для формирования и закрепления навыка правильной осанки Исходное положение – стоя.1. Принятие правильной осанки за счет касания стены или гимнастической стенки ягодичной областью, икроножными мышцами и пятками. Отойти от стены на 1–2 шага, сохраняя

Из книги Здоровые сосуды, или Зачем человеку мышцы? автора Сергей Михайлович Бубновский

Затылочные головные боли и боли мышечного напряжения Среди всех типов головных болей затылочные головные боли и головные боли мышечного напряжения встречаются в 80 % случаев. Их возникновение обусловлено различными болевыми синдромами, развивающимися в той или иной

Из книги Успех или Позитивный образ мышления автора Филипп Олегович Богачев

Возрастные особенности формирования правильной осанки Осанка в детском возрасте очень неустойчива в силу особенностей растущего организма. Поэтому довольно часто развиваются ее нарушения. Дефекты осанки у детей опасны еще и тем, что при них происходит расстройство

Из книги Опасная медицина. Кризис традиционных методов лечения автора Арусяк Арутюновна Налян

Глава 5 Боли сердечные и боли мышечные – как отличить? Разберем более подробно самую, пожалуй, сложную проблему, с которой сталкивается каждый человек, особенно имеющий несколько одновременно «проживающих» в организме заболеваний и начинающий выполнять упражнения

Из книги Здоровье населения: проблемы и пути решения (сборник статей) автора Н. М. Римашевская

13.2. Стратегия формирования зависимости - Ты не знаешь средства от компьютерной зависимости? - Стакан воды… вылитый в вентиляционное отверстие компьютера. Упыри и АвторСама по себе стратегия создания зависимости у человека очень простая и делается за несколько

Из книги Продукты пчеловодства. Природные лекарства автора Юрий Константинов

Другие источники для формирования новой парадигмы питания Идеи и принципы, которые выдвигает новая парадигма, естественно, не новы, они находили свое отражение в разных философских, медицинских школах и учениях, которые породило человечество в течение последних

Из книги автора

Г.В. Леонидова Перспективы формирования трудового потенциала К числу ключевых направлений социально-экономической политики как страны в целом, так и ее регионов относятся вопросы рационального использования и развития трудовых ресурсов, что диктует целесообразность

Из книги автора

Суставные боли и боли в позвоночнике Суставные боли, тромбофлебит. 1 ст. ложку пчелиного подмора растереть в порошок и смешать с 200 мл горячего оливкового масла. Втирать при болях (предварительно разогрев). Хранить во флаконе тёмного стекла в тёмном прохладном месте

Введение


Знание клеточного механизма передачи и модуляции ноцицептивной информации может быть полезно:


1) для лучшего понимания фармакологии известных анальгетических препаратов;


2) для развития направлений создания новых анальгетиков.


Основные нейрофизиологические понятия


Боль может распространяться по А-дельта и С-волокнам ноцицептора и в зависимости от интенсивности ноцицепторной активации (периферический механизм боли). При определенных условиях боль может передаваться по А-бета-волокнам, когда низкий порог возбудимости механорецепторов активируется тактильной стимуляцией. За этот феномен ответственны изменения функциональных свойств второго нейрона (центральный механизм боли).


Периферический механизм боли


Высокий порог активации требует интенсивной патологической стимуляции для запуска «системы тревоги» и усиления болевой чувствительности. В ситуациях, когда патологические стимулы вызывают повреждение ткани и развитие сопутствующей воспалительной реакции, тонкие миелиновые и немиелиновые волокна могут подвергаться сенситизации. В связи с этим порог их активации уменьшается, рецептор запускает разряды более высокой частоты или даже может иметь спонтанную активность.


Подобные изменения проводниковых свойств ноцицептора развиваются в связи с появлением химических субстанций, которые вырабатываются в месте повреждения, где часто наблюдается воспаление (алгогенные вещества). Рецептор может активироваться стимулами меньшей интенсивности. Феномен «периферической сенситизации» несет ответственность за увеличение болевой чувствительности, что в конечном счете приводит к повышению интенсивности боли при стимуляции той же силы (гипералгезия).


Центральный механизм боли


Длительная или повторная стимуляция может изменять свойства ответа нейронов заднего рога (нейрональная пластичность). Нейроны заднего рога могут сенситизироваться и отвечать более сильным стимулом после прохождения импульса (феномен «взведенного курка»).


При определенных условиях некоторые нейроны заднего рога могут становиться чувствительными даже к непатологической стимуляции, которая проводится по низкопороговым А-бета-волокнам, так что даже легкое прикосновение может становиться болезненным (аллодиния).


