Относительные показатели вариации




Одним из основных статистических показателей последовательности чисел является коэффициент вариации. Для его нахождения производятся довольно сложные расчеты. Инструменты Microsoft Excel позволяют значительно облегчить их для пользователя.

Этот показатель представляет собой отношение стандартного отклонения к среднему арифметическому. Полученный результат выражается в процентах.

В Экселе не существует отдельно функции для вычисления этого показателя, но имеются формулы для расчета стандартного отклонения и среднего арифметического ряда чисел, а именно они используются для нахождения коэффициента вариации.

Шаг 1: расчет стандартного отклонения

Стандартное отклонение, или, как его называют по-другому, среднеквадратичное отклонение, представляет собой квадратный корень из . Для расчета стандартного отклонения используется функция СТАНДОТКЛОН . Начиная с версии Excel 2010 она разделена, в зависимости от того, по генеральной совокупности происходит вычисление или по выборке, на два отдельных варианта: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В .

Синтаксис данных функций выглядит соответствующим образом:

СТАНДОТКЛОН(Число1;Число2;…)
= СТАНДОТКЛОН.Г(Число1;Число2;…)
= СТАНДОТКЛОН.В(Число1;Число2;…)


Шаг 2: расчет среднего арифметического

Среднее арифметическое является отношением общей суммы всех значений числового ряда к их количеству. Для расчета этого показателя тоже существует отдельная функция – СРЗНАЧ . Вычислим её значение на конкретном примере.


Шаг 3: нахождение коэффициента вариации

Теперь у нас имеются все необходимые данные для того, чтобы непосредственно рассчитать сам коэффициент вариации.


Таким образом мы произвели вычисление коэффициента вариации, ссылаясь на ячейки, в которых уже были рассчитаны стандартное отклонение и среднее арифметическое. Но можно поступить и несколько по-иному, не рассчитывая отдельно данные значения.


Существует условное разграничение. Считается, что если показатель коэффициента вариации менее 33%, то совокупность чисел однородная. В обратном случае её принято характеризовать, как неоднородную.

Как видим, программа Эксель позволяет значительно упростить расчет такого сложного статистического вычисления, как поиск коэффициента вариации. К сожалению, в приложении пока не существует функции, которая высчитывала бы этот показатель в одно действие, но при помощи операторов СТАНДОТКЛОН и СРЗНАЧ эта задача очень упрощается. Таким образом, в Excel её может выполнить даже человек, который не имеет высокого уровня знаний связанных со статистическими закономерностями.

представляет собой отношение среднего квадратического отклонения к среднему ожидаемому значению и показывает степень отклонения получаемых результатов.
V = -* 100%, Х
гдеV - коэффициент вариации, %;
G- среднее квадратическое отклонение;
X - среднее ожидаемое значение.
Так как коэффициент вариации - величина относительная, то на его размер не оказывают влияние абсолютные значения изучаемого показателя. С помощью коэффициента вариации можно сравнивать даже колебле-
мость признаков, выраженных в разных единицах измерения. Коэффициент вариации изменяется в пределах от 0 до 100%, при этом, значение коэффициента прямо пропорционально силе колеблемости. Установлена следующая качественная оценка различных коэффициентов вариации:
до 10% - слабая колеблемость;
10-25% - умеренная колеблемость;
свыше 25% - высокая колеблемость.
В качестве варианта может быть использован несколько упрощенный метод определения степени риска. Так как количественно риск характеризуется оценкой вероятной величины максимального и минимального результатов, то «чем больше диапазон между этими величинами при равной их вероятности, тем выше степень риска»1 . Тогда для расчета дисперсии можно использовать следующую формулу:
&2 = PMAX * (max - XУ + Pmin * (X - Xmin У,
2
гдеа2 - дисперсия;
Pmax - вероятность получения максимального результата;
Xmax - максимальная величина результата;
X - средняя ожидаемая величина результата;
Pmjn - вероятность получения минимального результата;
Xmjn - минимальная величина результата.
Полученные показатели следует учитывать в комплексе, так как использование отдельного критерия оценки риска не может служить основой принятия решения в пользу какой-либо стратегии.
В практике встречаются ситуации, когда отсутствует информация о вероятностях состояний среды, т.е. необходима оценка риска в условиях полной неопределенности - (2). В таких случаях для определения наилучших решений используются следующие критерии: максимакса, Вальда, Сэвиджа, Гурвица. Применение каждого из перечисленных критериев рассмотрим на примере матрицы выигрышей А (1) и матрицы рисков R (2).

