Металл индий. Металл индий: описание, свойства и применение




C давних пор в Европе высоко ценилась привозимая из страны чудес Индии ярко-синяя краска «индиго». По чистоте цвета она могла соперничать с синими лучами солнечного спектра. Владельцы текстильных предприятий не скупились на расходы, чтобы приобрести эту королеву красок, применявшуюся для крашения сукна и других тканей.

Когда в конце XVIII века Франция оказалась отрезанной английским военным флотом от Индии и других южных стран, многие заморские товары, в том числе и знаменитая краска «индиго», стали весьма дефицитными. Наполеон, желавший сохранить для своей армии традиционные темно-синие мундиры, пообещал колоссальную премию — миллион франков! -тому, кто найдет способ получения чудесной краски из европейского сырья.

Мы не случайно начали рассказ об одном из редких металлов- индии — с упоминания о краске «индиго»: ведь именно ей элемент № 49 обязан своим названием. В 1863 году в химической лаборатории маленького немецкого городка Фрейберга профессор Фердинанд Рейх и его ассистент Теодор Рихтер занимались спектроскопическим исследованием цинковых минералов Саксонских гор, надеясь обнаружить в них открытый за два года до этого элемент таллий.

Ученые подвергали анализу образец за образцом, однако, как ни вглядывались они в возникающие перед ними спектры, сочных зеленых линий, присущих таллию, не было и в помине. Но, видимо, в тот погожий день фортуне очень уж не хотелось поворачиваться спиной к фрейбергским химикам. Почему бы.не вознаградить их за долготерпенье и кропотливый труд? И вот в очередном спектре перед взором Мученых предстала необыкновенно яркая синяя линия, не принадле-

жавшая ни одному из известных элементов. Рейху и Рихтеру стало ясно, что им посчастливилось открыть новый элемент. А за сходство его спектральной линии с королевой красок «новорожденного» решено было назвать индием.

Теперь перед учеными встала проблема: выделить металл в чистом виде. Немало потратили они времени и труда, прежде чем сумели получить два образца металлического индия, каждый величиной с карандаш. Кстати, сходство с карандашом было не только внешним: индий оказался удивительно мягким металлом — почти в пять раз мягче свинца и в 20 раз мягче чистого золота.

Из десяти минералов, составляющих шкалу твердости по Моосу, девять тверже индия; ему уступает лишь самый податливый из них — тальк. На бумаге индий оставляет заметный след. Однако писать индиевыми «карандашами» было бы таким же безрассудным расточительством, как топить печку ассигнациями: французская Академия наук оценила образцы нового металла в 80 тысяч долларов — по 700 долларов за грамм!

Появляясь на свет, индий, разумеется, не подозревал, что доставит немало хлопот великому русскому химику Д. И. Менделееву. Впрочем, виноват в этом был не столько индий, сколько его первооткрыватели: они приняли новый металл за близкого родственника цинка и поэтому ошибочно решили, что он, как и цинк, двухвалентен. Кроме того, ученые неправильно определили его атомный вес, посчитав его равным 75,6.

Но в этом случае для индия не находилось места в периодической таблице, и Менделеев пришел к выводу, что индий трехвалентен, по свойствам он гораздо ближе к алюминию, чем к цинку, а атомный вес его составляет примерно 114.1 Это был далеко не единственный случай, когда великий химик на основе обнаруженного им закона вносил существенные коррективы в характеристики уже известных элементов. И на этот раз жизнь подтвердила его правоту: атомный вес индия, определенный с помощью самых точных методов, оказался равным 114,82.1 Элементу было отведено место № 49 в третьем ряду периодической системы.

Природный индий состоит из двух изотопов с массовыми числами 113 и 115, причем доля более тяжелого из них значительно солиднее-95,7%. До середины XX века оба эти изотопа имели репутацию стабильных. Однако в 1951 году ученые установили, что индий-115 все же подвержен бета-распаду и постепенно превращается в олово-115. Правда, процесс этот протекает крайне медленно: период полураспада ядер индия-115 очень велик — 6-1014 лет. Вполне понятно, что при таких «темпах» индию долго удавалось скрывать свою радиоактивность. В последние десятилетия физики получили около 20 радиоактивных изотопов индия; период полураспада наиболее долгоживущего из них (индия-114) — 49 дней.

Подобно многим другим металлам, индий долгое время не находил практического применения. И на это были вполне уважительные причины: ведь индий не только довольно редкий элемент (по содержанию в земной коре он среди «обитателей» периодической системы занимает скромное место в седьмом десятке), но и крайне рассеянный: в природе практически нет минералов, в которых главным компонентом (или хотя бы одним из основных) был бы индий. В лучшем случае его можно встретить в виде ничтожных примесей к рудам других металлов, где содержание его не превышает обычно 0,05%. Можно себе представить, какие трудности надо преодолеть, чтобы извлечь из этих руд спрятавшиеся в них крохи индия.

Однако свойства этого металла не могли оставлять равнодушными представителей технического мира. В 1924 году индием всерьез заинтересовался американский инженер Маррей. В поисках индиевых месторождений он вдоль и поперек исколесил Соединенные Штаты Америки, пока, наконец, в песчаных холмах Аризоны не обнаружил хоть и не ахти какие, но все же более высокие, чем в других местах, концентрации этого рассеянного элемента. Вскоре здесь возник завод по производству индия.

