Нейроны. Общая характеристика. Строение. Функции. Нейросекреторные нейроны. Структурно-функциональная характеристика нервных клеток




Функции нейрона

фоновой (без стимуляции) и вызванной (после стимула) активностью.

Спинномозговые нервы

Спинномозговых нервов у человека 31 пара: 8 - шейных, 12 - грудных, 5 - поясничных, 5 - крестцовых и 1 пара – копчиковых. Формируются они слиянием двух корешков: заднего - чувствительного и переднего - двигательного. Оба корешка соединяются в единый ствол, выходящий из позвоночного канала через межпозвоночное отверстие. В области отверстия лежит спинальный ганглий, который содержит тела чувствительных нейронов. Короткие отростки поступают в задние рога, длинные заканчиваются рецепторами, расположенными в коже, подкожной клетчатке, мышцах, сухожилиях, связках, суставах. Передние корешки содержат двигательные волокна от мотонейронов передних рогов.

Нервные сплетения

Существуют шейное, плечевое, поясничное и крестцовое сплетения, образованные ветвями спинномозговых нервов.

Шейное сплетение образовано передними ветвями 4 верхних шейных нервов, лежит на глубоких мышцах шеи, ветви делятся на двигательные, смешанные и чувствительные. Двигательные ветви иннервируют глубокие мышцы шеи, мышцы шеи, расположенные ниже подъязычной кости, трапецевидные и грудино-ключично-сосцевидные мышцы.

Смешанной ветвью является диафрагмальный нерв. Двигательные волокна его иннервируют диафрагму, чувствительные – плевру и перикард. Чувствительные ветви иннервируют кожу затылка, уха, шеи, кожу под ключицей и над дельтовидной мышцей.



Плечевое сплетение образовано передними ветвями 4 нижних шейных нервов и передней ветвью первого грудного нерва. Иннервирует мышцы груди, плечевого пояса и спины. Подключичный отдел плечевого сплетения образует 3 пучка – медиальный, латеральный и задний. Нервы, выходящие из этих пучков, иннервируют мышцы и кожу верхней конечности.

Передние ветви грудных нервов (1-11) сплетений не образуют, идут как межреберные нервы. Чувствительные волокна иннервируют кожу груди и живота, двигательные – межреберные мышцы, некоторые мышцы груди и живота.

Поясничное сплетение образовано передними ветвями 12 грудного, 1-4 ветвями поясничных нервов. Ветви поясничного сплетения иннервируют мышцы живота, поясницы, мышцы передней поверхности бедра, мышцы медиальной группы бедра. Чувствительные волокна иннервируют кожу ниже паховой связки, промежности, кожу бедра.

Крестцовое сплетение образовано ветвями 4 и 5 поясничных нервов. Двигательные ветви иннервируют мышцы промежности, ягодицы, промежности; чувствительные – кожу промежности и наружных половых органов. Длинные ветви крестцового сплетения образуют седалищный нерв – самый крупный нерв тела, иннервирующий мышцы нижней конечности.

3. Классификация нервных волокон.

По функциональным свойствам (строению, диаметру волокна, электровозбудимости, скорости развития потенциала действия, длительности различных фаз потенциала действия, по скорости проведения возбуждения) Эрлангер и Гассер разделили нервные волокна на волокна групп А, В и С. Группа А неоднородна, волокна типа А в свою очередь делятся на подтипы: А-альфа, А-бета, А-гамма, А-дельта.

Волокна типа А покрыты миелиновой оболочкой. Наиболее толстые из них А-альфа имеют диаметр 12-22мкм и высокую скорость проведения возбуждения - 70-120 м/с. Эти волокна проводят возбуждение от моторных нервных центров спинного мозга к скелетным мышцам (двигательные волокна) и от проприорецепторов мышц к соответствующим нервным центрам.



Три другие группы волокон типа А (бета, гамма, дельта) имеют меньший диаметр от 8 до 1 мкм и меньшую скорость проведения возбуждения от 5 до 70 м/с. Волокна этих групп относятся преимущественно к чувствительным, проводящим возбуждение от различных рецепторов (тактильных, температурных, некоторых болевых рецепторов внутренних органов) в ЦНС. Исключение составляют лишь гамма-волокна, значительная часть которых проводит возбуждение от клеток спинного мозга к интрафузальным мышечным волокнам.

К волокнам типа В относятся миелинизированные преганглионарные волокна вегетативной нервной системы. Их диаметр - 1- мкм, а скорость проведения возбуждения - 3-18 м/с.

К волокнам типа С относятся безмиелиновые нервные волокна малого диаметра - 0,5-2,0 мкм. Скорость проведения возбуждения в этих волокнах не более 3 м/с (0,5-3,0 м/с) . Большинство волокон типа С - это постганглионарные волокна симпатического отдела вегетативной нервной системы, а также нервные волокна, которые проводят возбуждение от болевых рецепторов, некоторых терморецепторов и рецепторов давления.

4. Законы проведения возбуждения по нервам.

Нервное волокно обладает следующими физиологическими свойствами: возбудимостью, проводимостью, лабильностью.

Проведение возбуждения по нервным волокнам осуществляется по определенным законам.

Закон двустороннего проведения возбуждения по нервному волокну. Нервы обладают двусторонней проводимостью, т.е. возбуждение может распространяться в любом направлении от возбужденного участка (места его возникновения), т. е., центростремительно и центробежно. Это можно доказать, если на нервное волокно наложить регистрирующие электроды на некотором расстоянии друг от друга, а между ними нанести раздражение. Возбуждение зафиксируют электроды по обе стороны от места раздражения. Естественным направлением распространения возбуждения является: в афферентных проводниках - от рецептора к клетке, в эфферентных - от клетки к рабочему органу.

Закон анатомической и физиологической целостности нервного волокна. Проведение возбуждения по нервному волокну возможно лишь в том случае, если сохранена его анатомическая и физиологическая целостность, т.е. передача возбуждения возможна только по структурно и функционально не измененному, неповрежденному нерву (законы анатомической и физиологической целостности). Различные факторы, воздействующие на нервное волокно (наркотические вещества, охлаждение, перевязка и т. д.) приводят к нарушению физиологической целостности, т. е., к нарушению механизмов передачи возбуждения. Несмотря на сохранение его анатомической целостности проведение возбуждения в таких условиях нарушается.

Закон изолированного проведения возбуждения по нервному волокну. В составе нерва возбуждение по нервному волокну распространяется изолированно, без перехода на другие волокна, имеющиеся в составе нерва. Изолированное проведение возбуждения обусловлено тем, что сопротивление жидкости, заполняющей межклеточные пространства, значительно ниже сопротивления мембраны нервных волокон. Поэтому основная часть тока, возникающего между возбужденным и невозбужденным участками нервного волокна, проходит по межклеточным щелям, не действуя на рядом расположенные нервные волокна. Изолированное проведение возбуждения имеет важное значение. Нерв содержит большое количество нервных волокон (чувствительных, двигательных, вегетативных), которые иннервируют различные по структуре и функциям эффекторы (клетки; ткани, органы). Если бы возбуждение внутри нерва распространялось с одного нервноговолокна на другое, то нормальное функционирование органов было бы невозможно.

Возбуждение (потенциал действия) распространяется по нервному волокну без затухания.

Периферический нерв практически неутомляем.

Механизм проведения возбуждения по нерву.

Возбуждение (потенциал действия - ПД) распространяется в аксонах, телах нервных клеток, а также иногда в дендритах без снижения амплитуды и без снижения скорости (бездекрементно). Механизм распространения возбуждения у различных нервных волокон неодинаков. При распространении возбуждения по безмиелиновому нервному волокну механизм проведения включает два компонента: раздражающее действие катэлектротона, порождаемое локальным ПД, на соседний участок электровозбудимой мембраны и возникновение ПД в этом участке мембраны. Локальная деполяризация мембраны нарушает электрическую стабильность мембраны, различная величина поляризации мембраны в смежных ее участках порождает электродвижущую силу и местный электрический ток, силовые линии которого замыкаются через ионные каналы. Активация ионного канала повышает натриевую проводимость, после электротонического достижения критического уровня деполяризации (КУД) в новом участке мембраны генерируется ПД. В свою очередь этот потенциал действия вызывает местные токи, а они в новом участке мембраны генерируют потенциал действия. На всем протяжении нервного волокна происходит процесс новой генерации потенциала действия мембраны волокна. Данный тип передачи возбуждения называется непрерывным.

Скорость распространения возбуждения пропорциональна толщине волокна и обратно пропорциональна сопротивлению среды. Проведение возбуждения зависит от соотношения амплитуды ПД и величины порогового потенциала. Этот показатель называется гарантийный фактор (ГФ) и равен 5 - 7, т.е. ПД должен быть выше порогового потенциала в 5- 7 раз. Если ГФ = 1 проведение ненадёжно, если ГФ < 1 проведения нет. Протяженность возбуждённого участка нерва L является произведение времени (длительности) ПД и скорости распространения ПД. Например, в гигантском аксоне кальмара L= 1 мс ´ 25 мм/мс = 25 мм.

Наличие у миелиновых волокон оболочки, обладающей высоким электрическим сопротивлением, а также участков волокна, лишенных оболочки - перехватов Ранвье создают условия для качественно нового типа проведения возбуждения по миелиновым нервным волокнам. В миелинизированном волокне токи проводятся только в зонах, не покрытых миелином, - перехватах Ранвье, в этих участках и генерируется очередной ПД. Перехваты длиной 1 мкм расположены через 1000 - 2000 мкм, характеризуются высокой плотностью ионных каналов, высокой электропроводностью и низким сопротивлением. Распространение ПД в миэлинизированных нервных волокнах осуществляется сальтаторно - скачкообразно от перехвата к перехвату, т.е. возбуждение (ПД) как бы «перепрыгивает» через участки нервного волокна, покрытые миелином, от одного перехвата к другому. Скорость такого способа проведения возбуждения значительно выше, и он более экономичен по сравнению с непрерывным проведением возбуждения, поскольку в состояние активности вовлекается не вся мембрана, а только ее небольшие участки в области перехватов, благодаря чему уменьшается нагрузка на ионный насос.

Схема распространения возбуждения в безмиелиновых и миелиновых нервных волокнах.

5. Парабиоз.

Нервные волокна обладают лабильностью - способностью воспроизводить определенное количество циклов возбуждения в единицу времени в соответствии с ритмом действующих раздражителей. Мерой лабильности является максимальное количество циклов возбуждения, которое способно воспроизвести нервное волокно в единицу времени без трансформации ритма раздражения. Лабильность определяется длительностью пика потенциала действия, т. е. фазой абсолютной рефрактерности. Так как длительность абсолютной рефрактерности у спайкового потенциала нервного волокна самая короткая, то лабильность его самая высокая. Нервное волокно способно воспроизвести до 1000 импульсов в секунду.