Еще по теме Коэффициент вариации:

  1. ВАРИАЦИИ В СТРУКТУРЕ И СТРУКТУРНО-ОБУСЛОВЛЕННЫЕ ВАРИАЦИИ
  2. 1.2.10. Определение. Если существует производная функциив точке, то она называется первой вариацией функционала в точке при данной вариации аргумента, и обозначается:

В статистике под вариацией величин того или иного показателя в совокупности понимается различие его уровней у тех или иных единиц анализируемого состава в один и тот же период либо момент исследования. В том случае, когда выполняется анализ отличий величин показателя у одного и того же предмета, у одной и той же единицы совокупности в различные периоды или моменты времени, то это будет уже именоваться не вариацией, а колебаниями или изменениями в течении определенного периода.

Размещено на www.сайт

Для изучения таких колебаний применяются свои методы анализа, имеющие отличия от методов анализа вариации. Объективным фактором возникновения явления вариации выступает различие в условиях деятельности тех или иных исследуемых объектов совокупности. Например, на работу торгового предприятия оказывает влияние уровень конкуренции, налогов, применение передовых технологий в своей деятельности, состояние оборудования и т.п. Колеблемость характерна практически для всех природный явлений и граней общественной жизни. Однако имеются и неварьируемые показатели, которые образуются в случае фиксации тех или иных явлений в правовых актах. Например, не может варьировать количество генеральных директоров у предприятия, согласно законодательству он должен быть один. Такие неварьирующие объекты, как правило, не являются предметом или объектом статистического исследования. В нашей жизни колеблемость признаков выступает важным фактором, оказывающим на нее влияние. Например, изменение гаммы типоразмеров деталей позволяет сформировать оптимальный ассортимент, но при этом высокий уровень вариации в рамках одного типоразмера говорит о высоком уровне брака и необходимости внедрения соответствующих мероприятий. Значительный уровень вариации товарооборота или цен может свидетельствовать о монополизации рынка или о плохом управлении запасами и требовать соответствующих мер и т.п. Сказанное позволяет утверждать, что в общественной жизни, которая с точки зрения статистики выступает массовой совокупностью, объективно присутствует изменчивость различных признаков и элементов, что диктует актуальность исследования данного явления с применением специальных показателей для формирования оптимальных методов управления им. Коэффициент вариации является одним из таких показателей. При этом он относится к группе относительных показателей вариации. Рассматриваемый коэффициент - это относительный показатель, характеризующий отношение среднего квадратического отклонения к средней величине изучаемого признака, и выражается, как правило, в процентах. В указанном критерии отражается соотношение уровня влияния факторов, которые приводят к возникновению колеблемости, и общих условий всех элементов совокупности, которые порождают типическую величину признака - его среднее значение. Коэффициент вариации применяется для изучения степени изменчивости различных признаков одной и той же совокупности и изменчивости в различных совокупностях, которые обладают разными значениями средних величин.

Как доказать, что закономерность, полученная при изучении экспериментальных данных, не является результатом совпадения или ошибки экспериментатора, что она достоверна? С таким вопросом сталкиваются начинающие исследователи.Описательная статистика предоставляет инструменты для решения этих задач. Она имеет два больших раздела – описание данных и их сопоставление в группах или в ряду между собой.

Показатели описательной статистики

Существует несколько показателей, которые использует описательная статистика.

Итак, представим, что перед нами стоит задача описать рост всех студентов в группе из десяти человек. Вооружившись линейкой и проведя измерения, мы получаем маленький ряд из десяти чисел (рост в сантиметрах):

168, 171, 175, 177, 179, 187, 174, 176, 179, 169.

Если внимательно посмотреть на этот линейный ряд, то можно обнаружить несколько закономерностей:

  • Ширина интервала, куда попадает рост всех студентов, – 18 см.
  • В распределении рост наиболее близок к середине этого интервала.
  • Встречаются и исключения, которые наиболее близко расположены к верхней или нижней границе интервала.