Одной из первых областей применения индия стало изготовление высококачественных зеркал, необходимых для астрономических приборов, прожекторов, рефлекторов и тому подобных устройств. Оказывается, обычное зеркало не одинаково отражает световые лучи различных цветов. Это значит, например, что цветная одежда, если ее рассматривать в зеркало, имеет несколько иную окраску, чем на самом деле.

Правда, глаз модницы, сидящей перед трельяжем, не в состоянии зафиксировать такие перемены в ее туалете, но для многих приборов цветовая фальсификация просто недопустима. И серебряные, и оловянные, и ртутно-висмутовые зеркала грешат этим недостатком.

Индий же не только обладает чрезвычайно высокой отражательной способностью, но и проявляет при этом полнейшую объективность, совершенно одинаково относясь ко всем цветам радуги — от красного до фиолетового. Вот почему, чтобы свет, излучаемый далекими звездами, доходил до астрономов неискаженным, в телескопах устанавливают индиевые зеркала.

В отличие от серебра, индий не тускнеет на воздухе, сохраняя высокий коэффициент отражения. Между прочим, индий сыграл немаловажную роль при… защите Лондона от массированных налетов немецкой авиации во время второй мировой войны. На первый взгляд, такое утверждение может показаться странным, но именно индиевые зеркала позволяли прожекторам противовоздушной обороны в поисках воздушных пиратов легко пробивать мощными лучами плотный туман, нередко окутывавший британские острова.

Поскольку индий имеет низкую температуру плавления — всего 156°С, во время работы прожектора зеркало постоянно нуждалось в охлаждении, однако английское военное ведомство охотно шло на дополнительные расходы, с удовлетворением подсчитывая число сбитых вражеских самолетов.

Но часто в технике низкая температура плавления может служить не недостатком, а достоинством. Так, сплав индия с висмутом, свинцом, оловом и кадмием плавится уже при 46,8°С и благодаря этому успешно справляется с ролью автоматического контролера, предохраняющего ответственные узлы и детали различных механизмов от перегрева. Известен сплав индия с галлием и оловом, который даже при комнатной температуре находится в жидком состоянии: он плавится при 10,6°С. Плавкие предохранители из индиевых сплавов широко используют в системах пожарной сигнализации.

Любопытные эксперименты, связанные с температурой плавления индия, были проведены в Канаде. Исследуя с помощью электронного микроскопа мельчайшие частицы этого металла, канадские физики обнаружили, что, когда размер частиц индия становится меньше некоторой величины, температура плавления его резко понижается. Так, частицы индия размером не более 30 ангстрем плавятся при температуре чуть выше 40°С.

Такой колоссальный скачок — от 156 до 40°С — представляет для ученых несомненный интерес. Но природа этого эффекта даже для видавшей виды современной физики пока остается загадкой: ведь теория процессов плавления разрабатывалась применительно к значительным массам вещества, а в опытах канадских физиков расплавлению подвергались «гомеопатические» дозы индия — всего несколько тысяч атомов.

Ценное свойство индия — его высокая стойкость к действию едких щелочей и морской воды.1 Эту способность приобретают и медные сплавы, в которые введено даже небольшое количество индия. Обшивка нижней части корабля, выполненная из такого сплава, легко переносит длительное пребывание в соленом подводном царстве.

Подшипникам, применяемым в современной технике, например в авиационных моторах, приходится трудиться в довольно тяжелых условиях: скорость вращения вала достигает нескольких тысяч оборотов в минуту, металл при этом нагревается и его сопротивление разъедающему действию смазочных масел снижается. Чтобы металл подшипников не подвергался эрозии, ученые предложили наносить на них тонкий слой индия. Его атомы не только плотно покрывают рабочую поверхность металла, но и проникают вглубь, образуя с ним прочный сплав. Такой металл смазке уже не по зубам: срок службы подшипников возрастает в пять раз.

Кстати, о зубах. Из индиевых сплавов (например, с серебром, оловом, медью и цинком), которым свойственны высокая прочность, коррозионная стойкость, долговечность, изготовляют зубные пломбы. В этих сплавах индий играет ответственную роль: он сводит к минимуму усадку металла при затвердевании пломбы.

Авиаторы хорошо знакомы с цинкоиндиевым сплавом, служащим антикоррозионным покрытием для стальных пропеллеров. Своеобразным тончайшим «одеялом» из олова и окиси g индия «укутывают» ветровые стекла самолетов. Такое стекло не замерзает — на нем не появляются ледяные узоры, которые вряд ли радовали бы взор пилотов. Сплавы индия широко используют для склеивания стекол или стекла с металлом (например, в вакуумной технике).

Некоторые сплавы индия очень красивы — неудивительно, что они приглянулись ювелирам. Как декоративный металл используют, в частности, сплав 75% золота, 20% серебра и 5% индия — так называемое зеленое золото. Известная американская фирма «Студебеккер» вместо хромирования наружных деталей автомобилей не без успеха применила индирова-ние. Индиевое покрытие значительно долговечнее хромистого.