Явление парабиоза открыто русским физиологом Н.Е.Введенским в 1901 г. при изучении возбудимости нервно-мышечного препарата. Состояние парабиоза могут вызвать различные воздействия – сверхчастые, сверхсильные стимулы, яды, лекарства и другие воздействия как в норме, так и при патологии. Н. Е. Введенский обнаружил, что если участок нерва подвергнуть альтерации (т. е. воздействию повреждающего агента), то лабильность такого участка резко снижается. Восстановление исходного состояния нервного волокна после каждого потенциала действия в поврежденном участке происходит медленно. При действии на этот участок частых раздражителей он не в состоянии воспроизвести заданный ритм раздражения, и поэтому проведение импульсов блокируется. Такое состояние пониженной лабильности и было названо Н. Е. Введенским парабиозом.Состояние парабиоза возбудимой ткани возникает под влиянием сильных раздражителей и характеризуется фазными нарушениями проводимости и возбудимости. Выделяют 3 фазы: первичную, фазу наибольшей активности (оптимум) и фазу сниженной активности (пессимум). Третья фаза объединяет 3 последовательно сменяющие друг друга стадии: уравнительную (провизорная, трансформирующая – по Н.Е.Введенскому), парадоксальную и тормозную.

Первая фаза (примум) характеризуется снижением возбудимости и повышением лабильности. Во вторую фазу (оптимум) возбудимость достигает максимума, лабильность начинает снижаться. В третью фазу (пессимум) возбудимость и лабильность снижаются параллельно и развивается 3 стадии парабиоза. Первая стадия - уравнительная по И.П.Павлову - характеризуется выравниванием ответов на сильные, частые и умеренные раздражения. В уравнительную фазу происходит уравнивание величины ответной реакции на частые и редкие раздражители. В нормальных условиях функционирования нервного волокна величина ответной реакции иннервируемых им мышечных волокон подчиняется закону силы: на редкие раздражители ответная реакция меньше, а на частые раздражители-больше. При действии парабиотического агента и при редком ритме раздражении (например, 25 Гц) все импульсы возбуждения проводятся через парабиотический участок, так как возбудимость после предыдущего импульса успевает восстановиться. При высоком ритме раздражении (100 Гц) последующие импульсы могут поступать в тот момент, когда нервное волокно еще находится в состоянии относительной рефрактерности, вызванной предыдущим потенциалом действия. Поэтому часть импульсов не проводится. Если проводится только каждое четвертое возбуждение (т.е. 25 импульсов из 100) , то амплитуда ответной реакции становится такой же, как на редкие раздражители (25 Гц)-происходит уравнивание ответной реакции.

Вторая стадия характеризуется извращенным реагированием – сильные раздражения вызывают меньший ответ, чем умеренные. В эту - парадоксальную фазу происходит дальнейшее снижение лабильности. При этом на редкие и частые раздражители ответная реакция возникает, но на частые раздражители она значительно меньше, т. к. частые раздражители еще больше снижают лабильность, удлиняя фазу абсолютной рефрактерности. Следовательно, наблюдается парадокс - на редкие раздражители ответная реакция больше, чем на частые.

В тормозную фазу лабильность снижается до такой степени, что и редкие, и частые раздражители не вызывают ответной реакции. При этом мембрана нервного волокна деполяризована и не переходит в стадию реполяризации, т. е. не восстанавливается ее исходное состояние. Ни сильные, ни умеренные раздражения не вызывают видимой реакции, в ткани развивается торможение. Парабиоз - явление обратимое. Если парабиотическое вещество действует недолго, то после прекращения его действия нерв выходит из состояния парабиоза через те же фазы, но в обратной последовательности. Однако, при действии сильных раздражителей за тормозной стадией может наступить полная потеря возбудимости и проводимости, а в дальнейшем – гибель ткани.

Работы Н.Е.Введенского по парабиозу сыграли важную роль в развитии нейрофизиологии и клинической медицины, показав единство процессов возбуждения, торможения и покоя, изменили господствовавший в физиологии закон силовых отношений, согласно которому реакция тем больше, чем сильнее действующий раздражитель.

Явление парабиоза лежит в основе медикаментозного локального обезболивания. Влияние анестезирующих веществ вязано с понижением лабильности и нарушением механизма проведения возбуждения по нервным волокнам.

Рецептивная субстанция.

В холинергических синапсах - это холинорецептор. В нём различается узнающий центр, специфически взаимодействующий исключительно с ацетилхолином. С рецептором сопряжён ионный канал, имеющий воротный механизм и ионселективный фильтр, обеспечивающий проходимость только для определённых ионов.

Инактивационная система .

Для восстановления возбудимости постсинаптической мембраны после очередного импульса необходима инактивация медиатора. В противном случае, при длительном действии медиатора происходит снижение чувствительности рецепторов к этому медиатору (десенситизация рецепторов). Инактивационная система в синапсе представлена:

1. Ферментом, разрушающим медиатор, например, ацетилхолинэстеразой, разрушающей ацетилхолин. Фермент находится на базальной мембране синаптической щели и разрушение его химическим путём (эзерином, простигмином) прекращает передачу возбуждения в синапсе.

2. Системой обратного связывания медиатора с пресинаптической мембраной.

7. Постсинаптические потенциалы (ПСП ) - местные потенциалы, не сопровождающиеся рефрактерностью и не подчиняющиеся закону "всё или ничего" и вызывающие на постсинаптической клетке сдвиг потенциала.

Общая характеристика нервных клеток

Нейрон является структурной единицей нервной системы. В нейроне различаются сома (тело), дендриты и аксон. Структурно-функциональной единицей нервной системы является нейрон, глиальная клетка и питающие кровеносные сосуды.

Функции нейрона

Нейрон обладает раздражимостью, возбудимостью, проводимостью, лабильностью. Нейрон способен генерировать, передавать, воспринимать действие потенциала, интегрировать воздействия с формированием ответа. Нейроны обладаютфоновой (без стимуляции) и вызванной (после стимула) активностью.

Фоновая активность может быть:

Единичной - генерация единичных потенциалов действия (ПД) через разные промежутки времени.

Пачковой - генерация серий по 2-10 ПД через 2-5 мс с более продолжительными промежутками времени между пачками.

Групповой - серии содержат десятки ПД.

Вызванная активность возникает:

В момент включения стимула "ON" - нейрон.

В момент выключения " OF" - нейрон.

На включение и на выключение " ON - OF" - нейроны.

Нейроны могут градуально изменять потенциал покоя под влиянием стимула.


Введение

1.1Развитие нейрона

1.2 Классификация нейронов

Глава 2. Строение нейрона

2.1 Тело клетки

2.3 Дендрит

2.4 Синапс

Глава 3. Функции нейрона

Заключение

Список использованной литературы

Приложения

Введение

Значение нервной ткани в организме связано с основными свойствами нервных клеток (нейронов, нейроцитов) воспринимать действие раздражителя, переходить в возбужденное состояние, распространять потенциалы действия. Нервная система осуществляет регуляцию деятельности тканей и органов, их взаимосвязь и связь организма с окружающей средой. Нервная ткань состоит из нейронов, выполняющих специфическую функцию, и нейроглии, играющей вспомогательную роль, осуществляющей опорную, трофическую, секреторную, разграничительную и защитную функции.

Нервные клетки (нейроны, или нейроциты) -- основные структурные компоненты нервной ткани, организуют сложные рефлекторные системы посредством разнообразных контактов друг с другом и осуществляют генерирование и распространение нервных импульсов. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки.

В организме человека насчитывается более ста миллиардов нейронов.

Число нейронов мозга человека приближается к 1011. На одном нейроне может быть до 10 000 синапсов. Если только эти элементы считать ячейками хранения информации, то можно прийти к выводу, что нервная система может хранить 1019 ед. информации, т. е. способна вместить практически все знания, накопленные человечеством. Поэтому вполне обоснованным является представление, что человеческий мозг в течение жизни запоминает все происходящее в организме и при его общении со средой. Однако мозг не может извлекать из памяти всю информацию, которая в нем хранится.

Целью данной работы является изучение структурно-функциональной единицы нервной ткани - нейрон.

К числу основных задач относятся изучение общей характеристики, строения, функций нейронов, а также подробное рассмотрение одних из особых типов нервных клеток - нейросекркторных нейронов.

Глава 1. Общая характеристика нейронов

Нейроны -- специализированные клетки, способные принимать, обрабатывать, кодировать, передавать и хранить информацию, организовывать реакции на раздражения, устанавливать контакты с другими нейронами, клетками органов. Уникальными особенностями нейрона являются способность генерировать электрические разряды и передавать информацию с помощью специализированных окончаний -- синапсов.

Выполнению функций нейрона способствует синтез в его аксоплазме веществ-передатчиков -- нейромедиаторов (нейротрансмиттеры): ацетилхолина, катехоламинов и др. Размеры нейронов колеблются от 6 до 120 мкм.

Для различных структур мозга характерны определенные типы нейронной организации. Нейроны, организующие единую функцию, образуют так называемые группы, популяции, ансамбли, колонки, ядра. В коре большого мозга, мозжечке нейроны формируют слои клеток. Каждый слой имеет свою специфическую функцию.

Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами, которое, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд, который движется вдоль нейрона.

Клеточные скопления образуют серое вещество мозга. Между ядрами, группами клеток и между отдельными клетками проходят миелинизированные или немиелинизированные волокна: аксоны и дендриты.

1.1 Развитие нейронов

Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок.

Передний конец нервной пластинки расширяется, образуя позднее головной мозг. Латеральные края продолжают подниматься и растут медиально, пока не встретятся и не сольются по средней линии в нервную трубку, которая отделяется от лежащей над ней эпидермальной эктодермы. (см.Приложение №1).

Часть клеток нервной пластинки не входит в состав ни нервной трубки, ни эпидермальной эктодермы, а образует скопления по бокам от нервной трубки, которые сливаются в рыхлый тяж, располагающийся между нервной трубкой и эпидермальной эктодермой, -- это нервный гребень (или ганглиозная пластинка).

Из нервной трубки в дальнейшем формируются нейроны и макроглия центральной нервной системы. Нервный гребень дает начало нейронам чувствительных и автономных ганглиев, клеткам мягкой мозговой и паутинной оболочек мозга и некоторым видам глии: нейролеммоцитам (шванновским клеткам), клеткам-сателлитам ганглиев.

Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных, или нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны:

Внутренняя-вентрикулярная(или эпендимная) зона,

Вокруг нее - субвентрикулярная зона,

Затем промежуточная (или плащевая, или же мантийная, зона) и, наконец,

Наружная - краевая (или маргинальная) зона нервной трубки.(см. приложение №2).

Вентрикулярная (эпендимная), внутренняя, зона состоит из делящихся клеток цилиндрической формы. Вентрикулярные (или матричные) клетки являются предшественниками нейронов и клеток макроглии.

Субвентрикулярная зона состоит из клеток, сохраняющих высокую пролиферативную активность и являющихся потомками матричных клеток.

Промежуточная (плащевая, или мантийная) зона состоит из клеток, переместившихся из вентрикулярной и субвентрикулярной зон -- нейробластов и глиобластов. Нейробласты утрачивают способность к делению и в дальнейшем дифференцируются в нейроны. Глиобласты продолжают делиться и дают начало астроцитам и олигодендроцитам. Способность к делению не утрачивают полностью и зрелые глиоциты. Новообразование нейронов прекращается в раннем постнатальном периоде.