Такая гиперчувствительность может рассматриваться как патологическое состояние, так как боль в этом случае не является защитным сигналом о нарушениях в организме. Стимуляция низкой интенсивности может вызывать и пролонгировать мучительную боль. У некоторых пациентов спонтанная боль может развиваться без видимой причины.


Патологическая боль


Какие нарушения ЦНС, вызванные длительными и интенсивными патологическими стимулами, мы можем лечить или, что лучше, предотвращать? Природа изменений нейронов заднего рога, вызываемых интенсивной стимуляцией, изучена далеко не полностью. Однако некоторые механизмы направленного фармакологического воздействия на процессы сенситизации определились достаточно четко.


Woolf и соавт. доказали, что второй нейрон заднего рога участвует в образовании спиноталамического тракта (восходящий путь для патологической информации), который активируется возбуждающими аминокислотами (ВАК). Наиболее изученным в этом плане является глутамат. ВАК подобно нейротрансмиттерам могут активировать различные рецепторы: NMDA (n-метил-d-аспартат), АМРА и QA (альфа-амино-3-гидрокси-5-метилизосоксазол-5-проприонат и квисквалат) и метаботропические рецепторы (1,3-транс-1-аминоциклопентил-1,3-дисарбоксилат (трансAPCD)).


Позвольте в первую очередь обсудить NMDA-рецептор. При физиологических условиях активация NMDA способствует продукции cGMP (циклический гуанозин-монофосфат). При патологических состояниях залп импульсов, генерированных длительной и интенсивной патологической стимуляцией, может перестимулировать NMDA-рецептор и запустить каскад интрацеллюлярных реакций, которые увеличивают продукцию NО (оксид азота).


В случае гиперпродукции NО может диффундировать из клетки, где был выработан, и становиться токсичным для других клеток, не имеющих NO-синтазы и других внутриклеточных защитных механизмов. Предполагается, что NО в высоких концентрациях (как продукт суперстимуляции NMDA-рецептора возбуждающими аминокислотами) может воздействовать на малые энкефалинергические интернейроны, которые блокируют вход ноцицептивной информации («контроль входных ворот»). В связи с этим интенсивная патологическая стимуляция не контролируется нейронами заднего рога, что вызывает гипералгезию.


Теоретические предпосылки, представленные выше, дают возможность применения новых фармакологических подходов к анальгезии:


1) первый уровень, активация NMDA-рецептора, может быть блокирован кетамином или МК 801 ((+)-5-метил-10,11-дигидро-5Н дибензо(а,d)циклогептен-5,10-иминемалеат);


2) второй уровень, продукция NО в клетке, может блокироваться путем замещения L-аргинина на L-NAME (N-нитpo-L-аргинин-метил-эфир). L-аргинин является субстратом, используемым NO-синтазой для продукции NО. Его замена на L-NAME блокирует эту реакцию и предотвращает дальнейшую продукцию NO;


3) третий уровень касается центрального эффекта нестероидных противовоспалительных препаратов (НСПВП).


НСПВП обладают не только противовоспалительной активностью на периферии, где имеет место повреждение ткани, им присуща определенная центральная анальгетическая активность. Эта активность была изучена на уровне сенситизированных нейронов заднего рога. Кроме NMDA-рецепторов нейроны заднего рога содержат АМРА-рецепторы и метаботропические рецепторы, которые играют определенную роль в реализации центрального эффекта НСПВП. Обе эти группы рецепторов могут активироваться возбуждающими аминокислотами, что приводит к увеличению продукции простагландинов в клетках заднего рога. НСПВП легко проходят гематоэнцефалический барьер и могут вызывать центральный анальгетический эффект несколькими возможными путями, один из которых представляет собой блокаду синтеза простагландинов в нейронах заднего рога.


Кетамин


На уровне NMDA-рецептора кетамин и МК 801 используются как рецепторные антагонисты. NMDA-рецептор является довольно сложным комплексом с различными центрами взаимодействия. Кетамин, являясь его неполным антагонистом, связывается с рецептором в феноциклидном центре. МК 801 до настоящего времени остается недоступным для клинического использования.