В атомных реакторах индиевая фольга служит контролером, измеряющим интенсивность потока тепловых нейтронов и их энергию: сталкиваясь с ядрами стабильных изотопов индия, нейтроны превращают их в радиоактивные; при этом возникает излучение электронов, по интенсивности и энергии которого судят о нейтронном потоке.

Но бесспорно важнейшая область применения индия в современной технике — промышленность полупроводников.

Индий высокой чистоты необходим для изготовления германиевых выпрямителей и усилителей: он выступает при этом в роли примеси, обеспечивающей дырочную проводимость в германии. Кстати, сам индий, используемый для этой цели, практически не содержит примесей: выражаясь языком химиков, его чистота- «шесть девяток», т. е. 99,9999%! Некоторые соединения индия (сульфид, селенид, антимонид, фосфид) сами являются полупроводниками; их применяют для изготовления термоэлементов и других приборов. Антимонид индия, например, служит основой инфракрасных детекторов, способных «видеть» в темноте даже едва нагретые предметы.

Индий оказался одним из немногих пока химических элементов, «командированных» в космос, чтобы вписать новые страницы в технологию неорганических материалов. В 1975 году, незадолго до начала совместного советско-американского космического полета по программе «Союз» — «Аполлон», командиры экипажей А. Леонов и Т. Стаффорд в беседе с корреспондентом ТАСС высказали свое мнение о значении предстоящих экспериментов на орбите. В частности, они затронули вопрос о технологических опытах по плавке металлов и выращиванию кристаллов различных веществ.

«Предстоит выяснить возможность использования невесомости и вакуума для получения новых материалов — металлических и полупроводниковых, — сказал А. Леонов. — По мнению советских и американских ученых, в космосе можно сплавлять компоненты, не смешиваемые на Земле, создавать жаропрочные материалы…» «Наши астронавты, — добавил Т. Стаффорд, — на борту орбитальной станции «Скайлэб» проводили опыты по выращиванию кристаллов антимонида индия.

Удалось получить кристалл самый чистый и самый прочный из всех, когда-либо искусственно полученных на Земле». А в 1978-1980 годах на борту советской орбитальной научной станции «Салют-6» были проведены новые технологические эксперименты, в которых «участвовали» индий и его соединения.

Опыты с соединениями индия ведут и на Земле. Так, недавно антимонид индия был подвергнут давлению в 30 тысяч атмосфер. Оказалось, что в результате\’ таких «крепких объятий» изменилась кристаллическая решетка вещества и при этом его электропроводность возросла в миллион раз!

Мировое производство индия пока очень мало — всего несколько десятков тонн в год. Обычно этот ценнейший металл получают как… побочный продукт при переработке руд цинка, свинца, меди, олова. Оригинальный способ получения индия разработали ученые ГДР. Они предложили добывать его из пыли, облака которой «украшали» небо над одним из предприятий по переработке медистых сланцев. Пыль, в которой среди прочих компонентов содержится индий, сначала промывается горячей серной кислотой, затем проходит долгий путь сложных превращений, в результате которых получается чистый индий.

Интерес к индию все время растет. Ученые стремятся как можно больше узнать об этом металле. Несколько лет назад физики США сумели заполнить еще один -пробел в характеристике индия, определив конфигурацию его ядра: оказалось, что оно напоминает… футбольный мяч с полоской по «экватору».

…В природе индий встречается редко, но можно с уверенностью утверждать, что в промышленном мире он с каждым годом будет становиться все более и более желанным гостем.