Поскольку число нейронов в головном мозге составляет примерно 1 триллион, очевидно, в среднем в течение всего пренатального периода в 1 мин формируется 2,5 миллиона нейронов.

Из клеток плащевого слоя образуются серое вещество спинного и часть серого вещества головного мозга.

Маргинальная зона (или краевая вуаль) формируется из врастающих в нее аксонов нейробластов и макроглии и дает начало белому веществу. В некоторых областях головного мозга клетки плащевого слоя мигрируют дальше, образуя кортикальные пластинки -- скопления клеток, из которых формируется кора большого мозга и мозжечка (т.е. серое вещество).

По мере дифференцировки нейробласта, изменяется субмикроскопическое строение его ядра и цитоплазмы.

Специфическим признаком начавшейся специализации нервных клеток следует считать появление в их цитоплазме тонких фибрилл -- пучков нейрофиламентов и микротрубочек. Количество нейрофиламентов, содержащих белок -- нейрофиламентный триплет, в процессе специализации увеличивается. Тело нейробласта постепенно приобретает грушевидную форму, а от его заостренного конца начинает развиваться отросток -- аксон. Позднее дифференцируются другие отростки -- дендриты. Нейробласты превращаются в зрелые нервные клетки -- нейроны. Между нейронами устанавливаются контакты (синапсы).

В процессе дифференцировки нейронов из нейробластов различают до-медиаторный и медиаторный периоды. Для домедиаторного периода характерно постепенное развитие в теле нейробласта органелл синтеза -- свободных рибосом, а затем эндоплазматической сети. В медиаторном периоде у юных нейронов появляются первые пузырьки, содержащие нейромедиатор, а в дифференцирующихся и зрелых нейронах отмечаются: значительное развитие органелл синтеза и секреции, накопление медиаторов и поступление их в аксон, образование синапсов.

Несмотря на то, что формирование нервной системы завершается только в первые годы после рождения, известная пластичность центральной нервной системы сохраняется до старости. Эта пластичность может выражаться в появлении новых терминалей и новых синаптических связей. Нейроны центральной нервной системы млекопитающих способны формировать новые ветви и новые синапсы. Пластичность проявляется в наибольшей степени в первые годы после рождения, но частично сохраняется и у взрослых -- при изменении уровней гормонов, обучении новым навыкам, травме и других воздействиях. Хотя нейроны постоянны, их синаптические связи могут модифицироваться в течение всей жизни, что может выражаться, в частности, в увеличении или уменьшении их числа. Пластичность при малых повреждениях мозга проявляется в частичном восстановлении функций.

1.2 Классификация нейронов

В зависимости от главного признака различают следующие группы нейронов:

1. По основному медиатору, выделяющемуся в окончаниях аксонов, - адренергические, холинергические, серотонинергические, и т.д. Кроме того, имеются и смешанные нейроны, содержащие два основных медиатора, например, глицин и г-аминомасляную кислоту.

2. В зависимости от отдела ЦНС - соматические и вегетативные.

3. По назначению: а) афферентые, б) эфферентые, в) интернейроны (вставочные).

4. По влиянию - возбуждающие и тормозящие.

5. По активности - фоново-активные и молчащие. Фоново-активные нейроны могут генерировать импульсы как непрерывно, так и импульсно. Эти нейроны играют важную роль в поддержании тонуса ЦНС и особенно коры больших полушарий. Молчащие нейроны возбуждаются только в ответ на раздражение.

6. По количеству модальностей воспринимаемой сенсорной информации - моно-, би и полимодальные нейроны. Например, мономодальными являются нейроны центра слуха в коре большого мозга, бимодальные - встречаются во вторичных зонах анализаторов в коре. Полимодальные нейроны - это нейроны ассоциативных зон мозга, моторной коры, они реагируют на раздражения рецепторов кожного, зрительного, слухового и других анализаторов.

Грубая классификация нейронов предусматривает разделение их на три основные группы (см. Приложение №3):

1. воспринимающие (рецепторные, чувствительные).

2. исполнительные (эффекторные, двигательные).

3. контактные (ассоциативные или вставочные).

Воспринимающие нейроны осуществляют функцию восприятия и передачи в центральную нервную систему информации о внешнем мире или внутреннем состоянии организма Они расположены вне центральной нервной системы в нервных ганглиях или узлах. Отростки воспринимающих нейронов проводят возбуждение от воспринимающих раздражение нервных окончаний или клеток к центральной нервной системе. Эти отростки нервных клеток, несущие с периферии возбуждение в центральную нервную систему, называют афферентными, или центростремительными волокнами.

В рецепторах в ответ на раздражение возникают ритмические залпы нервных импульсов. Информация, которая передается от рецепторов, закодирована в частоте и в ритме импульсов.

Различные рецепторы отличаются по своей структуре и функциям. Часть из них расположена в органах, специально приспособленных к восприятию определенного вида раздражителей, например в глазу, оптическая система которого фокусирует световые лучи на сетчатке, где находятся зрительные рецепторы; в ухе, проводящем звуковые колебания к слуховым рецепторам. Различные рецепторы приспособлены к восприятию разных раздражителей, которые для них являются адекватными. Существуют:

1. механорецепторы, воспринимающие:

а) прикосновение - тактильные рецепторы,

б) растяжение и давление - пресса- и барорецепторы,

в) звуковые колебания - фонорецепторы,

г) ускорение -- акцеллерорецепторы, или вестибулорецепторы;

2. хеморецепторы, воспринимающие раздражение, производимое определенными химическими соединениями;

3. терморецепторы, раздражаемые изменениями температуры;

4. фоторецепторы, воспринимающие световые раздражения;

5. осморецепторы, воспринимающие изменения осмотического давления.

Часть рецепторов: световые, звуковые, обонятельные, вкусовые, тактильные, температурные, воспринимающие раздражения от внешней среды, - расположена вблизи внешней поверхности тела. Их называют экстерорецепторами. Другие же рецепторы воспринимают раздражения, связанные с изменением состояния и деятельности органов я внутренней среды организма. Их называют интерорецепторами (к числу интерорецепторов относят рецепторы, находящиеся в скелетной мускулатуре, их называют проприорецепторами).

Эффекторные нейроны по своим идущим на периферию отросткам - афферентным, или центробежным, волокнам - передают импульсы, изменяющие состояние и деятельность различных органов. Часть эффекторных нейронов расположена в центральной нервной системе - в головном и спинном мозгу, и на периферию идет от каждого нейрона только один отросток. Таковы моторные нейроны, вызывающие сокращения скелетной мускулатуры. Часть же эффекторных нейронов целиком расположена на периферии: они получают импульсы из центральной нервной системы и передают их к органам. Таковы образующие нервные ганглии нейроны вегетативной нервной системы.

Контактные нейроны, расположенные в центральной нервной системе, выполняют функцию связи между различными нейронами. Они служат как бы релейными станциями, производящими переключение нервных импульсов с одних нейронов на другие.

Взаимосвязь нейронов составляет основу для осуществления рефлекторных реакций. При каждом рефлексе нервные импульсы, возникшие в рецепторе при его раздражении, передаются по нервным проводникам в центральную нервную систему. Здесь или непосредственно, или же через посредство контактных нейронов нервные импульсы переключаются с рецепторного нейрона на эффекторный, от которого они идут на периферию к клеткам. Под влиянием этих импульсов клетки изменяют свою деятельность. Импульсы, поступающие в центральную нервную систему с периферии или же передаваемые от одного нейрона другому, могут вызывать не только процесс возбуждения, но и противоположный ему процесс - торможение.

Классификация нейронов по числу отростков (см. приложение №4):

1. Униполярные нейроны имеют 1 отросток. По мнению большинства исследователей, такие нейроны не встречаются в нервной системе млекопитающих и человека.

2. Биполярные нейроны - имеют 2 отростка: аксон и дендрит. Разновидностью биполярных нейронов являются псевдоуниполярные нейроны спинномозговых ганглиев, где оба отростка (аксон и дендрит) отходят от единого выроста клеточного тела.

3. Мультиполярные нейроны - имеют один аксон и несколько дендритов. Их можно выделить в любом отделе нервной системы.

Классификация нейронов по форме (см. приложение №5).

Биохимическая классификация:

1. Холинергические (медиатор - АХ - ацетилхолин).

2. Катехоламинергические (А, НА, дофамин).

3. Аминокислотные (глицин, таурин).

По принципу положения их в сети нейронов:

Первичные, вторичные, третичные и т.д.

Исходя из такой классификации, выделяют и типы нервных сетей:

Иерархические (восходящие и нисходящие);

Локальные - передающие возбуждение на каком-либо одном уровне;

Дивергентные с одним входом (находящиеся в основном только в среднем мозге и в стволе мозга) - осуществляющие связь сразу со всеми уровнями иерархической сети. Нейроны таких сетей называют «неспецифическими».

Глава 2. Строение нейронов

Нейрон является структурной единицей нервной системы. В нейроне различаются сома (тело), дендриты и аксон. (см. приложение №6).

Тело нейрона (сома) и дендриты -- два главных участка нейрона, которые воспринимают входные импульсы от других нейронов. Согласно классической «нейронной доктрине», предложенной Рамоном-и-Кахалем, информация через большинство нейронов протекает в одном направлении (ортодромический импульс) -- от дендритных ветвей и тела нейрона (которые являются рецептивными частями нейрона, к которым импульс входит) к единому аксону (который является эффекторной частью нейрона, с которой импульс начинается). Таким образом, большинство нейронов имеют два типа отростков (нейритов): один или более дендритов, реагирующих на входящие импульсы, и аксон, который проводит выходной импульс.(см.приложение №7).

2.1 Тело клетки

Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов (билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (например кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков (см. приложение №8,9). Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20-30 нм) -- состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) -- вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) -- состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии. В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона.

2.2 Аксон -- это нейрит

(длинный цилиндрический отросток нервной клетки), по которому нервные импульсы идут от тела клетки (сомы) к иннервируемым органам и другим нервным клеткам.

Передача нервного импульса происходит от дендритов (или от тела клетки) к аксону, а затем сгенерированный потенциал действия от начального сегмента аксона передается назад к дендритам Dendritic backpropagation and the state of the awa… -- PubMed result. Если аксон в нервной ткани соединяется с телом следующей нервной клетки, такой контакт называется аксо-соматическим, с дендритами -- аксо-дендритический, с другим аксоном -- аксо-аксональный (редкий тип соединения, встречается в ЦНС).

Концевые участки аксона -- терминали -- ветвятся и контактируют с другими нервными, мышечными или железистыми клетками. На конце аксона находится синаптическое окончание -- концевой участок терминали, контактирующий с клеткой-мишенью. Вместе с постсинаптической мембраной клетки-мишени синаптическое окончание образует синапс. Через синапсы передаётся возбуждение.