Существует много методической литературы об использовании NMDA-антагонистов при моделировании боли у животных. В последних работах Meller и Gebhart показали, что NMDA-антагонисты уменьшают гипералгезию у крыс, вызванную интенсивной термической стимуляцией. Автором исследовались поведенческие параметры у крыс при моделировании нейропатической боли. Было отмечено, что кетамин может уменьшать некоторые, но не все, ноцицептивные ответы на фоне гипералгезии. Этот эффект может устраняться введением NMDA. В клинике кетамин с определенным успехом используется для купирования послеоперационной боли, фантомной боли и постгерпетической невралгии. В большинстве клинических исследований использовалась рацемическая смесь кетамина, при этом наблюдалось учащение психомиметических эффектов. Оуе и соавт. предположили, что более эффективная анальгезия с меньшим количеством побочных эффектов может быть достигнута при применении S-формы кетамина.


L-NAME
(N-нитро-L-аргинин-метил-эфир)


Meller и Gebhart продемонстрировали, что гипералгезия у крыс, вызванная интратекальным введением NMDA (1 рмоль/л), снижалась, если их лечили L-NAME. В исследовании автора показано, что L-NAME, используемый для терапии моделированной нейропатической боли у крыс, изменял поведенческие параметры в фазе гипералгезии этого синдрома. Антиноцицептивный эффект L-NAME устраняется введением L-аргинина или NMDA, так как эти два медиатора восстанавливают ноцицептивное поведение животных. L-NAME непригоден для клинического применения, но эксперименты на животных указывают новое направление возможного фармакологического вмешательства в нейрохимию боли.


Нестероидные противовоспалительные препараты


Ноцицептивные нейроны заднего рога активируются возбуждающими аминокислотами (ВАК), которые действуют как нейротрансмиттеры. Для нивелирования эффектов ВАК организм вырабатывает эндогенный антагонист ВАК — кайнуреническую кислоту. Предполагается, что при определенных условиях некоторые НСПВП (но не все) способны увеличивать продукцию кайнуренической кислоты. Таким образом, развивается блокада на уровне рецепторов ВАК. Это только один возможный механизм развития центрального анальгетического эффекта НСПВП. Этот эффект не зависит от степени блокады синтеза простагландинов. Спинальное действие НСПВП было продемонстрировано Malberg и Yaksh на крысах. Несколько раньше De Voghel с хорошим эффектом использовал эпидуральное введение лизина ацетилсалициловой кислоты у пациентов с раковой болью.


Заключение


Термин «боль» должен прекратить свое существование, так как имеется много видов боли с различной патофизиологией. Терапию следует адаптировать к специфическим требованиям, характерным для каждого вида боли. Возникновение патологической боли также является динамическим процессом, отражающим адаптивные изменения в ЦНС. Некоторые анальгетические препараты имеют в этом плане защитный эффект и могут использоваться для превентивной анальгезии.

Список литературы

1. C.J. Woolf. New Strategy for the Treatment of Inflammatory Pain: Prevention and Elimination of Central Sensitisation // Drugs. — 1994. — Vol. 47, suppl 5.

2. S.T. Meller, G.B. Gebhart. Spinal Med ators of Hyperalgesia // Drugs. — 1994. — Vol. 47, suppl 5.

3. A.B. Malmberg, T.L. Yaksh. Hyperalgesia Mediated by Spinal Glutamate or Substance P Receptor Blocked by Spinal Cyclooxygenase Inhibition // Science. — 1992. — Vol. 257.

4. I. Oye, O. Hustveit, A. Maurset, E. Ratti Moberg, O. Paulsen L.F. Skoglund. The Chiral Foms of Ketamine as Probes for NMDA receptor Function in Humans. NMDA Receptor Related Agents // Biochemistry, Pharmacology and Behavior / Еd. by Tsutomu Kameyama, Toshitaka Nabeshima, Edward F. Domino. — NPP Books, 1991.

5. D.T. Monagham, R.J. Bridges, C.У. Cotman. The excitatory amino acid receptor: their classes, Pharmacology, and Distinct properties in the function of the central nervous system // Pharmacol. Toxicol. — 1989. — Vol. 29. — P. 365-402.

6. B.M. Baron, B.L. Harrison, F.P. Miller, I.M. McDonald, F.G. Salituro, C.J. Schmidt, S.M. Sorensen, H.S. White, M.G. Palfreyman. Activity of 5,7-Dichlorokynurenic Acid, a Potent Antagonist at the N-Metyl-D-aspatate Receptor-Associated Glycine Binding Site / The American Society for Pharmacology and Experimental Therapeutics // Molecular Pharmacology. — 1990. — Vol. 38. — Р. 554-561.

Боль и обезболивание всегда остаются важнейшими проблемами медицины, а облегчение страданий больного человека, снятие боли или уменьшение ее интенсивности - одна из самых важных задач врача. В последние годы достигнуты определенные успехи в понимании механизмов восприятия и формирования боли. Однако, остается еще много нерешенных теоретических и практических вопросов.