С давних пор в Европе высоко ценилась привозимая из страны чудес Индии ярко-синяя краска «индиго». По чистоте цвета она могла соперничать с синими лучами солнечного спектра. Владельцы текстильных предприятий не скупились на расходы, чтобы приобрести эту королеву красок, применявшуюся для крашения сукна и других тканей. Когда в конце XVIII века Франция оказалась отрезанной английским военным флотом от Индии и других южных стран, многие заморские товары, в том числе и знаменитая краска «индиго», стали весьма дефицитными. Наполеон, желавший сохранить для своей армии традиционные темно-синие мундиры, пообещал колоссальную премию - миллион франков! - тому, кто найдет способ получения чудесной краски из европейского сырья.
Мы не случайно начали рассказ об одном из редких металлов- индии - с упоминания о краске «индиго»: ведь именно ей элемент № 49 обязан своим названием.
В 1863 году в химической лаборатории маленького немецкого городка Фрейберга профессор Фердинанд Рейх и его ассистент Теодор Рихтер занимались спектроскопическим исследованием цинковых минералов Саксонских гор, надеясь обнаружить в них открытый за два года до этого элемент таллий. Ученые подвергали анализу образец за образцом, однако, как ни вглядывались они в возникающие перед ними спектры, сочных зеленых линий, присущих таллию, не было и в помине. Но, видимо, в тот погожий день фортуне очень уж не хотелось поворачиваться спиной к фрейбергским химикам. Почему бы не вознаградить их за долготерпенье и кропотливый труд? И вот в очередном спектре перед взором ученых предстала необыкновенно яркая синяя линия, не принадлежавшая ни одному из известных элементов. Рейху и Рихтеру стало ясно, что им посчастливилось открыть новый элемент. А за сходство его спектральной линии с королевой красок «новорожденного» решено было назвать индием.
Теперь перед учеными встала проблема: выделить металл в чистом виде. Немало потратили они времени и труда, прежде чем сумели получить два образца металлического индия, каждый величиной с карандаш. Кстати, сходство с карандашом было не только внешним: индий оказался удивительно мягким металлом - почти в пять раз мягче свинца и в 20 раз мягче чистого золота. Из десяти минералов, составляющих шкалу твердости по Моосу, девять тверже индия; ему уступает лишь самый податливый из них - тальк. На бумаге индий оставляет заметный след. Однако писать индиевыми «карандашами» было бы таким же безрассудным расточительством, как топить печку ассигнациями: французская Академия наук оценила образцы нового металла в 80 тысяч долларов - по 700 долларов за грамм!
Появляясь на свет, индий, разумеется, не подозревал, что доставит немало хлопот великому русскому химику Д. И. Менделееву. Впрочем, виноват в этом был не столько индий, сколько его первооткрыватели: они приняли новый металл за близкого родственника цинка и поэтому ошибочно решили, что он, как и цинк, двухвалентен. Кроме того, ученые неправильно определили его атомный вес, посчитав его равным 75,6. Но в этом случае для индия не находилось места в периодической таблице, и Менделеев пришел к выводу, что индий трехвалентен, по свойствам он гораздо ближе к алюминию, чем к цинку, а атомный вес его составляет примерно 114.1 Это был далеко не единственный случай, когда великий химик на основе обнаруженного им закона вносил существенные коррективы в характеристики уже известных элементов. И на этот раз жизнь подтвердила его правоту: атомный вес индия, определенный с помощью самых точных методов, оказался равным 114,82. Элементу было отведено место № 49 в третьем ряду периодической системы.
Природный индий состоит из двух изотопов с массовыми числами 113 и 115, причем доля более тяжелого из них значительно солиднее - 95,7%. До середины XX века оба эти изотопа имели репутацию стабильных. Однако в 1951 году ученые установили, что мндий-115 все же подвержен бета-распаду и постепенно превращается в олово-115. Правда, процесс этот протекает крайне медленно: период полураспада ядер индия-115 очень велик - 1014 лет. Вполне понятно, что при таких «темпах» индию долго удавалось скрывать свою радиоактивность. В последние десятилетия физики получили около 20 радиоактивных изотопов индия; период полураспада наиболее долгоживущего из них (индия-114) - 49 дней.
Подобно многим другим металлам, индий долгое время не находил практического применения. И на это были вполне уважительные причины: ведь индий не только довольно редкий элемент (по содержанию в земной коре он среди «обитателей» периодической системы занимает скромное место в седьмом десятке), но и крайне рассеянный: в природе практически нет минералов, в которых главным компонентом (или хотя бы одним из основных) был бы индий. В лучшем случае его можно встретить в виде ничтожных примесей к рудам других металлов, где содержание его не превышает обычно 0,05%. Можно себе представить, какие трудности надо преодолеть, чтобы извлечь из этих руд спрятавшиеся в них крохи индия.
Однако свойства этого металла не могли оставлять равнодушными представителей технического мира. В 1924 году индием всерьез заинтересовался американский инженер Маррей. В поисках индиевых месторождений он вдоль и поперек исколесил Соединенные Штаты Америки, пока, наконец, в песчаных холмах Аризоны не обнаружил хоть и не ахти какие, но все же более высокие, чем в других местах, концентрации этого рассеянного элемента. Вскоре здесь возник завод по производству индия.
Одной из первых областей применения индия стало изготовление высококачественных зеркал, необходимых для астрономических приборов, прожекторов, рефлекторов и тому подобных устройств. Оказывается, обычное зеркало не одинаково отражает световые лучи различных цветов. 1 Это значит, например, что цветная одежда, если ее рассматривать в зеркало, имеет несколько иную окраску, чем на самом деле.
Правда, глаз модницы, сидящей перед трельяжем, не в состоянии зафиксировать такие перемены в ее туалете, но для многих приборов цветовая фальсификация просто недопустима. И серебряные, и оловянные, и ртутно-висмутовые зеркала грешат этим недостатком. Индий же не только обладает чрезвычайно высокой отражательной способностью, но и проявляет при этом полнейшую объективность, совершенно одинаково относясь ко всем цветам радуги - от красного до фиолетового. Вот почему, чтобы свет, излучаемый далекими звездами, доходил до астрономов неискаженным, в телескопах устанавливают индиевые зеркала.
В отличие от серебра, индий не тускнеет на воздухе, сохраняя высокий коэффициент отражения. Между прочим, индий сыграл немаловажную роль при… защите Лондона от массированных налетов немецкой авиации во время второй мировой войны. На первый взгляд, такое утверждение может показаться странным, но именно индиевые зеркала позволяли прожекторам противовоздушной обороны в поисках воздушных пиратов легко пробивать мощными лучами плотный туман, нередко окутывавший британские острова. Поскольку индий имеет низкую температуру плавления - всего 156°С, во время работы прожектора зеркало постоянно нуждалось в охлаждении, однако английское военное ведомство охотно шло на дополнительные расходы, с удовлетворенней» подсчитывая число сбитых вражеских самолетов.