В протоплазме аксона -- аксоплазме -- имеются тончайшие волоконца -- нейрофибриллы, а также микротрубочки, митохондрии и агранулярная (гладкая) эндоплазматическая сеть. В зависимости от того, покрыты ли аксоны миелиновой (мякотной) оболочкой или лишены её, они образуют мякотные или безмякотные нервные волокна.

Миелиновая оболочка аксонов имеется только у позвоночных. Её образуют «накручивающиеся» на аксон специальные шванновские клетки (в центральной нервной системе -- олигодендроциты), между которыми остаются свободные от миелиновой оболочки участки -- перехваты Ранвье. Только на перехватах присутствуют потенциал-зависимые натриевые каналы и заново возникает потенциал действия. При этом нервный импульс распространяется по миелинизированным волокнам ступенчато, что в несколько раз повышает скорость его распространения. Скорость передачи сигнала по покрытым миелиновой оболочкой аксонам достигает 100 метров в секунду. Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум и поведение. М., 1988 нейрон нервный рефлекторный

Безмякотные аксоны меньше размерами, чем аксоны, покрытые миелиновой оболочкой, что компенсирует потери в скорости распространения сигнала по сравнению с мякотными аксонами.

В месте соединения аксона с телом нейрона у наиболее крупных пирамидных клеток 5-ого слоя коры находится аксонный холмик. Ранее предполагалось, что здесь происходит преобразование постсинаптического потенциала нейрона в нервные импульсы, но экспериментальные данные это не подтвердили. Регистрация электрических потенциалов выявила, что нервный импульс генерируется в самом аксоне, а именно в начальном сегменте на расстоянии ~50 мкм от тела нейрона Action potentials initiate in the axon initial seg… -- PubMed result. Для генерации потенциала действия в начальном сегменте аксона требуется повышенная концентрация натриевых каналов (до ста раз по сравнению с телом нейрона Action potential generation requires a high sodium… -- PubMed result).

2.3 Дендрит

(от греч. dendron -- дерево) -- разветвлённый отросток нейрона, который получает информацию через химические (или электрические) синапсы от аксонов (или дендритов и сомы) других нейронов и передаёт её через электрический сигнал телу нейрона (перикариону), из которого вырастает. Термин «дендрит» ввёл в научный оборот швейцарский ученый William His в 1889 году.

От сложности и разветвлённости дендритного дерева зависит то, сколько входных импульсов может получить нейрон. Поэтому одно из главных назначений дендритов заключается в увеличении поверхности для синапсов (увеличении рецептивного поля), что позволяет им интегрировать большое количество информации, которая поступает к нейрону.

Огромное многообразие дендритных форм и разветвлений, как и открытые недавно различные виды дендритных нейромедиаторных рецепторов и потенциалзависимых ионных каналов (активных проводников), является свидетельством богатого разнообразия вычислительных и биологических функций, которые дендрит может выполнять в ходе обработки синаптической информации по всему мозгу.

Дендриты играют ключевую роль в интеграции и обработке информации, а также способны генерировать потенциалы действия и влиять на возникновение потенциалов действия в аксонах, представая как пластичные, активные механизмы со сложными вычислительными свойствами. Исследование того, как дендриты обрабатывают тысячи синаптических импульсов, которые к ним поступают, является необходимым как для того чтобы понять, насколько в действительности сложным является один нейрон, его роль в обработке информации в ЦНС, так и для выявления причин многих психоневрологических заболеваний.

Основные характерные черты дендрита, которые выделяют его на электронно-микроскопических срезах:

1) отсутствие миелиновой оболочки,

2) наличие правильной системы микротрубочек,

3) наличие на них активных зон синапсов с ясно выраженной электронной плотностью цитоплазмы дендрита,

4) отхождение от общего ствола дендрита шипиков,

5) специально организованные зоны узлов ветвлений,

6) вкрапление рибосом,

7) наличие в проксимальных участках гранулированного и не гранулированного эндоплазматического ретикулума.

К нейронным типам с наиболее характерными дендритными формами относятся Fiala and Harris, 1999, p. 5-11:

Биполярные нейроны, в которых два дендрита отходят в противоположных направлениях от сомы;

Некоторые интернейроны, в которых дендриты расходятся во всех направлениях от сомы;

Пирамидальные нейроны -- главные возбуждающие клетки в мозгу -- которые имеют характерную пирамидальную форму клеточного тела и в которых дендриты распространяются в противоположные стороны от сомы, покрывая две перевёрнутые конические площади: вверх от сомы простирается большой апикальный дендрит, который поднимается сквозь слои, а вниз -- множество базальных дендритов, которые простираются латерально.

Клетки Пуркинье в мозжечке, дендриты которых выходят из сомы в форме плоского веера.

Звёздчатые нейроны, дендриты которых выходят из разных сторон сомы, образуя форму звезды.

Своей функциональностью и высокой рецептивностью дендриты обязаны сложной геометрической разветвленности. Дендриты одного нейрона, взятые вместе, называются «дендритным деревом», каждая ветвь которого называется «дендритной ветвью». Хотя иногда площадь поверхности дендритной ветки может быть достаточно обширной, чаще всего дендриты находятся в относительной близости от тела нейрона (сомы), из которого выходят, достигая в длину не более 1-2 мкм (см.приложение №9,10). Количество входных импульсов, которые данный нейрон получает, зависит от его дендритного дерева: нейроны, которые не имеют дендритов, контактируют только с одним или несколькими нейронами, тогда как нейроны с большим количеством разветвлённых деревьев способны принимать информацию от множества других нейронов.

Рамон-и-Кахаль, изучая дендритные разветвления, пришел к выводу, что филогенетические различия в специфических нейрональных морфологиях поддерживают отношения между дендритной сложностью и количеством контактов Garcia-Lopez et al, 2007, p. 123-125. Сложность и разветвлённость многих типов нейронов позвоночных (например, пирамидальные нейроны коры, клетки Пуркинье мозжечка, митральные клетки обонятельных луковиц) растёт с увеличением сложности нервной системы. Эти изменения связаны как с необходимостью для нейронов формировать больше контактов, так и с необходимостью контактировать с дополнительными нейронными типами в конкретном месте нейронной системы.

Следовательно, способ связанности между нейронами является одним из наиболее фундаментальных свойств их разносторонних морфологий и именно поэтому дендриты, которые формируют одно из звеньев этих связей, определяют многообразие функций и сложность конкретного нейрона.

Решающий фактор для способности нейронной сети хранить информацию -- количество различных нейронов, которые могут быть соединены синаптически Chklovskii D. (2 September 2004). «Synaptic Connectivity and Neuronal Morphology». Neuron : 609-617. DOI:10.1016/j.neuron.2004.08.012. Одним из главных факторов увеличения разнообразия форм синаптических связей в биологических нейронах является существование дендритных шипиков, открытых в 1888 году Кахалем.

Дендритный шипик (см.приложение №11)-- мембранный вырост на поверхности дендрита, способный образовать синаптическое соединение. Шипики обычно имеют тонкую дендритную шейку, оканчивающуюся шарообразной дендритной головкой. Дендритные шипики обнаруживаются на дендритах большинства основных типов нейронов мозга. В создании шипиков участвует белок калирин.

Дендритные шипики формируют биохимический и электрический сегмент, где поступающие сигналы вначале интегрируются и обрабатываются. Шея шипика разделяет его голову от остальной части дендрита, тем самым делая шипика отдельным биохимическим и вычислительным регионом нейрона. Подобная сегментация играет ключевую роль в выборочном изменении силы синаптических связей в течение обучения и запоминания.

В нейробиологии также принята классификация нейронов на основе существования шипиков на их дендритах. Те нейроны, которые имеют шипики, называются шипиковыми нейронами, а те, которые их лишены -- безшипиковыми. Между ними существует не только морфологическое отличие, но и различие в передаче информации: шипиковые дендриты зачастую являются возбуждающими, а безшипиковые -- ингибирующими Hammond, 2001, p. 143-146.

2.4 Синапс

Место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Классификации синапсов.

По механизму передачи нервного импульса.

Химический -- это место близкого прилегания двух нервных клеток, для передачи нервного импульса через которое клетка-источник выпускает в межклеточное пространство особое вещество, нейромедиатор, присутствие которого в синаптической щели возбуждает или затормаживает клетку-приёмник.

Электрический (эфапс) -- место более близкого прилегания пары клеток, где их мембраны соединяются с помощью особых белковых образований -- коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе -- 3,5 нм (обычное межклеточное -- 20 нм). Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы через синапс проходят не задерживаясь. Электрические синапсы обычно бывают возбуждающими.

Смешанные синапсы -- Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболее распространены химические синапсы. Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.

По местоположению и принадлежности структурам.

Периферические

Нервно-мышечные

Нейросекреторные (аксо-вазальные)

Рецепторно-нейрональные

Центральные

Аксо-дендритические -- с дендритами, в том числе

Аксо-шипиковые -- с дендритными шипиками, выростами на дендритах;

Аксо-соматические -- с телами нейронов;

Аксо-аксональные -- между аксонами;

Дендро-дендритические -- между дендритами;

По нейромедиатору.

аминергические, содержащие биогенные амины (например, серотонин, дофамин);

в том числе адренергические, содержащие адреналин или норадреналин;

холинергические, содержащие ацетилхолин;

пуринергические, содержащие пурины;

пептидергические, содержащие пептиды.

При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия.

возбуждающие

тормозные.

Если первые способствуют возникновению возбуждения в постсинаптической клетке (в них в результате поступления импульса происходит деполяризация мембраны, которая может вызвать потенциал действия при определённых условиях.), то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса. Обычно тормозными являются глицинергические (медиатор -- глицин) и ГАМК-ергические синапсы (медиатор -- гамма-аминомасляная кислота).

Тормозные синапсы бывают двух видов:

1) синапс, в пресинаптических окончаниях которого выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала;

2) аксо-аксональный синапс, обеспечивающий пресинаптическое торможение. Синапс холинергический-- синапс, медиатором в котором является ацетилхолин.

К специальным формам синапсов относятся шипиковые аппараты, в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

Механизм функционирования химического синапса (см.приложение №12).

Типичный синапс -- аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончанием аксона передающей клетки и постсинаптической, представленной контактирующим участком плазматической мембраны воспринимающей клетки (в данном случае -- участком дендрита).

Между обеими частями имеется синаптическая щель -- промежуток шириной 10--50 нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной. Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной, в химических синапсах она рельефна и содержит многочисленные рецепторы.

В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки, содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы, ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной. В результате медиатор выходит в синаптическую щель и присоединяется к белкам-рецепторам постсинаптической мембраны, которые делятся на метаботропные и ионотропные. Первые связаны с G-белком и запускают каскад реакций внутриклеточной передачи сигнала. Вторые связаны с ионными каналами, которые открываются при связывании с ними нейромедиатора, что приводит к изменению мембранного потенциала. Медиатор действует в течение очень короткого времени, после чего разрушается специфическим ферментом. Например, в холинэргических синапсах фермент, разрушающий медиатор в синаптической щели -- ацетилхолинэстераза. Одновременно часть медиатора может перемещаться с помощью белков-переносчиков через постсинаптическую мембрану (прямой захват) и в обратном направлении через пресинаптическую мембрану (обратный захват). В ряде случаев медиатор также поглощается соседними клетками нейроглии.

