Коэффициент вариации. Для чего нужен коэффициент вариации




Вариация измеряется с помощью относительных величин, называемых коэффициентами вариации и определяемых в виде отношения среднего отклонения к средней величине. Коэффициент вариации используют не только для сравнительной оценки вариации единиц совокупности, но и как характеристику однородности совокупности. Значения коэффициента вариации изменяются от 0 до 100% и чем ближе он к нулю, тем типичнее найденная средняя величина для изучаемой статистической совокупности, а значит и качественнее подобраны статистические данные. Совокупность считается количественно однородной, если коэффициент вариации не превышает 33% (для распределений, близких к нормальному). Различают следующие относительные показатели вариации:

Коэффициент вариации:

где - среднее квадратическое отклонение, - средняя арифметическая.

Линейный коэффициент вариации:

где - среднее линейное отклонение.

Коэффициент осцилляции:

где - размах вариации.

Вычислим коэффициенты вариации для группы организаций по грузообороту автомобильного транспорта (таблица 5.1) по формулам 5.9, 5.10, 5.11

Коэффициент вариации будет равен: , что превышает 33%, следовательно, совокупность неоднородна.

Вычислим линейный коэффициент вариации: . Следовательно, доля усредненного значения абсолютных отклонений организаций от средней величины равна 30,7%

Найдем коэффициент осцилляции: . Из этого следует, что разница между максимальным и минимальным значениями организаций превышает среднее значение почти в 1,078 раз.

Определим коэффициенты вариации для группировки площадей жилых помещений (в среднем на одного жителя) (таблица 5.3).

Вычислим коэффициент вариации по формуле (5.9):

. Это значит что коэффициент вариации не превышает 33%, следовательно, совокупность однородна.

Рассчитаем линейный коэффициент вариации по формуле (5.10):

. Это значит, что доля усредненного значения абсолютных отклонений площадей жилых помещений от средней величины равна 5,56%.

Найдем коэффициент осцилляции по формуле (5.11):

. Разница между максимальным и минимальным значениями площадей жилых помещений не превышает среднее значение.

РАСЧЕТ И ПОСТРОЕНИЕ СТРУКТУРНЫХ ХАРАКТЕРИСТИК ВАРИАЦИОННОГО РЯДА

Немного больше по теме

Политическая экономия Д. Рикардо как идеолога промышленного переворота
В последней трети XVIII в. в Англии начался промышленный переворот (промышленная революция). В течение нескольких десятилетий в легкой промышленности одно изобретение следовало за другим. Весь процесс производства в этой отрасли был переведен на машинную основу. Постепенно переворот распространился на другие отрасли легкой, а затем и тяжелой промышленности. Начался повсеместный пе...

Квадратный корень из дисперсии носит название среднего квадратического отклонения от средней, которое рассчитывается следующим образом:

Элементарное алгебраическое преобразование формулы среднего квадратического отклонения приводит ее к следующему виду:

Эта формула часто оказывается более удобной в практике расчетов.

Среднее квадратическое отклонение так же, как и среднее линейное отклонение, показывает, на сколько в среднем отклоняются конкретные значения признака от среднего их значения. Среднее квадратическое отклонение всегда больше среднего линейного отклонения. Между ними имеется такое соотношение:

Зная это соотношение, можно по известному показатели определить неизвестный, например, но (I рассчитать а и наоборот. Среднее квадратическое отклонение измеряет абсолютный размер колеблемости признака и выражается в тех же единицах измерения, что и значения признака (рублях, тоннах, годах и т.д.). Оно является абсолютной мерой вариации.

Для альтернативных признаков, например наличия или отсутствия высшего образования, страховки, формулы дисперсии и среднего квадратического отклонения такие:

Покажем расчет среднего квадратического отклонения по данным дискретного ряда, характеризующего распределение студентов одного из факультетов вуза по возрасту (табл. 6.2).

Таблица 6.2.

Результаты вспомогательных расчетов даны в графах 2-5 табл. 6.2.

Средний возраст студента, лет, определен по формуле средней арифметической взвешенной (графа 2):

Квадраты отклонения индивидуального возраста студента от среднего содержатся в графах 3-4, а произведения квадратов отклонений на соответствующие частоты - в графе 5.