Совершенно очевидно, что для выполнения задачи по описанию роста студентов в группе нет необходимости приводить все значения, которые будут измеряться. Для этой цели достаточно привести всего два, которые в статистике называются параметрами распределения. Это среднеарифметическое и стандартное отклонение от среднего арифметического. Если обратиться к росту студентов, то формула будет выглядеть следующим образом:

Среднеарифметическое значение роста студентов = (Сумма всех значений роста студентов) / (Число студентов, участвовавших в измерении)

Если свести все к строгим математическим терминам, то определение среднего арифметического (обозначается греческой буквой – μ («мю»)) будет звучать так:

Среднее арифметическое – это отношение суммы всех значений одного признака для всех членов совокупности (X) к числу всех членов совокупности (N).

Если применить эту формулу к нашим измерениям, то получаем, что μ для роста студентов в группе 175,5 см.

Если присмотреться к росту студентов, который мы измерили в предыдущем примере, то понятно, что рост каждого на сколько-то отличается от вычисленного среднего (175,5 см). Для полноты описания нужно понять, какой является разница между средним ростом каждого студента и средним значением.

На первом этапе вычислим параметр дисперсии. Дисперсия в статистике (обозначается σ 2 (сигма в квадрате)) – это отношение суммы квадратов разности среднего арифметического (μ) и значения члена ряда (Х) к числу всех членов совокупности (N). В виде формулы это рассчитывается понятнее:

Значения, которые мы получим в результате вычислений по этой формуле, мы будем представлять в виде квадрата величины (в нашем случае – квадратные сантиметры). Характеризовать рост в сантиметрах квадратными сантиметрами, согласитесь, нелепо. Поэтому мы можем исправить, точнее, упростить это выражение и получим среднеквадратичное отклонение формулу и расчёт, пример:

Таким образом, мы получили величину стандартного отклонения (или среднего квадратичного отклонения) – квадратный корень из дисперсии. С единицами измерения тоже теперь все в порядке, можем посчитать стандартное отклонение для группы:

Получается, что наша группа студентов исчисляется по росту таким образом: 175,50±5,25 см.

Среднее квадратичное отклонение хорошо работает с рядами, в которых разброс значений не очень велик (это хорошо прослеживалось на примере роста, где интервал был всего 18 см). Если бы ряд наших измерений был значительнее, а варьирование роста было сильнее, то стандартное отклонение стало непоказательным и нам потребовался бы критерий, который может отразить разброс в относительных единицах (т. е. в процентах, относительно средней величины).

Для этих целей предусмотрены абсолютные и относительные показатели вариации в статистике, характеризующие вариационные масштабы:

  • Размах вариации.

Квадратический коэффициент вариации (обозначается как Vσ) – это отношение среднеквадратичного отклонения к среднеарифметическому значению, выраженное в процентах.

Для нашего примера со студентами, определить Vσ несложно - он будет равен 3,18%. Основная закономерность – чем больше будет изменяться значение коэффициента, тем больше разброс вокруг среднего значения и тем менее однородна выборка.

Преимущество коэффициента вариации в том, что он показывает однородность значений (асимметрия) в ряду наших измерений, кроме того, на него не оказывают влияния масштаб и единицы измерения. Эти факторы делают коэффициент вариации особенно популярным в биомедицинских исследованиях. Будет считаться , что эксцесс значения Vσ =33% отделяет однородные выборки от неоднородных.

Если найти в ряду значений роста (первый пример) максимальное и минимальное значения, то получим размах вариации (обозначается как R, иногда ещё называется колеблемостью). В нашем примере – это значение будет равно 18 см. Эта характеристика используется для расчёта коэффициента осцилляции:

Коэффициент осцилляции – показывает как размах вариации будет относиться к среднему арифметическому ряда в процентном отношении.

Расчёты в Microsoft Ecxel 2016

* — в таблице указан диапазон A1:A10 для примера, при расчётах нужно указать требуемый диапазон.

Итак, обобщим информацию :

  1. Среднее арифметическое – это значение, позволяющее найти среднее значение показателя в ряду данных.
  2. Дисперсия – это среднее значение отклонений возведенное в квадрат.
  3. Стандартное отклонение (среднеквадратичное отклонение) – это корень квадратный из дисперсии, для приведения единиц измерения к одинаковым со среднеарифметическим.
  4. Коэффициент вариации – значение отклонений от среднего, выраженное в относительных величинах (%).

Отдельно следует отметить, что все приведённые в статье показатели, как правило, не имеют собственного смысла и используются для того, чтобы составлять более сложную схему анализа данных. Исключение из этого правила — коэффициент вариации, который является мерой однородности данных.