Открыты два механизма высвобождения: с полным слиянием везикулы с плазмалеммой и так называемый «поцеловал и убежал» (англ. kiss-and-run), когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы, а крупные остаются в везикуле. Второй механизм, предположительно, быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке.

Следствием такой структуры синапса является одностороннее проведение нервного импульса. Существует так называемая синаптическая задержка -- время, нужное для передачи нервного импульса. Её длительность составляет около -- 0,5 мс.

Так называемый «принцип Дейла» (один нейрон -- один медиатор) признан ошибочным. Или, как иногда считают, он уточнён: из одного окончания клетки может выделяться не один, а несколько медиаторов, причём их набор постоянен для данной клетки.

Глава 3. Функции нейронов

Нейроны посредством синапсов объединяются в нейронные цепи. Цепь нейронов, обеспечивающая проведение нервного импульса от рецептора чувствительного нейрона до двигательного нервного окончания, называется рефлекторной дугой. Существуют простые и сложные рефлекторные дуги.

Нейроны между собой и с исполнительным органом контактируют с помощью синапсов. Рецепторные нейроны расположены вне ЦНС, контактные и двигательные -- в ЦНС. Рефлекторная дуга может быть образована разным числом нейронов всех трех видов. Простая рефлекторная дуга образована всего двумя нейронами: первый чувствительный и второй -- двигательный. В сложных рефлекторных дугах между этими нейронами включены еще ассоциативные, вставочные нейроны. Различают также соматические и вегетативные рефлекторные дуги. Соматические рефлекторные дуги регулируют работу скелетной мускулатуры, а вегетативные -- обеспечивают непроизвольное сокращение мускулатуры внутренних органов.

В свою очередь в рефлекторной дуге различают 5 звеньев: рецептор, афферентный путь, нервный центр, эфферентный путь и рабочий орган, или эффектор.

Рецептор -- это образование, воспринимающее раздражение. Представляет собой или ветвящееся окончание дендрита рецепторного нейрона, или специализированные, высокочувствительные клетки, или клетки с вспомогательными структурами, образующими рецепторный орган.

Афферентное звено образовано рецепторным нейроном, проводит возбуждение от рецептора к нервному центру.

Нервный центр образован большим количеством интернейронов и двигательных нейронов.

Это сложное образование рефлекторной дуги, представляющее собой ансамбль нейронов, расположенных в различных отделах центральной нервной системы, включая кору больших полушарий и обеспечивающих конкретную приспособительную реакцию.

Нервному центру присущи четыре физиологические роли: восприятие импульсов от рецепторов через афферентный путь; анализ и синтез воспринятой информации; передача сформированной программы по центробежному пути; восприятие обратной информации с исполнительного органа о выполнении программы, о совершенном действии.

Эфферентное звено образовано аксоном двигательного нейрона, проводит возбуждение от нервного центра к рабочему органу.

Рабочий орган -- тот или иной орган организма, осуществляющий свойственную ему деятельность.

Принцип осуществления рефлекса. (см.приложение №13).

Через рефлекторные дуги осуществляются ответные приспособительные реакции на действие раздражителей, т. е. рефлексы.

Рецепторы воспринимают действие раздражителей, возникает поток импульсов, который передается на афферентное звено и по нему поступает к нейронам нервного центра. Нервный центр воспринимает информацию с афферентного звена, осуществляет ее анализ и синтез, определяет биологическую значимость, осуществляет формирование программы действия и в виде потока эфферентных импульсов передает ее на эфферентное звено. Эфферентное звено обеспечивает проведение программы действия от нервного центра к рабочему органу. Рабочий орган осуществляет свойственную ему деятельность. Время от начала действия раздражителя до начала ответной реакции органа называется временем рефлекса.

Специальное звено обратной афферентации воспринимает параметры совершенного рабочим органом действия и передает эту информацию в нервный центр. Нервный центр воспринимает обратную информацию с рабочего органа о свершенном действии.

Нейроны выполняют еще и трофическую функцию, направленную на регуляцию обмена веществ и питания как в аксонах и дендритах, так и при диффузии через синапсы физиологически активных веществ в мышцах и железистых клетках.

Трофическая функция проявляется в регулирующем влиянии на метаболизм и питание клетки (нервной или эффекторных). Учение о трофической функции нервной системы было развито И. П. Павловым (1920) и другими учеными.

Основные данные о наличии этой функции получены в опытах с денервацией нервных или эффекторных клеток, т.е. перерезания тех нервных волокон, синапсы которых заканчиваются на исследуемой клетке. Оказалось, что клетки, лишенные значительной части синапсов, их укрывают, становятся гораздо более чувствительными к химическим факторам (например, к воздействию медиаторов). При этом существенно изменяются физико-химические свойства мембраны (сопротивление, ионная проводимость и др.), биохимические процессы в цитоплазме, возникают структурные изменения (хроматолиз), растет количество хеморецепторов мембран.

Значительным фактором является постоянное поступление (в том числе и спонтанное) медиатора в клетки, регулирует мембранные процессы в постсинаптической структуре, повышает чувствительность рецепторов к химическим раздражителям. Причиной изменений может быть выделение из синаптических окончаний веществ («трофических» факторов), которые проникают в постсинаптическую структуру и влияют на нее.

Есть данные о перемещении некоторых веществ аксоном (аксонного транспорт). Белки, которые синтезируются в теле клетки, продукты метаболизма нуклеиновых кислот, нейромедиаторы, нейросекрет и другие вещества перемещаются аксоном до нервного окончания вместе с клеточными органеллами, в частности митохондриями.Лекции по курсу «Гистология»., доц. Комачкова З.К., 2007-2008 г. Допускают, что транспортный механизм осуществляется с помощью микротрубочек и нейрофилов. Выявлено также ретроградный аксонного транспорт (от периферии к телу клетки). Вирусы и бактериальные токсины могут проникать в аксон на периферии и перемещаться по нему к телу клетки.

Глава 4. Секреторные нейроны - нейросекреторные клетки

В нервной системе существуют особые нервные клетки -- нейросекреторные (см. приложение №14). Они имеют типичную структурную и функциональную (т.е. способность проводить нервный импульс) нейрональную организацию, а их специфической особенностью является нейросекреторная функция, связанная с секрецией биологически активных веществ. Функциональное значение этого механизма состоит в обеспечении регуляторной химической коммуникации между центральной нервной и эндокринной системами, осуществляемой с помощью нейросекретируемых продуктов.

Для млекопитающих характерны мультиполярные нейросекреторные клетки нейронного типа, имеющие до 5 отростков. Такого типа клетки имеются у всех позвоночных, причем они в основном составляют нейросекреторные центры. Между соседними нейросекреторными клетками обнаружены электротонические щелевые контакты, которые, вероятно, обеспечивают синхронизацию работы одинаковых групп клеток в пределах центра.

Аксоны нейросекреторных клеток характеризуются многочисленными расширениями, которые возникают в связи с временным накоплением нейросекрета. Крупные и гигантские расширения называются «телами Геринга». В пределах мозга аксоны нейросекреторных клеток, как правило, лишены миелиновой оболочки. Аксоны нейросекреторных клеток обеспечивают контакты в пределах нейросекреторных областей и связаны с различными отделами головного и спинного мозга.

Одна из основных функций нейросекреторных клеток -- это синтез белков и полипептидов и их дальнейшая секреция. В связи с этим в клетках подобного типа чрезвычайно развит белоксинтезирующий аппарат -- это гранулярный эндоплазматический ретикулум и аппарат Гольджи. Сильно развит в нейросекреторных клетках и лизосомальный аппарат, особенно в периоды их интенсивной деятельности. Но самым существенным признаком активной деятельности нейросекреторной клетки является количество элементарных нейросекреторных гранул, видимых в электронном микроскопе.

Наивысшего развития эти клетки достигают у млекопитающих и у человека в гипоталамической области мозга. Особенностью нейросекреторных клеток гипоталамуса является специализация для выполнения секреторной функции. В химическом отношении нейросекреторные клетки гипоталамической области делятся на две большие группы - пептидэргические и монаминэргические. Пептидэргические нейросекреторные клетки продуцируют пептидные гормоны - монаминовые (дофамин, норадреналин, серотонин).

Среди пептидэргических нейросекреторных клеток гипоталамуса выделяют клетки, гормоны которых действуют на висцеральные органы. Они выделяют вазопрессин (антидиуретический гормон), окситоцин и гомологи этих пептидов.

Другая группа нейросекреторных клеток выделяет аденогипофизотропные гормоны, т.е. гормоны, регулирующие деятельность железистых клеток аденогипофиза. Одни из этих биоактивных веществ либерины, стимулирующие функцию клеток аденогипофиза, или статины - угнетающие гормоны аденогипофиза.

Монаминэргические нейросекреторные клетки выделяют нейрогормоны, в основном, в портальную сосудистую систему задней доли гипофиза.

Гипоталамическая нейросекреторная система является частью общей интегрирующей нейроэндокринной системы организма и находится в тесной связи с нервной системой. Окончания нейросекреторных клеток в нейрогипофизе формируют нейрогемальный орган в котором депонируется нейросекрет и который при необходимости выводится в кровоток.

Помимо нейросекреторных клеток гипоталамуса у млекопитающих имеются клетки с выраженной секрецией и в других отделах головного мозга (пинеалоциты эпифиза, клетки эпендимы субкомиссурального и субфорникального органов и др.).

Заключение

Структурно-функциональной единицей нервной ткани являются нейроны или нейроциты. Под этим названием подразумевают нервные клетки (их тело -- перикарион) с отростками, образуюшими нервные волокна и заканчивающимися нервными окончаниями.

Характерной структурной особенностью нервных клеток является наличие у них двух видов отростков -- аксона и дендритов. Аксон -- единственный отросток нейрона, обычно тонкий, мало ветвящийся, отводящий импульс от тела нервной клетки (перикариона). Дендриты, напротив, приводят импульс к перикариону, это обычно более толстые и более ветвящиеся отростки. Количество дендритов у нейрона колеблется от одного до нескольких в зависимости от типа нейронов.

Функция нейронов заключается в восприятии сигналов от рецепторов или других нервных клеток, хранении и переработке информации и передаче нервных импульсов к другим клеткам - нервным, мышечным или секреторным.

В некоторых отделах мозга имеются нейроны, которые вырабатывают гранулы секрета мукопротеидной или гликопротеидной природы. Они обладают одновременно физиологическими признаками нейронов и железистых клеток. Эти клетки называются нейросекреторными.

Список литературы

Строение и морфофункциональная классификация нейронов // Физиология человека / под редакцией В.М.Покровского, Г.Ф.Коротько.

Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум и поведение. М., 1988

Dendritic backpropagation and the state of the awake neocortex. -- PubMed result

Action potential generation requires a high sodium channel density in the axon initial segment. -- PubMed result

Лекции по курсу «Гистология»., доц. Комачкова З.К., 2007-2008 г.