Но часто в технике низкая температура плавления может служить не недостатком, а достоинством. Так, сплав индия с висмутом, свинцом, оловом и кадмием плавится уже при 46,8°С и благодаря этому успешно справляется с-ролью автоматического контролера, предохраняющего ответственные узлы и детали различных механизмов от перегрева. Известен сплав индия с галлием и оловом, который даже при комнатной температуре находится в жидком состоянии: он плавится при 10,6°С. Плавкие предохранители из индиевых сплавов широко используют в системах пожарной сигнализации.
Любопытные эксперименты, связанные с температурой плавления индия, были проведены в Канаде. Исследуя с помощью электронного микроскопа мельчайшие частицы этого металла, канадские физики обнаружили, что, когда размер частиц индия становится меньше некоторой величины, температура плавления его резко понижается. Так, частицы индия размером не более 30 ангстрем плавятся при температуре чуть выше 40°С. Такой колоссальный скачок - от 156 до 40°С - представляет для ученых несомненный интерес. Но природа этого эффекта даже для видавшей виды современной физики пока остается загадкой: ведь теория процессов плавления разрабатывалась применительно к значительным массам вещества, а в опытах канадских физиков расплавлению подвергались «гомеопатические» дозы индия - всего несколько тысяч атомов.
Ценное свойство индия - его высокая стойкость к действию едких щелочей и морской воды.1 Эту способность приобретают и медные сплавы, в которые введено даже небольшое количество индия. Обшивка нижней части корабля, выполненная из такого сплава, легко переносит длительное пребывание в соленом подводном царстве.
Подшипникам, применяемым в современной технике, например в авиационных моторах, приходится трудиться в довольно тяжелых условиях: скорость вращения вала достигает нескольких тысяч оборотов в минуту, металл при этом нагревается и его сопротивление разъедающему действию смазочных масел снижается. Чтобы металл подшипников не подвергался эрозии, ученые предложили наносить на них тонкий слой индия. Его атомы не только плотно покрывают рабочую поверхность металла, но и проникают вглубь, образуя с ним прочный сплав. Такой металл смазке уже не по зубам: срок службы подшипников возрастает в пять раз.
Кстати, о зубах. Из индиевых сплавов (например, с серебром, оловом, медью и цинком), которым свойственны высокая прочность, коррозионная стойкость, долговечность, изготовляют зубные пломбы. В этих сплавах индий играет ответственную роль: он сводит к минимуму усадку металла при затвердевании пломбы.
Авиаторы хорошо знакомы с цинкоиндиевым сплавом, служащим антикоррозионным покрытием для стальных пропеллеров. Своеобразным тончайшим «одеялом» из олова и окиси индия «укутывают» ветровые стекла самолетов. Такое стекло не замерзает - на нем не появляются ледяные узоры, которые вряд ли радовали бы взор пилотов. Сплавы индия широко используют для склеивания стекол или стекла с металлом (например, в вакуумной технике).
Некоторые сплавы индия очень красивы - неудивительно, что они приглянулись ювелирам. Как декоративный металл используют, в частности, сплав 75% золота, 20% серебра и 5% индия - так называемое зеленое золото. Известная американская фирма «Студебеккер» вместо хромирования наруж¬ных деталей автомобилей не без успеха применила индирование. Индиевое покрытие значительно долговечнее хромистого.
В атомных реакторах индиевая фольга служит контролером, измеряющим интенсивность потока тепловых нейтронов и их энергию: сталкиваясь с ядрами стабильных изотопов индия, нейтроны превращают их в радиоактивные; при этом возникает излучение электронов, по интенсивности и энергии которого судят о нейтронном потоке.
Но бесспорно важнейшая область применения индия в современной технике - промышленность полупроводников. Индий высокой чистоты необходим для изготовления германиевых выпрямителей и усилителей: он выступает при этом в роли примеси, обеспечивающей дырочную проводимость в германии. Кстати, сам индий, используемый для этой цели, практически не содержит примесей: выражаясь языком химиков, его чистота- «шесть девяток», т. е. 99,9999%! Некоторые соединения индия (сульфид, селенид, антимонид, фосфид) сами являются полупроводниками; их применяют для изготовления термоэлементов и других приборов. Антимонид индия, например, служит основой инфракрасных детекторов, способных «видеть» в темноте даже едва нагретые предметы.
Индий оказался одним из немногих пока химических элементов, «командированных» в космос, чтобы вписать новые страницы в технологию неорганических материалов. В 1975 году, незадолго до начала совместного советско-американского космического полета по программе «Союз»-«Аполлон», командиры экипажей А. Леонов и Т. Стаффорд в беседе с корреспондентом ТАСС высказали свое мнение о значении предстоящих экспериментов на орбите. В частности, они затронули вопрос о технологических опытах по плавке металлов и выращиванию кристаллов различных веществ. «Предстоит выяснить возможность использования невесомости и вакуума для получения новых материалов - металлических и полупроводниковых, - сказал А. Леонов. - По мнению советских и американских ученых, в космосе можно сплавлять компоненты, не смешиваемые на Земле, создавать жаропрочные материалы…» «Наши астронавты, - добавил Т. Стаффорд, - на борту орбитальной станции «Скайлэб» проводили опыты по выращиванию кристаллов антимонида индия. Удалось получить кристалл самый чистый и самый прочный из всех, когда-либо искусственно полученных на Земле». А в 1978-1980 годах на борту советской орбитальной научной станции «Салют-6» были проведены новые технологические эксперименты, в которых «участвовали» индий и его соединения.
Опыты с соединениями индия ведут и на Земле. Так, недавно антимонид индия был подвергнут давлению в 30 тысяч атмосфер. Оказалось, что в результате таких «крепких объятий» изменилась кристаллическая решетка вещества и при этом его электропроводность возросла в миллион раз!
Мировое производство индия пока очень мало - всего несколько десятков тонн в год. Обычно этот ценнейший металл получают как… побочный продукт при переработке руд цинка, свинца, меди, олова. Оригинальный способ получения индия разработали ученые ГДР. Они предложили добывать его из пыли, облака которой «украшали» небо над одним из предприятий по переработке медистых сланцев. Пыль, в которой среди прочих компонентов содержится индий, сначала промывается горячей серной кислотой, затем проходит долгий путь сложных превращений, в результате которых получается чистый индий.
Интерес к индию все время растет. Ученые стремятся как можно больше узнать об этом металле. Несколько лет назад физики США сумели заполнить еще один пробел в характеристике индия, определив конфигурацию его ядра: оказалось, что оно напоминает… футбольный мяч с полоской по «экватору».
…В природе индий встречается редко, но можно с уверенностью утверждать, что в промышленном мире он с каждым годом будет становиться все более и более желанным гостем.