Показатели вариации. При изучении варьирующего признака у единиц совокупности нельзя ограничиваться лишь расчетом средней величины из отдельных вариантов, так как одна и та же средняя может относиться далеко не к одинаковым по составу совокупностям.

Вариацией признака называется различие индивидуальных значений признака внутри изучаемой совокупности.

Термин «вариация» произошел от латинского variatio – изменение, колеблемость, различие. Однако не всякие различия принято называть вариацией.

Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Колеблемость отдельных значений характеризуют показатели вариации. Чем больше вариация, тем дальше в среднем отдельные значения лежат друг от друга.

Различают вариацию признака в абсолютных и относительных величинах.

К абсолютным показателям относятся: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия. Все абсолютные показатели имеют ту же размерность, что и изучаемые величины.

К относительным показателям относятся коэффициенты осцилляции, линейного отклонения и вариации.

Показатели абсолютные. Рассчитаем абсолютные показатели, характеризующие вариацию признака.

Размах вариации, представляет собой разность между максимальным и минимальным значением признака.

R = Xmax – Xmin.

Показатель размаха вариации не всегда применим, так как он учитывает только крайние значения признака, которые могут сильно отличаться от всех других единиц.

Более точно можно определить вариацию в ряду при помощи показателей, учитывающих отклонения всех вариантов от средней арифметической.

Таких показателей в статистике два: среднее линейное и среднее квадратическое отклонение.

Среднее линейное отклонение (L) представляет собой среднее арифметическое из абсолютных значений отклонений отдельных вариантов от средней.

Практическое использование среднего линейного отклонения заключается в следующем, с помощью этого показателя анализируется состав работающих, ритмичность производства, равномерность поставок материалов.

Недостаток этого показателя заключается в том, что он усложняет расчеты вероятного типа, затрудняет применение методов математической статистики.

Среднее квадратическое отклонение () является наиболее распространенным и общепринятым показателем вариации. Оно несколько больше среднего линейного отклонения. Для умеренно асимметричных распределений установлено следующее соотношение между ними

Для его исчисления каждое отклонение от средней возводится в квадрат, все квадраты суммируются (с учетом весом), после чего сумма квадратов делится на число членов ряда и из частного извлекается корень квадратный.

Все эти действия выражает следующая формула

т.е. среднее квадратическое отклонение представляет собой корень квадратный из средней арифметической квадратов отклонений от средней.

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше σ, тем лучше среднее арифметическое отражает собой всю представляемую совокупность.

Средняя арифметическая из квадратов отклонений вариантов значений признака от средней величины носит название дисперсии (), которая рассчитывается по формулам

Отличительной особенностью данного показатели является то, что при возведении в квадрат () удельный вес малых отклонений уменьшается, а больших увеличивается в общей сумме отклонений.

Дисперсия обладает рядом свойств, некоторые из них позволяют упростить её вычисление:

1. Дисперсия постоянной величины равна 0.

Если , то и .

Тогда .

2. Если все варианты значений признака (x) уменьшить на одно и то же число, то дисперсия не уменьшится.

Пусть , но тогда в соответствии со свойствами средней арифметической и .

Дисперсия в новом ряду будет равна

Т.е. дисперсия в ряду равна дисперсии первоначального ряда .

3. Если все варианты значений признака уменьшить в одно и то же число раз (k раз), то дисперсия уменьшится в k2 раз.

Пусть , тогда и .

Дисперсия же нового ряда будет равна

4. Дисперсия, рассчитанная по отношению к средней арифметической, является минимальной. Средний квадрат отклонений, рассчитанный относительно произвольного числа , больше дисперсии, рассчитанной по отношению к средней арифметической, на квадрат разности между средней арифметической и числом , т.е. . Дисперсия от средней имеет свойство минимальности, т.е. она всегда меньше дисперсий, исчисленных от любых других величин. В этом случае, когда приравниваем к 0 и, следовательно, не вычисляем отклонения, формула принимает такой вид:

Выше был рассмотрен расчет показателей вариации для количественных признаков, но в экономических расчетах может ставиться задача оценки вариации качественных признаков. Например, при изучении качества изготовленной продукции, продукцию можно разделить на качественную и бракованную.

В таком случае речь идет об альтернативных признаках.