Fiala and Harris, 1999, p. 5-11

Chklovskii D. (2 September 2004). «Synaptic Connectivity and Neuronal Morphology». Neuron: 609-617. DOI:10.1016/j.neuron.2004.08.012

Косицын Н. С. Микроструктура дендритов и аксодендритических связей в центральной нервной системе. М.: Наука, 1976, 197 с.

Мозг (сбоpник статей: Д. Хьюбел, Ч. Стивенс, Э. Кэндел и дp. -- выпуск журнала Scientific American (сентябрь 1979)). М. :Миp, 1980

Николлс Джон Г. От нейрона к мозгу. -- P. 671. -- ISBN 9785397022163.

Экклз Д. К. Физиология синапсов. -- М.: Мир, 1966. -- 397 с.

Бойчук Н.В., Исламов Р.Р., Кузнецов С.Л., Улумбеков Э.Г. и др. Гистология: Учебник для вузов., М. Серия: XXI век М: ГЭОТАР-МЕД, 2001. 672с.

Яковлев В.Н. Физиология центральной нервной системы. М.: Академия, 2004.

Куффлер, С. От нейрона к мозгу/ С. Куффлер, Дж. Николс; пер. с англ. - М. : Мир, 1979. - 440 с.

Питерс А. Ультраструктура нервной системы / А. Питерс, С. Полей, Г. Уебстер. - М. : Мир, 1972.

Ходжкин, А. Нервный импульс / А. Ходжкин. - М. : Мир, 1965. - 128 с.

Шульговский, В.В. Физиология центральной нервной системы: учебник для университетов / В.В. Шульговский. - М. : Изд-во Моск. ун-та, 1987

Приложение №1

Приложение №2

Дифференцировка стенок нервной трубки. А. Схематическое изображение среза нервной трубки пятинедельного зародыша человека. Видно, что трубка состоит из трех зон: эпендимной, плащевой и краевой. Б. Срез спинного и продолговатого мозга трехмесячного плода: сохраняется их первоначальная трехзонная структура. В. Г. Схематические изображения срезов мозжечка и головного мозга трехмесячного плода, иллюстрирующие изменение трехзонной структуры, вызванное миграцией нейробластов в специфические участки краевой зоны. (По Crelin, 1974.)

Приложение №3

Приложение №4

Классификация нейронов по числу отростков

Приложение №5

Классификация нейронов по форме

Приложение №6

Приложение №7

Распространение нервного импульса по отросткам нейрона

Приложение №8

Схема строения нейрона.

Приложение №9

Ультраструктура нейрона неокортекса мыши: тело нервной клетки, которое содержит ядро (1), окружённое перикарионом (2) и дендритом (3). Поверхность перикариона и дендритов покрыта цитоплазматической мембраной (зелёный и оранжевый контуры). Середина клетки заполнена цитоплазмой и органеллами. Масштаб: 5 мкм.

Приложение №10

Пирамидальный нейрон гиппокампа. На изображении отчётливо заметна отличительная черта пирамидальных нейронов -- один аксон, апикальный дендрит, который находится вертикально над сомой (внизу) и множество базальных дендритов (сверху), которые поперечно расходятся от основания перикариона.

Приложение №11

Цитоскелетное строение дендритного шипика.

Приложение №12

Механизм функционирования химического синапса

Приложение № 13

Приложение № 14

Секрет в клетках нейросекреторных ядер головного мозга

1 -- секреторные нейроциты: клетки имеют овальную форму, светлое ядро и цитоплазму, заполненную нейросекреторными гранулами.

Подобные документы

    Определение нервной системы человека. Особые свойства нейронов. Функции и задачи нейроморфологии. Морфологическая классификация нейронов (по числу отростков). Клетки глии, синапсы, рефлекторная дуга. Эволюция нервной системы. Сегмент спинного мозга.

    презентация , добавлен 27.08.2013

    Изучение протеолитических ферментов нервной ткани. Пептидгидролазы нервной ткани и их функции. Протеолитические ферменты нервной ткани нелизосомальной локализации и их биологическая роль. Эндопептидазы, сигнальные пептидазы, прогормонконвертазы.

    реферат , добавлен 13.04.2009

    Значение нервной системы в приспособлении организма к окружающей среде. Общая характеристика нервной ткани. Строение нейрона и их классификация по количеству отростков и по функциям. Черепно-мозговые нервы. Особенности внутреннего строения спинного мозга.

    шпаргалка , добавлен 23.11.2010

    Состав нервной ткани. Возбуждение нервных клеток, передача электрических импульсов. Особенности строения нейронов, сенсорного и моторного нервов. Пучки нервных волокон. Химический состав нервной ткани. Белки нервной ткани, их виды. Ферменты нервной ткани.

    презентация , добавлен 09.12.2013

    Строение нейрона - основной структурно-функциональной единицы нервной системы, обладающей рядом свойств, благодаря которым осуществляется регуляторно-координационная деятельность нервной системы. Функциональные особенности синаптической передачи.

    реферат , добавлен 27.02.2015

    Основные черты нейрона; нейрофибрилы и секторные нейроны. Значения нервной ткани, нервные волокна. Регенерация нервных волокон, рецептор нервных окончаний, классификация нейронов по функциям. Анатомическое строение нейрона, вегетативная нервная система.

    реферат , добавлен 11.06.2010

    Суть отличия клетки различных областей нервной системы в зависимости от ее функции. Гомеотические гены и сегментация, хорда и базальная пластинка. Строение и функции нервной системы позвоночных. Индукционные взаимодействия при развитии глаз дрозофилы.

    реферат , добавлен 31.10.2009

    Нейроны как основа нервной системы, их основные функции: восприятие, хранение информации. Анализ деятельности нервной системы. Структура опорно-двигательного аппарата, характеристика функций легких. Значение ферментов в пищеварительной системе человека.

    контрольная работа , добавлен 06.06.2012

    Общая характеристика нервной системы. Рефлекторная регуляция деятельности органов, систем и организма. Физиологические роли частных образований центральной нервной системы. Деятельность периферического соматического и вегетативного отдела нервной системы.

    курсовая работа , добавлен 26.08.2009

    Строение и классификация нейронов. Структура и функция цитоплазматической мембраны нейронов. Сущность механизма возникновения мембранного потенциала. Природа потенциала действия между двумя точками ткани в момент возбуждения. Межнейронные взаимодействия.

Нервная ткань. Периферический нерв.

Эволюционно наиболее молодая ткань организма человека

Участвует в построении органов нервной системы

Вместе с эндокринной системой обеспечивает нейрогуморальную регуляцию деятельности тканей и органов, коррелирует и интегрирует их функции в пределах организма. А также адаптирует их к изменяющимся условиям среды.

Нерв ткань воспринимает раздражения, приходит в состояние возбуждения , формирует и проводит нервные импульсы.

Находится в провизорном состоянии. Не достигла дефинитивного (не сформировалась окончательно) развития и как таковая не существует , так как процесс ее образования шел одновременно с формированием органов нервной системы.

Провизор

ность нервной ткани подтверждается апоптозами, т.е запрограммирована гибелью большого количества клеток. Ежегодно мы теряем до 10 млн клеток нервной ткани.

1) Нервные клетки (нейроциты/нейроны)

2) Вспомогательные клетки (нейроглия)

Процесс развития нервной ткани в эмбриональном периоде связан с преобразованием нервной закладки. Она выделяется в составе дорсальной эктодермы и обособляется из нее в виде нервной пластинки .

Нервная пластинка прогибается по средней линии, образуя нервный желобок. Его края смыкаются , образуя нервную трубку.

Часть клеток нервной пластинки не входят в состав нерв трубки и располагаются по бокам от нее,образуя нервный гребень.

Вначале нерв трубка состоит из одного слоя цилиндрических клеток, затем становится многослойной.

Выделяют три слоя:

1) Внутренний / эпендимный - клетки имеют длинный отросток , клетки пронизывают толщу нервной трубки, на периферии образуют разграничительную мембрану

2) Мантийный слой - тоже клеточный, два вида клеток

- нейробласты (из них формируются нервные клетки)

- спонгеобласты (из них - клетки астроцитной нейроглии и алигодендроглии)

На основе этой зоны формируется серое веществоспинного и головного мозга.

Отростки клеток мантийной зоны уходят в краевую вуаль.

3) Наружный (краевая вуаль)

Не имеет клеточного строения. На ее основе формируется белое вещество спинного и головного мозга.

Клетки ганглеозной пластинки частвуют в образовпнии нервных клеток вегетативных и спинальных ганглиев мозгового вещества надпочечников и пигментных клеток.

Характеристика нервных клеток

Нервные клетки являются структурно-функциональной единицей нервной ткани. Они обеспечивают ее способность воспринимать раздражение, возбуждаться, формировать и проводить нервные импульсы. Исходя из выполняемой функции, нервные клетки имеют специфическое строение.


В нейроне различают:

1) Тело клетки (перикареон)

2) Два вида отростков: аксон и дендрит

1) В состав перикореона входит клеточная оболочка, ядро и цитоплазма с органеллами и элементами цитоскелета.

Клеточная оболочка обеспечивает клетке защитные ф ункции. Хорошо проницаема для различных ионов, обладает высокой возбудимостью , быстро проводит волну деполяризации (нервные импульсы)

Ядро клетки - крупное, лежит эксцентрично (в центре), светлое, с обилием пылевидного хроматина. В ядре круглое ядрышко, что придает сходства ядру с совиным глазом. Ядро практически всегда одно.

В нервных клетках ганглией предстательной железы мужчин и стенки матки женщин обнаруживается до 15 ядер.

В цитоплазме присутствуют все общеклеточные органеллы, особенно хорошо развиты белоксинтезирующие органеллы.

В цитоплазме имеются локальные скопления гранулярной ЭПС с высоким содержанием рибосом и РНК. Эти участки окрашиваются в толлуидиновый синий цвет (по Нисселю) и имеют вид гранул (тигроид). Наличие тигроидов в клетке - показатель высокой степени его зрелости или дифференцировки и показатель высокой ф ункциональной активности.

Комплекс гольджи чаще располагается в том месте цитоплазмы, где от клетки отходит аксон. В его цитоплазме нет тигроида. Участок с к. Гольджи - аксонный холмик . Наличие к. Гольджи - актвный транспорт белков из тела клетки в аксон .

Митохондрии образуют крупные скопения в местах контакта соседних нервных кл еток.

Метаболизм нервных клеток носит аэробный характер, поэтому особенно чувствительны к гипоксии.

Лизосомы обеспечивают процесс внутриклеточной регенерации , лизируют состарившиеся клеточные органеллы .

Клеточный центр лежит между ядром и дендритами . Нервные клетки не делятся . Основной механизм регенерации - внутриклеточная регенерация .

Цитоскелет представлен нейротрубочкам и и нейрофибриллами , образуют густую сеть перикореони и поддерживают форму клетки. В аксоне лежат продольно, направляют транспортные потоки между телом и отростками нервной клетки.