Боль представляет собой неприятное ощущение, реализующееся специальной системой болевой чувствительности и высшими отделами мозга, относящимися к психоэмоциональной сфере. Она сигнализирует о воздействиях, вызывающих повреждение ткани или об уже существующих повреждениях, возникших вследствие действия экзогенных факторов или развития патологических процессов.

Систему восприятия и передачи болевого сигнала называют ноцицептивной системой (nocere-повреждение, cepere- воспринимать, лат.).

Классификация боли . Выделяют физиологическую и патологическую боль. Физиологическая (нормальная) боль возникает как адекватная реакция нервной системы на опасные для организма ситуации, и в этих случаях она выступает как фактор предупреждения о процессах, потенциально опасных для организма. Обычно физиологической болью называют ту, которая возникает при целостной нервной системе в ответ на повреждающие или тканеразрушающие стимулы. Главным биологическим критерием, отличающим патологическую боль, является ее дизадаптивное и патогенное значение для организма. Патологическая боль осуществляется измененной системой болевой чувствительности.

По характеру выделяют острую и хроническую (постоянную) боль. По локализации выделяются кожные, головные, лицевые, сердечные, печеночные, желудочные, почечные, суставные, поясничные и др. В соответствии с классификацией рецепторов выделяют поверхностную (экстероцептивную ), глубокую (проприоцептивную ) и висцеральную (интероцептивную) боль.

Различают боли соматические (при патологических процессах в коже, мышцах, костях), невралгические (обычно локализованные) и вегетативные (обычно диффузные). Возможны так называемые иррадиирующие боли. Например, в левую руку и лопатку при стенокардии, опоясывающие при панкреатите, в мошонку и бедро при почечной колике. По характеру, течению, качеству и субъективным ощущениям боли различают приступообразные, постоянные, молниеносные, разлитые, тупые, иррадиирующие, режущие, колющие, жгучие, давящие, сжимающие и др.

Ноцицептивная система .

Боль, являясь рефлекторным процессом, включает и все основные звенья рефлекторной дуги: рецепторы (ноцицепторы), болевые проводники, образования спинного и головного мозга, а также медиаторы, осуществляющие передачу болевых импульсов.

Согласно современным данным, ноцицепторы в большом количестве содержатся в различных тканях и органах и имеют множество концевых разветвлений с мелкими аксо-плазматическими отростками, которые и являются структурами, активируемыми болевым воздействием. Считается, что по сути своей они являются свободными немиелизированными нервными окончаниями. Более того, в коже, и, особенно, в дентине зубов были обнаружены своеобразные комплексы свободных нервных окончаний с клетками иннервируемой ткани, которые рассматриваются как сложные рецепторы болевой чувствительности. Особенностью как поврежденных нервов, так и свободных немиелинизированных нервных окончаний является их высокая хемочувствительность.

Установлено, что любое воздействие, приводящее к повреждению тканей и являющееся адекватным для ноцицептора, сопровождается высвобождением алгогенных (вызывающих боль) химических агентов. Выделяют три типа таких веществ.

а) тканевые (серотонин, гистамин, ацетилхолин, простагландины, ионы К и Н);

б) плазменные (брадикинин, каллидин);

в) выделяющиеся из нервных окончаний (субстанция P).

Предложено немало гипотез о ноцицептивных механизмах алгогенных субстанций. Считается, что субстанции, содержащиеся в тканях, непосредственно активируют концевые разветвления немиелинизированных волокон и вызывают импульсную активность в афферентах. Другие (простагландины), сами не вызывают боли, но усиливают эффект ноцицептивного воздействия иной модальности. Третьи (субстанция P) выделяются непосредственно из терминалей и взаимодействуют с рецепторами, локализованными на их мембране, и, деполяризуя ее, вызывают генерацию импульсного ноцицептивного потока. Предполагается также, что субстанция P, содержащаяся в сенсорных нейронах спинномозговых ганглиев, действует и как синаптический передатчик в нейронах заднего рога спинного мозга.

В качестве химических агентов, активирующих свободные нервные окончания, рассматриваются не идентифицированные до конца вещества или продукты разрушения тканей, образующиеся при сильных повреждающий воздействиях, при воспалении, при локальной гипоксии. Свободные нервные окончания активируются и интенсивным механическим воздействием, вызывающим их деформацию, обусловленную сжатием ткани, растяжением полого органа с одновременным сокращением его гладкой мускулатуры.