Индий (лат. Indium), In, химический элемент III группы периодической системы Менделеева; атомный номер 49, атомная масса 114,82; белый блестящий мягкий металл. Элемент состоит из смеси двух изотопов: 113 In (4,33%) и 115 In (95,67%); последний изотоп обладает очень слабой β-радиоактивностью (период полураспада T ½ = 6·10 14 лет).

В 1863 году немецкие ученые Ф. Райх и T. Рихтер при спектроскопическом исследовании цинковой обманки обнаружили в спектре новые линии, принадлежащие неизвестному элементу. По ярко-синей (цвета индиго) окраске этих линий новый элемент был назван Индий.

Распространение Индия в природе. Индий - типичный рассеянный элемент, его среднее содержание в литосфере составляет 1,4·10 -5 % по массе. При магматических процессах происходит слабое накопление Индия в гранитах и других кислых породах. Главные процессы концентрации Индия в земной коре связаны с горячими водными растворами, образующими гидротермальные месторождения. Индий связан в них с Zn, Sn, Cd и Pb. Сфалериты, халькопириты и касситериты обогащены Индием в среднем в 100 раз (содержание около l,4·10 -3 %). Известны три минерала Индия - самородный Индий, рокезит CuInS 2 и индит In 2 S 4 , но все они крайне редкие. Практическое значение имеет накопление Индия в сфалеритах (до 0,1%, иногда 1%). Обогащение Индия характерно для месторождений Тихоокеанского рудного пояса.

Физические свойства Индия. Кристаллическая решетка Индия тетрагональная гранецентрированная с параметрами а = 4,583Å и с= 4,936Å. Атомный радиус 1,66Å; ионные радиусы In 3+ 0,92Å, In + 1,30Å; плотность 7,362 г/см 3 . Индий легкоплавок, его t пл 156,2 °C; t кип 2075 °C. Температурный коэффициент линейного расширения 33·10 -6 (20 °С); удельная теплоемкость при 0-150°С 234,461 дж/(кг·К), или 0,056 кал/(г·° С); удельное электросопротивление при 0°C 8,2·10 -8 ом·м, или 8,2·10 -6 ом·см; модуль упругости 11 н/м 2 , или 1100 кгс/мм 2 ; твердость по Бринеллю 9 Мн/м 2 , или 0,9 кгс/мм 2 .

Химические свойства Индия. В соответствии с электронной конфигурацией атома 4d 10 5s 2 5p 1 Индий в соединениях проявляет валентность 1, 2 и 3 (преимущественно). На воздухе в твердом компактном состоянии Индий стоек, но окисляется при высоких температурах, а выше 800 °C горит фиолетово-синим пламенем, давая оксид In 2 O 3 - желтые кристаллы, хорошо растворимые в кислотах. При нагревании Индий легко соединяется с галогенами, образуя растворимые галогениды InCl 3 , InBr 3 , InI 3 . Нагреванием Индия в токе HCl получают хлорид InCl 2 , а при пропускании паров InCl 2 над нагретым In образуется InCl. С серой Индий образует сульфиды In 2 S 3 , InS; они дают соединения InS·In 2 S 3 и 3InS·In 2 S 3 . В воде в присутствии окислителей Индий медленно корродирует с поверхности: 4In + 3O 2 +6H 2 O = 4In(ОН) 3 . В кислотах Индий растворим, его нормальный электродный потенциал равен -0,34 в, в щелочах практически не растворяется. Соли Индия легко гидролизуются; продукт гидролиза - основные соли или гидрооксид In(OH) 3 . Последний хорошо растворим в кислотах и плохо - в растворах щелочей (с образованием солей - индатов): In(ОН) 3 + 3KOH = K 3 . Соединения Индия низших степеней окисления довольно неустойчивы; галогениды InHal и черный оксид In 2 O - очень сильные восстановители.