Нервная ткань выполняет функции восприятия, проведения и передачи возбуждения, полученного из внешней среды и внутренних органов, а также анализ, сохранение полученной информации, интеграцию органов и систем, взаимодействие организма с внешней средой.

Основные структурные элементы нервной ткани - клетки нейроны и нейроглия .

Нейроны

Нейроны состоят из тела (перикариона ) и отростков, среди которых выделяют дендриты и аксон (нейрит). Дендритов может быть множество, аксон всегда один.

Нейрон как любая клетка состоит из 3 компонентов: ядра, цитоплазмы и цитолеммы. Основной объём клетки приходится на отростки.

Ядро занимает центральное положение в перикарионе. В ядре хорошо развито одно или несколько ядрышек.

Плазмолемма принимает участие в рецепции, генерации и проведении нервного импульса.

Цитоплазма нейрона имеет различное строение в перикарионе и в отростках.

В цитоплазме перикариона находятся хорошо развитые органеллы: ЭПС, комплекс Гольджи, митохондрии, лизосомы. Специфичными для нейрона структурами цитоплазмы на светооптическом уровне являются хроматофильное вещество цитоплазмы и нейрофибриллы .

Хроматофильное вещество цитоплазмы (субстанция Ниссля, тигроид, базофильное вещество) проявляется при окрашивании нервных клеток основными красителями (метиленовым синим, толуидиновым синим, гематоксилином и т.д.).

Нейрофибриллы - это цитоскелет, состоящий из нейрофиламентов и нейротубул, формирующих каркас нервной клетки. Опорная функция.

Нейротубулы по основным принципам своего строения фактически не отличаются от микротрубочек. Как и всюду они несут каркасную (опорную) функцию, обеспечивают процессы циклоза. Кроме этого, в нейронах довольно часто можно видеть липидные включения (зерна липофусцина). Они характерны для старческого возраста и часто появляются при дистрофических процессах. У некоторых нейронов в норме обнаруживаются пигментные включения (например, с меланином), что обуславливает окрашивание нервных центров, содержащих подобные клетки (черная субстанция, голубоватое пятно).

В теле нейронов можно видеть также транспортные пузырьки, часть из которых содержит медиаторы и модуляторы. Они окружены мембраной. Их размеры и строение зависят от содержания того или иного вещества.

Дендриты - короткие отростки, нередко сильно ветвятся. Дендриты в начальных сегментах содержат органеллы подобно телу нейрона. Хорошо развит цитоскелет.

Аксон (нейрит) чаще всего длинный, слабо ветвится или не ветвится. В нем отсутствует грЭПС. Микротрубочки и микрофиламенты располагаются упорядочено. В цитоплазме аксона видны митохондрии, транспортные пузырьки. Аксоны в основном миелинизированы и окружены отростками олигодендроцитов в ЦНС, или леммоцитами в периферической нервной системе. Начальный сегмент аксона нередко расширен и имеет название аксонного холмика, где происходит суммация поступающих в нервную клетку сигналов, и если возбуждающие сигналы достаточной интенсивности, то в аксоне формируется потенциал действия и возбуждение направляется вдоль аксона, передаваясь на другие клетки (потенциал действия).

Аксоток (аксоплазматический транспорт веществ). Нервные волокна имеют своеобразный структурный аппарат - микротрубочки, по которым перемещаются вещества от тела клетки на периферию (антероградный аксоток ) и от периферии к центру (ретроградный аксоток ).

Нервный импульс передаётся по мембране нейрона в определённой последовательности: дендрит - перикарион - аксон.

Классификация нейронов

  • 1. По морфологии (по количеству отростков) выделяют :
    • - мультиполярные нейроны (г) -- с множеством отростков (их большинство у человека),
    • - униполярные нейроны (а) -- с одним аксоном,
    • - биполярные нейроны (б) -- с одним аксоном и одним дендритом (сетчатка глаза, спиральный ганглий).
    • - ложно- (псевдо-) униполярные нейроны (в) - дендрит и аксон отходят от нейрона в виде одного отростка, а затем разделяются (в спинномозговом ганглии). Это вариант биполярных нейронов.
  • 2. По функции (по расположению в рефлекторной дуге) выделяют :
    • - афферентные (чувствительные ) нейроны (стрелка слева) - воспринимают информацию и передают ее в нервные центры. Типичными чувствительными являются ложноуниполярные и биполярные нейроны спинномозговых и черепно-мозговых узлов;
    • - ассоциативные (вставочные ) нейроны осуществляют взаимодействие между нейронами, их большинство в ЦНС;
    • - эфферентные (двигательные ) нейроны (стрелка справа) генерируют нервный импульс и передают возбуждение другим нейронам или клеткам других видов тканей: мышечным, секреторным клеткам.

Нейроглия: строение и функции.

Нейроглия, или просто глия -- сложный комплекс вспомогательных клеток нервной ткани, общный функциями и, частично, происхождением (исключение -- микроглия).

Глиальные клетки составляют специфическое микроокружение для нейронов, обеспечивая условия для генерации и передачи нервных импульсов, а также осуществляя часть метаболических процессов самого нейрона.

Нейроглия выполняет опорную, трофическую, секреторную, разграничительную и защитную функции.

Классификация

  • § Микроглиальные клетки, хоть и входят в понятие глия, не являются собственно нервной тканью, так как имеют мезодермальное происхождение. Они представляют собой мелкие отростчатые клетки, разбросанные по белому и серому веществу мозга и способные кфагоцитозу.
  • § Эпендимальные клетки (некоторые ученые выделяют их из глии вообще, некоторые -- включают в макроглию) выстилают желудочки ЦНС. Имеют на поверхности реснички, с помощью которых обеспечивают ток жидкости.
  • § Макроглия -- производная глиобластов, выполняет опорную, разграничительную, трофическую и секреторную функции.
  • § Олигодендроциты -- локализуются в ЦНС, обеспечивают миелинизацию аксонов.
  • § Шванновские клетки -- распространены по периферической нервной системе, обеспечивают миелинизацию аксонов, секретируют нейротрофические факторы.
  • § Клетки-сателлиты, или радиальная глия -- поддерживают жизнеобеспечение нейронов периферической нервной системы, являются субстратом для прорастания нервных волокон.
  • § Астроциты, представляющие собой астроглию, исполняют все функции глии.
  • § Глия Бергмана, специализированные астроциты мозжечка, по форме повторяющие радиальную глию.

Эмбриогенез

В эмбриогенезе глиоциты (кроме микроглиальных клеток) дифференцируются из глиобластов, которые имеют два источника -- медуллобласты нервной трубки и ганглиобласты ганглиозной пластинки. Оба эти источника на ранних этапах образовались изэктодермы.

Микроглия же -- производное мезодермы.

2. Астроциты, олигодендроциты, микроглиоциты

нервный глиальный нейрон астроцит

Астроциты -- клетки нейроглии. Совокупность астроцитов называется астроглией.

  • § Опорная и разграничительная функция -- поддерживают нейроны и разделяют их своими телами на группы (компартменты). Эту функцию позволяет выполнять наличие плотных пучков микротрубочек в цитоплазме астроцитов.
  • § Трофическая функция -- регулирование состава межклеточной жидкости, запас питательных веществ (гликоген). Астроциты также обеспечивают перемещение веществ от стенки капилляра до цитолеммы нейронов.
  • § Участие в росте нервной ткани-астроциты способны выделять вещества, распределение которых задает направление роста нейронов в период эмбрионального развития. Рост нейронов возможен как редкое исключение и во взрослом организме в обонятельном эпителии, где нервные клетки обновляются раз в 40 дней.
  • § Гомеостатическая функция -- обратный захват медиаторов и ионов калия. Извлечение глутамата и ионов калия из синаптической щели после передачи сигнала между нейронами.
  • § Гематоэнцефалический барьер -- защита нервной ткани от вредных веществ, способных проникнуть от кровеносной системы. Астроциты служат специфическим «шлюзом» между кровеносным руслом и нервной тканью, не допуская их прямого контакта.
  • § Модуляция кровотока и диаметра кровеносных сосудов -- астроциты способны к генерации кальциевых сигналов в ответ на нейрональную активность. Астроглия участвует в контроле кровотока, регулирует высвобождение некоторых специфических веществ,
  • § Регуляция активности нейронов- астроглия способна высвобождать нейропередатчики.

Виды астроцитов

Астроциты делятся на фиброзные (волокнистые) и плазматические. Фиброзные астроциты располагаются между телом нейрона и кровеносным сосудом, а плазматические -- между нервными волокнами.

Олигодендроциты, или олигодендроглиоциты -- клетки нейроглии. Это -- наиболее многочисленная группа глиальных клеток.

Олигодендроциты локализуются в центральной нервной системе.

Олигодендроциты выполняют также трофическую функцию по отношению к нейронам, принимая активное участие в их метаболизме.

Мы часто нервничаем, постоянно фильтруем поступающую информацию, реагируем на окружающий мир и пытаемся прислушаться к собственному телу, и во всем этом нам помогают удивительные клетки. Они являются результатом длительной эволюции, итогом работы природы на протяжении всего развития организмов на Земле.

Мы не можем сказать, что наша система восприятия, анализа и ответа идеальна. Но мы очень далеко ушли от животных. Понять, как работает такая сложная система, очень важно не только специалистам - биологам и медикам. Этим может заинтересоваться и человек другой профессии.

Информация в этой статье доступна каждому и может принести пользу не только как знание, ведь понимание своего организма - ключ к пониманию самого себя.

За что она отвечает

Нервная ткань человека отличается уникальным структурным и функциональным разнообразием нейронов и спецификой их взаимодействий. Ведь наш мозг - очень сложно устроенная система. А чтобы управлять нашим поведением, эмоциями и мышлением, нужна очень сложная сеть.

Нервная ткань, строение и функции которой определены совокупностью нейронов - клеток с отростками - и обуславливают нормальную жизнедеятельность организма, во-первых, обеспечивает согласованную деятельность всех систем органов. Во-вторых, она связывает организм с внешней средой и обеспечивает приспособительные реакции на ее изменение. В-третьих, контролирует обмен веществ при изменяющихся условиях. Все виды нервных тканей являются материальной составляющей психики: сигнальные системы - речь и мышление, особенностей поведения в социуме. Некоторые ученые высказывали гипотезу, что человек сильно развил свой разум, за что ему пришлось "пожертвовать" многими животными способностями. Например, мы не обладаем острым зрением и слухом, какими могут похвастаться животные.

Нервная ткань, строение и функции которой имеют в основе электрическую и химическую передачу, имеет четко локализованные эффекты. В отличие от гуморальной, эта система действует моментально.

Множество маленьких передатчиков

Клетки нервной ткани - нейроны - являются структурно-функциональными единицами нервной системы. Клетку нейрона характеризует непростое строение и повышенная функциональная специализация. Структура нейрона состоит из эукариотического тела (сомы), диаметр которой 3-100 мкм и отростков. Сома нейрона содержит ядро и ядрышко с аппаратом биосинтеза, который образует ферменты и вещества, присущие специализированным функциям нейронов. Это тельца Ниссля - плотно примыкающие друг к другу сплющенные цистерны шероховатой эндоплазматической сети, а также развитый аппарат Гольджи.