По мнению Гольдшайдера, боль возникает не в результате раздражения специальных ноцицепторов, а вследствие избыточной активации всех типов рецепторов различных сенсорных модальностей, которые в норме реагируют только на не болевые, "не ноцицептивные" стимулы. В формировании боли в этом случае

главенствующее значение имеет интенсивность воздействия, а также пространственно-временное соотношение афферентной информации, конвергенция и суммация афферентных потоков в ЦНС. В последние годы получены весьма убедительные данные о наличии "неспецифических" ноцицепторов в сердце, кишечнике, легких.

В настоящее время считается общепризнанным, что основными проводниками кожной и висцеральной болевой чувствительности являются тонкие миэлиновые А- дельта и без миэлиновые С волокна, различающиеся по ряду физиологических свойств.

Сейчас общепринято следующее разделение боли на:

1) первичную- светлую, коротко латентную, хорошо локализованную и качественно детерминированную боль;

2) вторичную- темную, длинно латентную, плохо локализованную, тягостную, тупую боль.

Показано, что "первичная" боль связана с афферентной импульсацией в А- дельта волокнах, а "вторичная" - с C-волокнами.

Восходящие пути болевой чувствительности . Существуют два основные "классические" - лемнисковые и экстралемнисковые восходящие системы. В пределах спинного мозга одна из них располагается в дорсальной и дорсолатеральной зоне белого вещества, другая- в его вентролатеральной части. В ЦНС не существует специализированных путей болевой чувствительности, и интеграция боли осуществляется на различных уровнях ЦНС на основе сложного взаимодействия лемнисковых и экстралемнисковых проекций. Однако, доказано, что значительно большую роль в передаче восходящей ноцицептивной информации играют вентролатеральные проекции.

Структуры и механизмы интеграции боли . Одной из главных зон восприятия афферентного притока и его переработки является ретикулярная формация головного мозга. Именно здесь оканчиваются пути и коллатерали восходящих систем и начинаются восходящие проекции к вентро-базальным и интраламинарным ядрам таламуса и далее - в соматосенсорную кору. В ретикулярной формации продолговатого мозга существуют нейроны, активирующиеся исключительно ноцицептивными стимулами. Наибольшее их количество (40-60%) выявлено в медиальных ретикулярных ядрах. На основе информации, поступающей в ретикулярную формацию, формируются соматические и висцеральные рефлексы, которые интегрируются в сложные соматовисцеральные проявления ноцицепции. Через связи ретикулярной формации с гипоталамусом, базальными ядрами и лимбическим мозгом реализуются нейроэндокринные и эмоционально- аффективные компоненты боли, сопровождающие реакции защиты.

Таламус . Выделяют 3 основных ядерных комплекса, имеющих непосредственное отношение к интеграции боли: вентро-базальный комплекс, задняя группа ядер, медиальные и интраламинарные ядра.

Вентро-базальный комплекс является главным релейным ядром всей соматосенсорной афферентной системы. В основном здесь оканчиваются восходящие лемнисковые проекции. Считается, что мультисенсорная конвергенция на нейронах вентро-базального комплекса обеспечивает точную соматическую информацию о локализации боли, ее пространственную соотнесенность. Разрушение

вентро-базального комплекса проявляется проходящим устранением "быстрой", хорошо локализованной боли и изменяет способность к распознаванию ноцицептивных стимулов.

Считается, что задняя группа ядер наряду с вентро-базальным комплексом участвует в передаче и оценке информации о локализации болевого воздействия и частично в формировании мотивационно-аффективных компонентов боли.

Клетки медиальных и интраламинарных ядер отвечают на соматические, висцеральные, слуховые, зрительные и болевые стимулы. Разно модальные ноцицептивные раздражения - пульпы зуба, А-дельта, С-кожных волокон, висцеральных афферентов, а также механические, термические и др. вызывают отчетливые, увеличивающиеся пропорционально интенсивности стимулов, ответы нейронов. Предполагается, что клетки интраламинарных ядер осуществляют оценку и раскодирование интенсивности ноцицептивных стимулов, различая их по продолжительности и паттерну разрядов.

Кора головного мозга . Традиционно считалось, что основное значение в переработке болевой информации имеет вторая соматосенсорная зона. Эти представления связаны с тем, что передняя часть зоны получает проекции из вентро-базального таламуса, а задняя- из медиальных, интраламинарных и задних групп ядер. Однако в последние годы представления об участии различных зон коры в перцепции и оценке боли существенно дополняются и пересматриваются.