Дисперсию возраста студентов, лет, найдем по формуле (6.2):

Тогда о = л/3,43 1,85 *ода, т.е. каждое конкретное значение возраста студента отклоняется от среднего значения на 1,85 года.

Коэффициент вариации

По своему абсолютному значению среднее квадратическое отклонение зависит не только от степени вариации признака, но и от абсолютных уровней вариантов и средней. Поэтому сравнивать средние квадратические отклонения вариационных рядов с различными средними уровнями непосредственно нельзя. Чтобы иметь возможность для такого сравнения, нужно найти удельный вес среднего отклонения (линейного или квадратического) в среднем арифметическом показателе, выраженном в процентах, т.е. рассчитать относительные показатели вариации.

Линейный коэффициент вариации вычисляют по формуле

Коэффициент вариации определяют по следующей формуле:

В коэффициентах вариации устраняется не только несопоставимость, связанная с различными единицами измерения изучаемого признака, но и несопоставимость, возникающая вследствие различий в величине средних арифметических. Кроме того, показатели вариации дают характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%.

По данным табл. 6.2 и полученным выше результатам расчетов определим коэффициент вариации, %, по формуле (6.3):

Если коэффициент вариации превышает 33%, то это свидетельствует о неоднородности изучаемой совокупности. Полученное в пашем случае значение говорит о том, что совокупность студентов по возрасту однородна по своему составу. Таким образом, важная функция обобщающих показателей вариации - оценка надежности средних. Чем меньше с1, а2 и V, тем однороднее полученная совокупность явлений и надежнее полученная средняя. Согласно рассматриваемому математической статистикой "правилу трех сигм" в нормально распределенных или близких к ним рядах отклонения от средней арифметической, не превосходящие ±3ст, встречаются в 997 случаях из 1000. Таким образом, зная х и а, можно получить общее первоначальное представление о вариационном ряде. Если, например, средняя заработная плата работника по фирме составила 25 000 руб., а а равна 100 руб., то с вероятностью, близкой к достоверности, можно утверждать, что заработная плата работников фирмы колеблется в пределах (25 000 ± ± 3 х 100) т.е. от 24 700 до 25 300 руб.

Нам приходится сталкиваться с расчётом таких значений, как дисперсия, среднеквадратичное отклонение и, разумеется, коэффициент вариации. Именно расчёту последнего стоит уделить особое внимание. Очень важно, чтобы каждый новичок, который только приступает к работе с табличным редактором, мог быстро подсчитать относительную границу разброса значений.

Что такое коэффициент вариации и для чего он нужен?

Итак, как мне кажется, нелишним будет провести небольшой теоретический экскурс и разобраться в природе коэффициента вариации. Этот показатель необходим для отражения диапазона данных относительно среднего значения. Иными словами, он показывает отношение стандартного отклонения к среднему значению. Коэффициент вариации принято измерять в процентном выражении и отображать с его помощью однородность временного ряда.

Коэффициент вариации станет незаменимым помощником в том случае, когда вам необходимо будет сделать прогноз по данным из заданной выборки. Этот индикатор выделит главные ряды значений, которые будут наиболее полезными для последующего прогнозирования, а также очистит выборку от малозначительных факторов. Так, если вы видите, что значение коэффициента равно 0%, то с уверенностью заявляйте о том, что ряд является однородным, а значит, все значения в нём равны один с другим. В случае, если коэффициент вариации принимает значение, превышающее отметку в 33%, то это говорит о том, что вы имеете дело с неоднородным рядом, в котором отдельные значения существенно отличаются от среднего показателя выборки.

Как найти среднее квадратичное отклонение?

Поскольку для расчёта показателя вариации в Excel нам необходимо использовать среднее квадратичное отклонение, то вполне уместно будет выяснить, как нам посчитать этот параметр.

Из школьного курса алгебры мы знаем, что среднее квадратичное отклонение - это извлечённый из дисперсии квадратный корень, то есть этот показатель определяет степень отклонения конкретного показателя общей выборки от её среднего значения. С его помощью мы можем измерить абсолютную меру колебания изучаемого признака и чётко её интерпретировать.