Получение Индия. Индий получают из отходов и промежуточных продуктов производств цинка, свинца и олова. Это сырье содержит от тысячных до десятых долей процента Индия. Извлечение Индия складывается из трех основные этапов: получение обогащенного продукта - концентрата Индия; переработка концентрата до чернового металла; рафинирование. В большинстве случаев исходное сырье обрабатывают серной кислотой и переводят Индий в раствор, из которого гидролитическим осаждением выделяют концентрат. Черновой Индий выделяют главным образом цементацией на цинке или алюминии. Рафинирование производят химическими, электрохимическими, дистилляционными и кристаллофизическими методами.

Применение Индия. Наиболее широко Индий и его соединения (например, нитрид InN, фосфид InP, антимонид InSb) применяют в полупроводниковой технике. Индий служит для различных антикоррозионных покрытий (в т. ч. подшипниковых). Индиевые покрытия обладают высокой отражательной способностью, что используется для изготовления зеркал и рефлекторов. Промышленное значение имеют некоторые сплавы Индий, в том числе легкоплавкие сплавы, припои для склеивания стекла с металлом и другие.


Индий в последние годы получил сравнительно широкое промышленное применение. Об этом свидетельствует общий объем производства индия, достигший в 1942 г. за рубежом 20 г в год.
В основном индий используется для антикоррозионных покрытий. Кроме того, промышленное значение имеют некоторые сплавы индия.
Покрытия . Наиболее важно применение индия для покрытия подшипников в мощных двигателях внутреннего сгорания (например, в авиации и автостроении). Используемые здесь подшипники на основе кадмия (с добавками 2,25% Ag и 0,25% Cu) или медносвинцовые подшипники при высокой температуре разъедаются смазочными маслами. Для защиты от коррозии поверхность подшипника покрывают индием. Покрытие наносится электролитическим способом, затем производят нагревание подшипника, для того чтобы индий диффундировал в основной сплав. При получается покрытие, защищающее подшипник от коррозии при работе в самых жестких условиях.
Применяют покрытия индием (с целью защиты от коррозии, а также как декоративные) железа или стали, многих цветных металлов и серебра.
Электролитическое покрытие индием железа и его сплавов производится по предварительно нанесенному слою цинка, меди или кадмия. Обычно после электролитического нанесения индия на металл или сплав деталь нагревают при температуре несколько выше плавления индия в течение нескольких часов. При этом индий частично диффундирует в покрываемый металл, что обеспечивает образование неотслаиваемого беспористого покрытия.
Индиевые покрытия обладают высокой (хотя и несколько меньшей, чем серебряные) отражательной способностью. В отличие от серебряных, индиевые покрытия не тускнеют и сохраняют свои коэффициент отражения. Это используется для изготовления рефлекторов.
Сплавы . Промышленное значение имеют сплавы индия со свинцом, оловом, кадмием и висмутом. Некоторые из них благодаря низкой температуре плавления используются в системах пожарной сигнализации и в спринклерах. Так, сплав, содержащий 18,36% In; 40,7% Bi; 22% Pb; 10,6% Sn; 8,16% Cd, плавится при температуре 46,5°.
Индий вводят в состав свинцовооловянных припоев в том случае, когда необходимо повысить устойчивость припоя против действия щелочей. Присадки 1-5% In к свинцовосеребряному припою (3% Ag) повышают прочность припоя.
В вакуумной технике нашли применение припои из сплавов индия с оловом (50% In, 50% Sn) для соединения стекла со стеклом или стекла с металлом. Этот сплав обладает способностью смачивать стекло. Стекло предварительно нагревают, сплав наносят на нагретую поверхность ровным слоем и затем соединяют части.
Другие области применения . Некоторое значение индий имеет в производстве стекла. Окись и сернистые соединения индия придают стеклу янтарные оттенки - от светложелтых до темножелтых тонов. Добавки 0,05% In2O3 окрашивают стекло в красивый желтый цвет.
Имеются перспективы использования индия и некоторых его соединений в полупроводниковой электронике. Так, индий применяют при изготовлении германиевых кристаллических выпрямителей и усилителей как примесь, создающую дырочную проводимость в германии. Окись, сульфид, селенид и теллурид индия являются полупроводниками. Они могут быть использованы в качестве фотопроводников, термистеров и резистеров.

Имя:*
E-Mail:
Комментарий:

Добавить

27.03.2019

В-первую очередь надо определиться сколько вы готовы потратить на покупку. Специалисты рекомендуют начинающим инвесторам сумму от 30 тысяч рублей до 100. Стоит...

27.03.2019

Металлопрокат в наше время активно используется в самых разных ситуациях. Действительно, на многих производствах просто не обойтись без него, так как металлопрокат...

27.03.2019

Стальные прокладки овального сечения предназначены для герметизации фланцевых соединений арматуры и трубопроводов, которые транспортируют агрессивные среды....

26.03.2019

Многие из нас слышали о такой должности как системный администратор, но далеко не каждый представляет себе, что конкретно имеется в виду под этой фразой....