Схема корковой интеграции боли в обобщенном виде может быть сведена к следующему. Процесс первичного восприятия осуществляется в большей мере соматосенсорной и фронто-орбитальной областями коры, в то время как другие области, получающие обширные проекции различных восходящих систем, участвуют в качественной ее оценке, в формировании мотивационно-аффективных и психодинамических процессов, обеспечивающих переживание боли и реализацию ответных реакций на боль.

Следует подчеркнуть, что боль в отличие от ноцицепции это не только и даже не столько сенсорная модальность, но и ощущение, эмоция и "своеобразное психическое состояние" (П.К. Анохин). Поэтому боль как психофизиологический феномен формируется на основе интеграции ноцицептивных и антиноцицептивных систем и механизмов ЦНС.

Антиноцицептивная система .

Ноцицептивная система имеет свой функциональный антипод - антиноцицептив-ную систему, которая контролирует деятельность структур ноцицептивной системы.

Антиноцицептивная система состоит из разнообразных нервных образований, относящихся к разным отделам и уровням организации ЦНС, начиная с афферентного входа в спинном мозге и кончая корой головного мозга.

Антиноцицептивная система играет существенную роль в механизмах предупреждения и ликвидации патологической боли. Включаясь в реакцию при чрезмерных ноцицептивных раздражениях, она ослабляет поток ноцицептивной стимуляции и интенсивность болевого ощущения, благодаря чему боль остается под контролем и не приобретает патологического значения. При нарушении же деятельности антиноцицептивной системы ноцицептивные раздражения даже небольшой интенсивности вызывают чрезмерную боль.

Антиноцицептивная система имеет свое морфологическое строение, физиологические и биохимические механизмы. Для нормального его функционирования необходим постоянный приток афферентной информации, при ее дефиците функция антиноцицептивной системы ослабляется.

Антиноцицептивная система представлена сегментарным и центральным уровнями контроля, а также гуморальными механизмами - опиоидной, моноаминергической (норадреналин, дофамин, серотонин), холин-ГАМК-эргическими системами.

Кратко остановимся на вышеуказанных механизмах.

Опиатные механизмы обезболивания . Впервые в 1973 г. было установлено избирательное накопление веществ, выделенных из опия, например морфина или его аналогов, в определенных структурах мозга. Эти образования получили название опиатных рецепторов. Наибольшее их количество находится в отделах мозга, передающих ноцицептивную информацию. Показано, что опиатные рецепторы связываются с веществами типа морфина или его синтетическими аналогами, а также с аналогичными веществами, образующимися в самом организме. В последние годы доказана неоднородность опиатных рецепторов. Выделены Мю-, дельта-, каппа-, сигма-опиатные рецепторы. Так, например, морфиноподобные опиаты соединяются с Мю-рецепторами, опиатные пептиды- с дельта рецепторами.

Эндогенные опиаты . Выяснено, что в крови и спинномозговой жидкости человека имеются вещества, обладающие способностью соединяться с опиатными рецепторами. Они выделены из мозга животных, имеют структуру олигопептидов и получили название энкефалинов (мет- и лей-энкефалин). Из гипоталамуса и гипофиза были получены вещества с еще большей молекулярной массой, имеющие в своем составе молекулы энкефалина и названные большими эндорфинами . Эти соединения об- разуются при расщеплении бета-липотропина, а учитывая, что он является гормоном гипофиза, можно объяснить гормональное происхождение эндогенных опиоидов. Из других тканей получены вещества с опиатными свойствами и иной химической структуры- это лей-бета-эндорфин, киторфин, динорфин и др.

Различные области ЦНС имеют неодинаковую чувствительность эндорфинам и энкефалинам. Например, гипофиз в 40 раз чувствительнее к эндорфинам, чем к энкефалинам. Опиатные рецепторы обратимо соединяются с наркотическими аналгетиками, и последние могут быть вытеснены их антагонистами с восстановлением болевой чувствительности.

Каков же механизм обезболивающего действия опиатов? Считается, что они соединяются с рецепторами (ноцицепторами) и, так как имеют большие размеры, препятствуют соединению с ними нейротрансмиттера (субстанции P). Известно также, что эндогенные опиаты обладают и пресинаптическим действием. В результате этого уменьшается выделение дофамина, ацетилхолина, субстанции P, а также простагландинов. Предполагают, что опиаты вызывают угнетение в клетке функции аденилатциклазы, уменьшение образования цАМФ и, как следствие, торможение выделения медиаторов в синаптическую щель.