Рассчитываем коэффициент в Экселе

К сожалению, в Excel не заложена стандартная формула , которая бы позволила рассчитать показатель вариации автоматически. Но это не значит, что вам придётся производить расчёты в уме. Отсутствие шаблона в «Строке формул» никоим образом не умаляет способностей Excel, потому вы вполне сможете заставить программу выполнить необходимый вам расчёт, прописав соответствующую команду вручную.

Для того чтобы рассчитать показатель вариации в Excel, необходимо вспомнить школьный курс математики и разделить стандартное отклонение на среднее значение выборки. То есть на деле формула выглядит следующим образом - СТАНДОТКЛОН(заданный диапазон данных)/СРЗНАЧ(заданный диапазон данных). Ввести эту формулу необходимо в ту ячейку Excel, в которой вы хотите получить нужный вам расчёт.

Не забывайте и о том, что поскольку коэффициент выражается в процентах, то ячейке с формулой нужно будет задать соответствующий формат. Сделать это можно следующим образом:

  1. Откройте вкладку «Главная».
  2. Найдите в ней категорию «Формат ячеек » и выберите необходимый параметр.

Как вариант, можно задать процентный формат ячейке при помощи клика по правой кнопке мыши на активированной клеточке таблицы. В появившемся контекстном меню, аналогично вышеуказанному алгоритму нужно выбрать категорию «Формат ячейки» и задать необходимое значение.

Выберите «Процентный», а при необходимости укажите число десятичных знаков

Возможно, кому-то вышеописанный алгоритм покажется сложным. На самом же деле расчёт коэффициента так же прост, как сложение двух натуральных чисел. Единожды выполнив эту задачу в Экселе, вы больше никогда не вернётесь к утомительным многосложным решениям в тетрадке.

Всё ещё не можете сделать качественное сравнение степени разброса данных? Теряетесь в масштабах выборки? Тогда прямо сейчас принимайтесь за дело и осваивайте на практике весь теоретический материал, который был изложен выше! Пусть статистический анализ и разработка прогноза больше не вызывают у вас страха и негатива. Экономьте свои силы и время вместе с

Показатели вариации

Понятие вариации

Вариация - это наличие различий у отдельных единиц сово­купности по какому-либо признаку.

Эта категория занимает особое место в статистической науке, ибо именно наличие вариации единиц совокупности предопределяет необходимость статистики. Если бы отдельные единицы сово­купности имели они и те же значения признаков (например, рост, возраст у всех живущих людей был бы одинаковый), то для изу­чения данной совокупности по этим признакам достаточно было бы изучить только одну единицу совокупности. Однако зачастую значения признаков колеблются, изменяются при переходе от од­ной единицы к другой. Как правило, вариация является порожде­нием следующих причин:

Своеобразие условий, в которых происходит развитие от­дельных единиц совокупности;

Неравномерность развития отдельных единиц.

Например, причиной вариации роста у отдельно взятых людей является генетическая особен­ность каждого организма (основная причина), особенности питания, экологическая обстановка и т.д.; вариация урожайности может быть вызвана климатическими, почвенными особенностями зоны про­израстания, режима и возможности полива, качеством посадочного материала и т.д.

Вариация существует во времени и в пространстве.

Под вариаци­ей в пространстве понимается колеблемость значений признака по отдельным территориям (урожайность пшеницы в разных ре­гионах).

Под вариацией во времени подразумевается объективное измене­ние значений признака в разные периоды (или моменты). Напри­мер, со временем изменяется средняя продолжительность пред­стоящей жизни, доходность предприятий отрасли, уровень по­требностей людей и т.д.

Изучение вариации имеет важное значение, так как вариация ха­рактеризует степень однородности совокупности. Однородность совокупности - необходимое условие при расчете большинства статистических показателей, в частности средних величин.

Показатели вариации

Показатели вариации являются необходимым дополнением при расчете средних величин, так как определяют степень однород­ности совокупности.

Система показателей вариации включает следующее:

Размах вариации;

Среднее квадратическое отклонение;

Дисперсия;

Коэффициент вариации.