Функции нервной клетки могут непрерывно осуществляться, благодаря обилию в тельце «энергостанций», вырабатывающих АТФ, - хондрасом. Цитоскелет, представленный нейрофиламентами и микротрубочками, играет опорную роль. В процессе утраты мембранных структур синтезируется пигмент липофусцин, количество которого нарастает с увеличением возраста нейрона. В стволовых нейронах образуется пигмент мелатонин. Ядрышко состоит из белка и РНК, ядро из ДНК. Онтогенез ядрышка и базофилов определяют первичные поведенческие реакции людей, так как они зависят от активности и частоты контактов. Нервная ткань подразумевает основную структурную единицу - нейрон, хотя существуют еще другие виды вспомогательных тканей.

Особенности строения нервных клеток

Двухмембранное ядро нейронов имеет поры, через которые проникают и выводятся отработанные вещества. Благодаря генетическому аппарату происходит дифференцировка, обуславливающая конфигурацию и частоту взаимодействий. Еще одна функция ядра заключается в регуляции синтеза белка. Созревшие нервные клетки не могут делиться митозом, и генетически обусловленные активные продукты синтеза каждого нейрона должны обеспечить функционирование и гомеостаз в течение всего жизненного цикла. Замена поврежденных и утраченных частей может происходить лишь внутриклеточно. Но наблюдаются и исключения. В эпителии некоторые ганглии животных способны к делению.

Клетки нервной ткани визуально отличаются разнообразием размеров и форм. Нейронам присущи неправильные очертания из-за отростков, зачастую многочисленных и разросшихся. Это - живые проводники электрических сигналов, посредством которых составлены рефлекторные дуги. Нервная ткань, строение и функции которой зависят от высокодифференцированных клеток, роль которых заключается в восприятии сенсорной информации, кодировании ее посредством электрических импульсов и передаче остальным дифференцированным клеткам, способна обеспечить ответную реакцию. Она практически мгновенна. Но некоторые вещества, в том числе и алкоголь, сильно замедляют ее.

Про аксоны

Все виды нервной ткани функционируют с непосредственным участием отростков-дендритов и аксонов. Аксон переводится с греческого как «ось». Это удлиненный отросток, проводящий возбуждение от тела к отросткам других нейронов. Кончики аксона сильно разветвлены, каждый способен взаимодействовать с 5000 нейронов и образовывать до 10 тысяч контактов.

Локус сомы, от которого ответвляется аксон, называется аксонным холмиком. Его с аксоном объединяет то, что в них отсутствуют шероховатая эндоплазматическая сеть, РНК и ферментативный комплекс.

Немного о дендритах

Это название клеток обозначает «дерево». Словно ветви, от сомы отрастают коротенькие и сильно ветвящиеся отростки. Они принимают сигналы и служат локусами, где возникают синапсы. Дендриты с помощью боковых отростков - шипиков - увеличивают площадь поверхности и, соответственно, контакты. Дендриты без покровов, аксоны же окружены миелиновыми оболочками. Миелин имеет липидную природу, и его действие сходно с изоляционными свойствами пластикового или резинового покрытия электрических проводов. Точка генерации возбуждения - холмик аксона - возникает в месте отхождения аксона от сомы в триггерной зоне.

Белое вещество восходящих и нисходящих путей в спинном и головном мозге образуют аксоны, посредством которых проводятся нервные импульсы, осуществляя проводниковую функцию - передачу нервного импульса. Электрические сигналы передаются различным отделам головного и спинного мозга, осуществляя связь между ними. Исполнительные органы при этом могут соединяться с рецепторами. Серым веществом образована кора головного мозга. В позвоночном канале располагаются центры врожденных рефлексов (чихания, кашля) и вегетативные центры рефлекторной деятельности желудка, мочеиспускания, дефекации. Вставочные нейроны, тела и дендриты двигательных выполняют рефлекторную функцию, осуществляя двигательные реакции.

Особенности нервой ткани обусловлены числом отростков. Нейроны бывают униполярными, псевдоуниполярными, биполярными. Нервная ткань человека не содержит униполярных с одним В мультиполярных - обилие дендритных стволов. Такая разветвленность нисколько не сказывается на скорости проведения сигнала.

Разные клетки - различные задачи

Функции нервной клетки осуществляют разные группы нейронов. По специализации в рефлекторной дуге различают афферентные или чувствительные нейроны, проводящие импульсы от органов и кожных покровов в головной мозг.

Вставочные нейроны, или ассоциативные, - это группа переключающих или связывающих нейронов, которые анализируют и принимают решение, осуществляя функции нервной клетки.

Эфферентные нейроны, или чувствительные, проводят информацию об ощущениях - импульсы от кожных покровов и внутренних органов в мозг.

Эфферентные нейроны, эффекторные, или двигательные, проводят импульсы - «команды» от головного и спинного мозга ко всем рабочим органам.

Особенности нервных тканей в том, что нейроны выполняют сложную и ювелирную работу в организме, поэтому будничная примитивная работа - обеспечение питанием, удаление продуктов распада, защитная функция достается вспомогательным клеткам нейроглии или опорными шванновским.

Процесс образования нервных клеток

В клетках нервной трубки и ганглиозной пластинки происходит дифференциация, определяющая особенности нервных тканей в двух направлениях: крупные становятся нейробластами и нейроцитами. Мелкие клетки (спонгиобласты) не увеличиваются и становятся глиоцитами. Нервная ткань, виды тканей которой составлены нейронами, состоит из основных и вспомогательных. Вспомогательные клетки ("глиоциты") имеют особую структуру и функции.

Центральная представлена следующими типами глиоцитов: эпендимоцитами, астроцитами, олигодендроцитами; периферическая — глиоцитами ганглиев, концевыми глиоцитами и нейролеммоцитами - шванновскими клетками. Эпендимоциты выстилают полости желудочков мозга и спинномозговой канал и секретируют цереброспинальную жидкость. Виды нервных тканей - астроциты звездчатой формы образуют ткани серого и белого вещества. Свойства нервной ткани - астроцитов и их глиозная мембрана способствует созданию гематоэнцефалической преграды: между жидкой соединительной и нервной тканями проходит структурно-функциональная граница.

Эволюция ткани

Основным свойством живого организма является раздражительность или чувствительность. Тип нервной ткани обоснован филогенетическим положением животного и отличается широкой вариативностью, усложняясь в процессе эволюции. Всем организмам требуются определенные параметры внутренней координации и регуляции, надлежащее взаимодействие между стимулом для гомеостаза и физиологического состояния. Нервная ткань животных, особенно многоклеточных, строение и функции которой претерпели ароморфозы, способствует выживанию в борьбе за существование. У примитивных гидроидных представлена звездчатыми, нервными клетками, разбросанными по всему организму и связанными тончайшими отростками, переплетающимися между собой. Такой тип нервной ткани называется диффузной.

Нервная система плоских и круглых червей стволовая, лестничного типа (ортогон) состоит из парных мозговых ганглиев - скоплений нервных клеток и отходящих от них продольных стволов (коннективы), соединенных между собой поперечными тяжами-комиссурами. У кольчецов от окологлоточного ганглия, соединенного тяжами, отходит брюшная нервная цепочка, в каждом сегменте которой - два сближенных нервных узла, соединенных нервными волокнами. У некоторых мягкотелых концентрируются нервные ганглии с образованием головного мозга. Инстинкты и ориентация в пространстве у членистоногих определяются цефализацией ганглиев парного головного мозга, окологлоточным нервным кольцом и брюшной нервной цепочкой.

У хордовых нервная ткань, виды тканей которой сильно выражены, сложно устроена, но такое строение эволюционно обосновано. Разные слои возникают и располагаются на спинной стороне тела в виде нервной трубки, полость - невроцель. У позвоночных дифференцируется в головной и спинной мозг. При формировании головного мозга на переднем конце трубки образуются вздутия. Если у низших многоклеточных нервная система играет чисто связующую роль, то у высокоорганизованных животных осуществляется хранение информации, ее извлечение при необходимости, а также обеспечивает переработку и интеграцию.

У млекопитающих эти мозговые вздутия дают начало основным отделам головного мозга. А вся остальная трубка образует спинной мозг. Нервная ткань, строение и функции которой у высших млекопитающих свои, претерпела значительные изменения. Это прогрессивное развитие коры головного мозга и всех отделов обуславливающих сложную адаптацию к условиям внешней среды, и регуляция гомеостаза.

Центр и периферия

Отделы нервной системы классифицируют по функциональному и анатомическому строению. Анатомическое строение схоже с топонимикой, где выделяют центральную нервную систему и периферическую. В центральную нервную систему входит головной и спинной мозг, а периферическая представлена нервами, узлами и окончаниями. Нервы представлены скоплениями отростков вне центральной нервной системы, покрыты общей миелиновой оболочкой, проводят электрические сигналы. Дендриты чувствительных нейронов образуют чувствительные нервы, аксоны - двигательные нервы.

Совокупность длинных и коротких отростков образует смешанные нервы. Скапливаясь и концентрируясь, тела нейронов составляют узлы, выходящие за пределы центральной нервной системы. Нервные окончания делят на рецепторные и эффекторные. Дендриты посредством концевых разветвлений преобразуют раздражения в электрические сигналы. А эфферентные окончания аксонов - в рабочих органах, волокнах мышц, железах. Классификация по функциональности подразумевает деление нервной системы на соматическую и автономную.

Что-то мы контролируем, а что-то нам неподвластно

Свойства нервной ткани объясняют тот факт, что подчиняется воле человека, иннервируя работу опорной системы. Двигательные центры находятся в коре головного мозга. Автономная, которую называют еще и вегетативной, не зависит от воли человека. Исходя из собственных запросов, невозможно ускорить или замедлить сердцебиение или моторику кишечника. Так как местоположение вегетативных центров - гипоталамус, с помощью автономной нервной системы осуществляется контроль за работой сердца и сосудов, эндокринного аппарата, полостных органов.

Нервная ткань, фото которой вы можете видеть выше, образует симпатический и парасимпатический отделы которые позволяют выступать им в роли антагонистов, оказывая взаимопротивоположный эффект. Возбуждение в одном органе вызывает процессы торможения в другом. К примеру, симпатические нейроны вызывают сильное и частое сокращение камер сердца, сужение сосудов, скачки артериального давления, так как выделяется норадреналин. Парасимпатика, высвобождая ацетилхолин, способствует ослаблению ритмов сердца, увеличению просвета артерий, понижению давления. Уравновешивание этих групп медиаторов нормализует сердечный ритм.

Симпатическая нервная система действует во время интенсивного напряжения при испуге или стрессе. Сигналы возникают в районе грудных и поясничных позвонков. Парасимпатическая система включается при отдыхе и переваривании пищи, в процессе сна. Тела нейронов - в стволе и крестце.

Более подробно изучив особенности клеток Пуркинье, которые имеют грушевидную форму со множеством ветвящихся дендритов, можно увидеть, как осуществляется передача импульса, и раскрыть механизм последовательных этапов процесса.