Адренэргические механизмы обезболивания . Установлено, что норадреналин тормозит проведение ноцицептивных импульсов как на сегментарном (спинной мозг), так и стволовом уровнях. Этот его эффект реализуется при взаимодействии с альфа-адренорецепторами. При болевом воздействии (равно как и стрессе) резко активируется симпатоадреналовая система (САС), мобилизуются тропные гормоны, бета-липотропин и бета-эндорфин как мощные аналгетические полипептиды гипофиза, энкефалины. Попадая в спинномозговую жидкость, они влияют на нейроны таламуса, центрального серого вещества мозга, задние рога спинного мозга, тормозя образование медиатора боли- субстанции Р и обеспечивая таким образом глубокую анальгезию. Одновременно с этим усиливается образование серотонина в большом ядре шва, который также тормозит реализацию эффектов субстанции Р. Считается, что эти же механизмы обезболивания включаются при акупунктурной

стимуляции не болевых нервных волокон.

Для иллюстрации многообразия компонентов антиноцицептивной системы следует сказать, что выявлено много гормональных продуктов, оказывающих аналгетический эффект без активации опиатной системы. Это вазопрессин, ангиотензин, окситоцин, соматостатин, нейротензин. Причем, аналгетический эффект их может быть в несколько раз сильнее энкефалинов.

Есть и другие механизмы обезболивания. Доказано, что активация холинэргической системы усиливает, а блокада ее ослабляет морфийную систему. Предполагают, что связывание ацетилхолина с определенными центральными М- рецепторами стимулирует высвобождение опиоидных пептидов. Гамма-аминомасляная кислота регулирует болевую чувствительность, подавляя эмоционально-поведенческие реакции на боль. Боль, активируя ГАМК и ГАМК- эргическую передачу, обеспечивает адаптацию организма к болевому стрессу.

Острая боль . В современной литературе можно встретить несколько теорий, объясняющих происхождение боли. Наибольшее распространение получила т.н. "воротная" теория Р. Мельзака и П. Уолла. Она заключается в том, что желатинозная субстанция заднего рога, которая обеспечивает контроль поступающих в спинной мозг афферентных импульсов, выступает в роли ворот, пропускающих ноцицептивные импульсы вверх. Причем, важное значение принадлежит Т-клеткам желатинозной субстанции, где происходит пресинаптическое торможение терминалей, в этих условиях болевые импульсы не проходят дальше в центральные

мозговые структуры и боль не возникает. По современным представлениям, закрытие "ворот" связано с образование энкефалинов, которые тормозят реализацию эффектов важнейшего медиатора боли - субстанции Р. Если увеличивается приток афферентации по А-дельта и С-волокнам, активируются Т- клетки и ингибируются клетки желатинозной субстанции, что снимает ингибиторный эффект нейронов желатинозной субстанции на терминали афферентов с Т-клетками. Поэтому активность Т-клеток превышает порог возбуждения и возникает боль вследствие облегчения передачи болевых импульсов в мозг. "Входные ворота" для болевой информации в этом случае открываются.

Важным положением этой теории является учет центральных влияний на "воротный контроль" в спинном мозге, ибо такие процессы, как жизненный опыт, внимание оказывают влияние на формирование боли. ЦНС осуществляет контроль сенсорного входа за счет ретикулярных и пирамидных влияний на воротную систему. Например, Р. Мельзак приводит такой пример: женщина неожиданно обнаруживает у себя уплотнение в груди и, беспокоясь, что это рак, может вдруг почувствовать боль в груди. Боль может усиливаться и даже распространяться на плечо и руку. Если врачу удастся убедить ее, что это уплотнение не представляет опасности, может наступить моментальное прекращение боли.

Формирование боли обязательно сопровождается активацией антиноцицептивной системы. Что же влияет на уменьшение или исчезновение боли? Это прежде всего информация, которая поступает по толстым волокнам и на уровне задних рогов спинного мозга, усиливает образование энкефалинов (о их роли мы говорили выше). На уровне ствола мозга включается нисходящая аналгетическая система (ядра шва), которая посредством серотонин-, норадреналин-, энкефалинэргических механизмов оказывает нисходящие влияния на задние рога и таким образом на болевую информацию. За счет возбуждения САС также тормозится передача болевой информации, и это является важнейшим фактором усиления образования эндогенных опиатов. Наконец, за счет возбуждения гипоталамуса и гипофиза активируется образование энкефалинов и эндорфинов, а также усиливается прямое влияние нейронов гипоталамуса на задние рога спинного мозга.