Значение показателей вариации:

Характеризуются размеры вариации признака;

Показатели вариации дополняют систему средних величин, в которой затушевываются индивидуальные различия;

Показатели вариации позволяют охарактеризовать уровень однородности совокупности;

С помощью показателей вариации, путем сравнения вариа­ции у отдельных признаков (разных), есть возможность измерить взаимосвязь между этими признаками.

Первый показатель, так называемый размах вариации, - наи­более простой из показателей, характеризует абсолютные разме­ры изменения признака и определяется как разница максимально­го и минимального значений признака:

Несмотря на простоту расчета, этот показатель имеет важный не­достаток - учитывает только два приграничных значения. В случае аномальности одного или двух приграничных значений, он может исказить действительную вариацию совокупности.

Для того чтобы избавиться от этого недостатка, рассчитывают отклонение каждой индивидуальной величины от средней по со­вокупности. Таким образом, учитывается значение каждой еди­ницы совокупности. Для того чтобы охарактеризовать это откло­нение одним числом, рассчитывают среднюю из этих значений. Данный показатель носит название среднее абсолютное (линей­ное) отклонение и определяется следующим образом:

Простой вид;

- взвешенный вид (для сгруппированных данных);

где d(L) - среднее абсолютное (линейное) отклонение;

х - индивидуальное значение признака (варианта);

Среднее из значений признака;

п - численность совокупности;

f - частота.

Среднее линейное отклонение характеризует средний размер отклонений индивидуальных значений признака от средней вели­чины. Таким образом, он характеризует абсолютные размеры ва­риации, имеет те же единицы измерения, что и признак, вариа­цию которого характеризует.

Недостаток: ввиду того, что применяется модуль, затруднено проведение математических операций. Поэтому он применяется редко.

Для того чтобы избавиться от недостатка предыдущего показате­ля, разницу между индивидуальным значением и средней возве­дем в квадрат и затем извлечем корень квадратный из полученно­го среднего значения. Полученный показатель будет называться среднее квадратическое отклонение:

- простая.

- взвешенная.

Играет ту же роль, что и среднее абсолютное отклонение, но, имеет перед ним одно преимущество, а именно, с ним проще проводить математические операции. Ввиду этого в 90 случаях из 100 используется этот показатель.

Еще более удобный для математических преобразований показа­тель вариации - дисперсия, который представляет собой сред­нее квадратическое отклонение в квадрате:

- простая,

- взвешенная.

С помощью дисперсии и среднего квадратического отклонения измеряются взаимосвязи между различными признаками. Кроме того, по этим показателям можно сравнивать совокупности в смысле их однородности по одинаковым признакам.

Вывод об однородности совокупности позволяет сделать коэффициент вариации , который может быть рассчитан несколькими способами в зависимости от исходной информации:

Характеризует средний процент отклонений индивидуальных значений признака от средней величины.

,

,

,

где V – коэффициент вариации;

σ – среднее квадратическое отклонение;

d (L) – среднее линейное отклонение;

Х МО – мода (структурная средняя);

Х МЕ – медиана(структурная средняя).

Коэффициент вариации имеет большое значение. Он позволяет сравнивать уровень вариации по различным признакам и используется для характеристики однородности совокупности. Если коэффициент вариации меньше 33%, то совокупность однородна.

Пример расчета показателей вариации.

Распределение студентов вуза по возрасту характеризуются следующими данными (табл. 1):

Таблица 1

Рассчитайте показатели, характеризующие вариацию возраста студентов для каждой формы



обучения. Сравните полученные результаты.

Рассчитаем показатели вариации, характеризующие совокупность студентов очно-заочной формы

обучения.

1. Размах вариации:

R = x max – x min = 31 - 18,5 = 12,5 (лет)

2. Средняя арифметическая:

3. Среднее линейное отклонение:

Возраст отдельно взятого студента отклоняется от среднего по совокупности возраста - 27 лет - на 3 года. То есть можно утверждать, что возраст наибольшего числа студентов не будет выходить за границы интервала: от 24,3 до 30,4 лет.

27,36 - 3,07 < 27,36 < 27,36+ 3,07.

Среднее квадратическое отклонение:

Среднее квадратическое отклонение также характеризует абсолютную величину отклонения индиви­дуального значения от средней. Как правило, значение среднего квадратического отклонения больше среднего линейного отклонения.