26.03.2019

Каждый человек, который делает ремонт в своем помещении, должен задумываться о том, какие конструкции необходимо установить в межкомнатное пространство. На рынке...

26.03.2019

26.03.2019

На сегодняшний день газоанализаторы активно применяют в нефтяной и в газовой отраслях, в коммунальной сфере, в ходе осуществления анализов в лабораторных комплексах, для...

26.03.2019

На сегодняшний день металлические емкости активно используются с целью стационарного хранения разного рода жидкостей, среди которых нефть и нефтепродукты, на складах, в...

25.03.2019

На предприятии Algerian Qatari Steel, располагающемся в населённом пункте Беллара, стартовали «горячие» проверки проволочного стана с показателем мощности примерно...

25.03.2019

Высочайший уровень надёжности снабжения электричеством для ответственных потребителей можно достигнуть посредством эксплуатации автономных генераторов. Принимая во...

Индий — серебристо-белый металл c сильным блеском, по внешнему виду напоминающий свежий срез цинка. Его относят к группе лёгких металлов. Он довольно мягкий, к тому же ковкий и легкоплавкий (плавится при температуре 156,5 °C). Индий без труда режется ножом, он почти в 5 раз мягче свинца. На бумаге оставляет след. Это довольно редкий, ценный и дорогой метал.
По химическим свойствам индий сходен с галлием и алюминием. Согласно с периодической системой Менделеева, индий — химический элемент главной подгруппы III группы. Его атомная масса 114,818. Элемент состоит из двух изотопов, один из которых обладает довольно слабой β-радиоактивностью. Ядро индия напоминает мяч с полоской по «экватору».

Открытие элемента

Все произошло случайно в далеком 1863 году в районе Фрейберга (Германия). В химической лаборатории Фердинанд Рейх и Теодор Рихтер проводили спектроскопическое исследование цинковых минералов, добытых в горах Саксонии. Они хотели обнаружить таллий, который открыли в 1861 году английские и французские ученые. Исследователи подвергли анализу немало образцов цинковой обманки, но так и не увидели в спектре зеленые линии, присущие таллию. Впрочем, увидеть их надеялся преподаватель химии Теодор Рихтер. Профессор Рейх был дальтоником и естественно не мог различить цвета спектральных линий. Исследуя образцы, глазастый Рихтер в спектре одного из них увидел яркую синюю линию. Ни один из известных элементов не мог таким похвалиться. Таким образом, ученым удалось прославиться. Новый элемент назвали индием, в честь сходства спектральной линии со знаменитым красителем «индиго».

Но это было лишь полдела. Впереди предстояло получить чистый металл. На это ушло немало труда и времени. И все же ученые получили два образца, величиной с карандаш. Стоили они по тогдашним ценам 80 тыс. долларов.

На этом история не закончилась. Веское слово сказал светило химической науки Дмитрий Менделеев. Дело в том, что первооткрыватели посчитали, что индий - близкий родственник цинка и решили, что их детище двухвалентно. К тому же они ошиблись с определением его атомного веса (считали, что он равен 75,6). Все это привело к нестыковке с таблицей Менделеева. Русский ученый определил, что элемент трехвалентен. К тому же, свойства индия значительно ближе к алюминию, а его атомный вес около 114.

В 1871 году индий стал 49 элементом периодической системы.

Наличие в природе

Индий — достаточно редкий металл. Его относят к типичным рассеянным элементам. Известно три минерала индия и все они крайне редкие. Индий не образует самостоятельных месторождений. Он входит в состав руд других металлов. Накопление этого элемента в сфалеритах, до 0,1-1%, имеет практическое значение. Индия производят достаточно мало - несколько сотен тонн в год. Металл получают преимущественно при переработке руд свинца, цинка, олова и меди (как побочный продукт). Процент индия в этом сырье составляет от тысячных до десятых долей. Индий также можно добывать из пыли, которая возникает при переработке медистых сланцев.

Химические свойства

Индий не тускнеет при комнатной температуре (воздух должен быть сухим). При температуре выше 800°C он загорается фиолетово-синим пламенем. К тому же происходит образование оксида. Этот металл не реагирует даже с кипящими растворами щелочей. Он быстро растворяется в хлорной и азотной кислоте, медленнее - в соляной и серной. Индий также реагирует с бромом и хлором, а при нагревании - с серой, диоксидом серы, селеном, теллуром, йодом.

Применение индия

С каждым годом интерес к индию усиливается, он становится дефицитным и стремительно дорожающим материалом. Это связано с его уникальными свойствами. В ближайшее время, в связи с ростом спроса на сенсорные экраны, солнечные батареи другие электронные устройства, потребление индия лишь увеличится. Индий и его соединения нашли широкое применение в полупроводниковой технике, микроэлектронике. Этот металл используют в качестве различных антикоррозионных покрытий. При нанесении тонкого слоя индия подшипники служат в 5 раз дольше. Индий — незаменимый элемент для производства отражателей автомобильных фар, различных зеркал, изготовления рефлекторов. Его используют как компонент ряда сплавов и легкоплавких припоев. К примеру, индий позволяет спаивать стекло с металлом. Индий используют как материал для фотоэлементов, при приготовлении зубных цементов. Нашлось применение индия и в качестве уплотнителя и в космических технологиях.