Хроническая боль .При длительном повреждении тканей (воспаление, переломы, опухоли и т.д.) формирование боли происходит так же, как и при острой, только постоянная болевая информация, вызывая резкую активацию гипоталамуса и гипофиза, САС, лимбических образований мозга, сопровождается более сложными и продолжительными изменениями со стороны психики, поведения, эмоциональных проявлений, отношения к окружающему миру (уход в боль).

По теории Г.Н. Крыжановского хроническая боль возникает в результате подавления тормозных механизмов, особенно на уровне задних рогов спинного мозга и таламуса. При этом в мозге формируется генератор возбуждения. Под влиянием экзогенных и эндогенных факторов в определенных структурах ЦНС вследствие недостаточности тормозных механизмов возникают генераторы патологически усиленного возбуждения (ГПУВ), активирующие положительные связи, вызывая эпилептизацию нейронов одной группы и повышение возбудимости других нейронов.

Фантомные боли (боли в ампутированных конечностях) объясняются в основном дефицитом афферентной информации и в результате этого тормозное влияние Т-клеток на уровне рогов спинного мозга снимается, а любая афферентация из области заднего рога воспринимается как болевая.

Отраженная боль. Ее возникновение связано с тем, что афференты внутренних органов и кожи связаны с одними и теми же нейронами заднего рога спинного мозга, которые дают начало спинно-таламическому тракту. Поэтому афферентация, идущая от внутренних органов (при их поражении), повышает возбудимость и соответствующего дерматома, что воспринимается как боль в этом участке кожи.

Основные различия проявлений острой и хронической боли .

1.При хронической боли автономные рефлекторные реакции постепенно уменьшаются и в конечном счете исчезают, а превалируют вегетативные расстройства.

2.При хронической боли, как правило, не бывает самопроизвольного купирования боли, для ее нивелирования требуется вмешательство врача.

3.Если острая боль выполняет защитную функцию, то хроническая вызывает более сложные и длительные расстройства в организме и приводит (J.Bonica,1985) к прогрессивному "изнашиванию", вызванному нарушением сна и аппетита, снижением физической активности, часто избыточным лечением.

4.Кроме страха, характерного для острой и хронической боли, для последней свойственны также депрессия, ипохондрия, безнадежность, отчаяние, устранение больных от социально-полезной деятельности (вплоть до суицидальных идей).

Нарушения функций организма при боли . Расстройства функций Н.С. при интенсивной боли проявляются нарушением сна, сосредоточенности, полового влечения, повышенной раздражительностью. При хронической интенсивной боли резко уменьшается двигательная активность человека. Больной находится в состоянии депрессии, повышается болевая чувствительность в результате снижения болевого порога.

Небольшая боль учащает, а очень сильная замедляет дыхание вплоть до его остановки. Может увеличиться частота пульса, системное АД, развиться спазм периферических сосудов. Кожные покровы бледнеют, а если боль непродолжительна, спазм сосудов сменяется их расширением, что проявляется покраснением кожи. Изменяется секреторная и двигательная функция ЖКТ. За счет возбуждения САС сначала выделяется густая слюна (в целом слюноотделение увеличивается), а затем за счет активации парасимпатического отдела нервной системы- жидкая. В последующем уменьшается секреция слюны, желудочного и панкреатического сока, замедляется моторика желудка и кишечника, возможна рефлекторная олиго- и анурия. При очень резкой боли появляется угроза развития шока.

Биохимические изменения проявляются в виде повышения потребления кислорода, распада гликогена, гипергликемии, гиперлипидемии.

Хронические боли сопровождаются сильными вегетативными реакциями. Например, кардиалгии и головные боли сочетаются с подъемом АД, температуры тела, тахикардией, диспепсией, полиурией, повышенным потоотделением, тремором, жаждой, головокружением.

Постоянным компонентом реакции на болевое воздействие является гиперкоагуляция крови. Доказано повышение свертываемости крови у больных на высоте приступа болей, во время оперативных вмешательств, в раннем послеоперационном периоде. В механизме гиперкоагуляции при боли основное значение имеют ускорение тромбиногенеза. Вы знаете, что внешний механизм активации свертывания крови инициируется тканевым тромбопластином, а при боли (стрессе) наблюдается выброс тромбопластина из интактной сосудистой стенки. Кроме того, при болевом синдроме уменьшается содержание в крови физиологических ингибиторов свертывания крови: антитромбина, гепарина. Еще одним характерным изменением при боли в системе гемостаза является перераспределительный тромбоцитоз (поступление в кровь зрелых тромбоцитов из депо- легких).