Дисперсия:

=13,899

Характеризует квадрат отклонений индивидуального значения от средней величины. Коэффициент вариации:

Средний процент отклонений индивидуальных значений от средней величины составляет 13,6%. Со­вокупность однородна. Сделаем аналогичные расчеты по совокупности студентов дневного отделения. Получаем следующие результаты:

d(L) = 3,40

V = 21,9%

На основании приведенных расчетов можно сделать вывод о том, что совокупность студентов очно-заочного отделения более однородная.

Расчет показателей вариации - достаточно трудоемкий процесс. В некоторых случаях, когда имеется ряд показателей с равноот­стоящими моментами времени или равноинтервальный ряд рас­пределения, расчет может быть упрощен. Сокращенные способы расчета дисперсии базируются на знании свойств дисперсии. Свойства дисперсии:

Если от всех значений варианты х отнять (прибавить) по­стоянное число А, то дисперсия не изменится;

Если каждое значение варианты разделить (умножить) на постоянную величину к, то дисперсия уменьшится (увеличится) в к 2 раз.

Сокращенные способы расчета дисперсии:

2. Способ моментов – применяется только в случае равенства интервалов.

По данным выборочного обследования произведена группировка вкладчиков по размеру вклада в Сбербанке города:

Определите:

1) размах вариации;

2) средний размер вклада;

3) среднее линейное отклонение;

4) дисперсию;

5) среднее квадратическое отклонение;

6) коэффициент вариации вкладов.

Решение:

Данный ряд распределения содержит открытые интервалы. В таких рядах условно принимается величина интервала первой группы равна величине интервала последующей, а величина интервала последней группы равна величине интервала предыдущей.

Величина интервала второй группы равна 200, следовательно, и величина первой группы также равна 200. Величина интервала предпоследней группы равна 200, значит и последний интервал будет иметь величину, равную 200.

1) Определим размах вариации как разность между наибольшим и наименьшим значением признака:

Размах вариации размера вклада равен 1000 рублей.

2) Средний размер вклада определим по формуле средней арифметической взвешенной.

Предварительно определим дискретную величину признака в каждом интервале. Для этого по формуле средней арифметической простой найдём середины интервалов.

Среднее значение первого интервала будет равно:

второго - 500 и т. д.

Занесём результаты вычислений в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х xf
200-400 32 300 9600
400-600 56 500 28000
600-800 120 700 84000
800-1000 104 900 93600
1000-1200 88 1100 96800
Итого 400 - 312000

Средний размер вклада в Сбербанке города будет равен 780 рублей:

3) Среднее линейное отклонение есть средняя арифметическая из абсолютных отклонений отдельных значений признака от общей средней:

Порядок расчёта среднего линейонго отклонения в интервальном ряду распределения следующий:

1. Вычисляется средняя арифметическая взвешенная, как показано в п. 2).

2. Определяются абсолютные отклонения вариант от средней:

3. Полученные отклонения умножаются на частоты:

4. Находится сумма взвешенных отклонений без учёта знака:

5. Сумма взвешенных отклонений делится на сумму частот:

Удобно пользоваться таблицей расчётных данных:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 480 15360
400-600 56 500 -280 280 15680
600-800 120 700 -80 80 9600
800-1000 104 900 120 120 12480
1000-1200 88 1100 320 320 28160
Итого 400 - - - 81280

Среднее линейное отклонение размера вклада клиентов Сбербанка составляет 203,2 рубля.

4) Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от средней арифметической.

Расчёт дисперсии в интервальных рядах распределения производится по формуле:

Порядок расчёта дисперсии в этом случае следующий:

1. Определяют среднюю арифметическую взвешенную, как показано в п. 2).

2. Находят отклонения вариант от средней:

3. Возводят в квадрат отклонения каждой варианты от средней:

4. Умножают квадраты отклонений на веса (частоты):

5. Суммируют полученные произведения:

6. Полученная сумма делится на сумму весов (частот):

Расчёты оформим в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 230400 7372800
400-600 56 500 -280 78400 4390400
600-800 120 700 -80 6400 768000
800-1000 104 900 120 14400 1497600
1000-1200 88 1100 320 102400 9011200
Итого 400 - - - 23040000