Альтернативными признаками называются такие, которыми одни единицы совокупности обладают, а другие нет. Например, наличие производственного стажа у абитуриентов, ученая степень у преподавателей ВУЗов и т.д. Наличие признака у единиц совокупности условно обозначаем через 1, а отсутствие – 0. Тогда, если долю единиц, обладающих признаком (в общей численности единиц совокупности), обозначить через р, а долю единиц, не обладающих признаком, через q, дисперсию альтернативного признака можно рассчитать по общему правилу. При этом p + q = 1 и, значит, q = 1– p.

Сначала рассчитываем среднее значение альтернативного признака:

Рассчитаем среднее значение альтернативного признака

,

т.е. среднее значение альтернативного признака равно доле единиц, обладающих данным признаком.

Дисперсия же альтернативного признака будет равна:

Таким образом, дисперсия альтернативного признака равняется произведению доли единиц, обладающих данным признаком, на долю единиц, не обладающих данным признаком.

А среднее квадратическое отклонение будет равно =.

Показатели относительные. Для целей сравнения колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях представляют интерес показатели вариации, выраженные в относительных величинах. Базой для сравнения служит средняя арифметическая. Эти показатели вычисляются как отношение размаха вариации, среднего линейного отклонения или среднего квадратического отклонения к средней арифметической или медиане.

Чаще всего они выражаются в процентах и определяют не только сравнительную оценку вариации, но и дают характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%. Различают следующие относительные показатели вариации:

1. Коэффициент осцилляции отражает относительную колеблемость крайних значений признака вокруг средней.

3. Коэффициент вариации оценивает типичность средних величин.

.

Чем меньше , тем однороднее совокупность по изучаемому признаку и типичнее средняя. Если ≤33%, то распределение близко к нормальному, а совокупность считается однородной. Из приведенного примера вторая совокупность однородна.

Виды дисперсий и правило сложения дисперсий. Наряду с изучением вариации признака по всей совокупности в целом часто бывает необходимо проследить количественные изменения признака по группам, на которые разделяется совокупность, а также и между группами. Такое изучение вариации достигается посредством вычисления и анализа различных видов дисперсии.

При этом можно определить три показателя колеблемости признака в совокупности:

1. Общую вариацию совокупности, которая является результатом действия всех причин. Эта вариация может быть измерена общей дисперсией (), характеризующей отклонения индивидуальных значений признака совокупности от общей средней

.

2. Вариацию групповых средних, выражающих отклонения групповых средних от общей средней и отражающих влияние того фактора, по которому произведена группировка. Эта вариация может быть измерена так называемой межгрупповой дисперсией (δ2)

,

где - групповые средние, а -общая средняя для всей совокупности, и - численность отдельных групп.

3. Остаточную (или внутригрупповую) вариацию, которая выражается в отклонении отдельных значений признака в каждой группе от их групповой средней и, следовательно, отражает влияние всех прочих факторов кроме положенного в основу группировки. Поскольку вариацию в каждой группе отражает групповая дисперсия

,

то для всей совокупности остаточную вариацию будет отражать средняя из групповых дисперсий. Эту дисперсию называют средней из внутригрупповых дисперсий () и рассчитывается она по формуле

Это равенство, имеющее строго математическое доказательство, известно, как правило сложения дисперсий.

Правило сложения дисперсий позволяет находить общую дисперсию по её компонентам, когда индивидуальные значения признака неизвестны, а в распоряжении имеются только групповые показатели.

Коэффициент детерминации. Правило сложения дисперсии позволяет выявить зависимость результатов от определенных факторов при помощи коэффициента детерминации.

Оно характеризует влияние признака, положенного в основание группировки, на вариацию результативного признака. Корреляционное отношение изменяется в пределах от 0 до 1. Если , то группировочный признак не оказывает влияния на результативный. Если , то результативный признак изменяется только в зависимости от признака, положенного в основание группировки, а влияние прочих факторных признаков равно нулю.

Показатели асимметрии и эксцесса. В области экономических явлений строго симметричные ряды встречаются крайне редко, чаще приходится иметь дело с асимметричными рядами.

В статистике для характеристики асимметрии пользуются несколькими показателями. Если учесть, что в симметричном ряду средняя арифметическая совпадает по значению с модой и медианой, то наиболее простым показателем асимметрии () будет разность между средней арифметической и модой, т.е.

Величину эксцесса рассчитывают по формуле

Если >0, то эксцесс считают положительным (распределение островершинно), если <0, то эксцесс считается отрицательным (распределение низковершинно).