Современные представления о нервно-трофической функции. Адаптационно трофическая функция внс Трофическая функция




Изучение трофических отношений между автономной нервной системой и иннервируемой ею тканью является одним из наиболее сложных вопросов. Из имеющихся сейчас доказательств трофической функции большинство является сугубо косвенными.

До сих пор не ясно, все ли нейроны автономной нервной системы обладают трофической функцией, или это прерогатива только симпатической части, и ответственны ли за них исключительно механизмы, относящиеся к пусковой активности, т. е. различные медиаторы, или другие, неизвестные пока биологически активные вещества?

Хорошо известно, что в процессе длительной работы мышца утомляется, вследствие чего ее работа уменьшается и может, наконец, совершенно прекратиться.

Известно также, что после большего или меньшего отдыха работоспособность утомленных мышц восстанавливается. Что же «снимает» утомление мышцы, и не имеет ли к этому отношения симпатическая нервная система?

Л. А. Орбели (1927) было установлено, что если раздражать двигательные нервы и этим доводить мышцы конечности лягушки до значительного утомления, то оно быстро исчезает и конечность вновь приобретает способность работать сравнительно долгое время, если к раздражению двигательного нерва присоединить стимуляцию симпатического ствола этой же конечности.

Таким образом, включение в работу симпатического нерва, изменяющего функциональное состояние утомленной мышцы, устраняет возникшую усталость и делает мышцу снова работоспособной. В адаптационно-трофическом действии симпатической нервной системы Л. А. Орбели выделял две взаимосвязанные стороны. Первая - адаптационная. Она определяет функциональные параметры рабочего органа. Вторая обеспечивает поддержание этих параметров посредством физико-химических изменений уровня метаболизма тканей.

Состояние симпатической иннервации оказывает значительное влияние на содержание в мышце ряда химических веществ, играющих важную роль в ее деятельности: молочной, кислот, гликогена, креатинина.

Симпатическое волокно оказывает также влияние на способность мышечной ткани проводить электричество, существенно влияет на возбудимость двигательного нерва и т. д.

На основании всех этих данных было сделано заключение, что симпатическая нервная система, не вызывая в мышце никаких структурных изменений, вместе с тем приспосабливает мышцу, изменяя ее физические и химические свойства, и делает ее более или менее чувствительной к тем импульсам, которые приходят к ней по двигательным волокнам. Благодаря этому ее работа становится более приспособленной для потребностей данного момента.

Высказывалось предположение о том, что усиление работы утомленной скелетной мышцы под влиянием раздражения подходящего к ней симпатического нерва происходит за счет сокращений кровеносных сосудов и соответственно поступления в капилляры новых порций крови, однако при последующем изучении это предположение не подтвердилось.

Оказалось, что феномен этот можно воспроизвести не только на обескровленной, но и на мышце, сосуды которой заполнены вазелиновым маслом.

«Физиология вегетативной нервной системы»,
А.Д. Ноздрачев

Наряду с функцией передачи импульсов, вызывающих мышечные сокращения, нервные волокна и их окончания оказывают также трофическое воздействие на мышцу, т. е. участвуют в регуляции ее обмена веществ. Хорошо известно, что денервация мышцы путем перерезки двигательных корешков спинного мозга приводит к постепенно развивающейся атрофии мышечных волокон. Специальные исследования показывают, что эта атрофия не является лишь результатом бездеятельности мышцы, потерявшей двигательную иннервацию.

Бездеятельность мышцы может быть вызвана и путем тендотомиии т. е. перерезки сухожилия. Однако если сравнить мышцу после тендотомии и после денервации, то можно убедиться, что в последнем случае в мышце развиваются качественно иные изменения ее свойств, не обнаруживающиеся при тендотомии. Так, денервированные мышечные волокна приобретают высокую чувствительность к ацетилхолину на всем своем протяжении, в то время как в нормальной или тендотомированной мышце высокой чувствительностью к ацетихолину обладает только область постсинаптической мембраны.

В денервированной мышце резко падает активность ряда ферментов и, в частности, активность аденозинтрифосфатазы, играющей важную роль в процессе освобождения энергии, заключенной в фосфатных связях аденозинтрифосфорной кислоты. В то же время при денервации значительно усилены процессы распада белков, что приводит к характерному для атрофии постепенному уменьшению мышечной ткани. Всестороннее изучение обмена веществ в денервированной мышце позволило С. Е. Северину прийти к выводу, что прекращение трофических влияний нерва приводит к тому, что процессы обмена веществ в мышце начинают протекать беспорядочно, некоординированно.

Конкретный механизм, с помощью которого двигательные нервные волокна и их окончания оказывают регулирующее влияние на обмен веществ, пока еще не выяснен. Есть основания считать, что выделяющийся в нервных окончаниях медиатор - ацетилхолин - и продукты его расщепления холипэстеразой - холин и уксусная кислота - вмешиваются в обмен веществ мышцы, оказывая активирующее влияние на определенные ферментные системы. Так, опыты В. М. Василевского показали, что введение ацетилхолина в денервированную мышцу кролика резко увеличивает распад аденозинтрифосфата, креатинфосфата и гликогена во время тетануса, вызванного прямым электрическим раздражением этой мышцы.

В связи с этим отметим, что ацетилхолин секретируется нервными окончаниями не только при возбуждении, но и в покое. Различие состоит лишь в том, что в покое происходит выделение незначительных количеств ацетилхолина в синаптическую щель, в то время как иод влиянием нервного импульса освобождаются большие порции этого медиатора.

Выделение ацетилхолина в покое связывают с тем, что отдельные пузырьки в нервном окончании «созревают» и время от времени разрываются. Освобождающиеся при этом небольшие количества-«кванты» - ацетилхолина вызывают деполяризацию постсинаптической мембраны, что проявляется возникновением так называемых миниатюрных потенциалов. Эти миниатюрные потенциалы имеют амплитуду около 0,5 мв, что примерно в 50 раз меньше амплитуды потенциала концевой пластинки. Их частота-порядка 1 в секунду.

Можно полагать, что образование нервными окончаниями ацетилхолина и, возможно, каких-то еще других, пока не изученных веществ в покое и при возбуждении является важным механизмом трофического воздействия нерва на мышцу.

Специальное трофическое влияние на скелетную мышцу оказывают волокна симпатической нервной системы, в окончаниях которых образуются адреналиноподобные вещества.

Трофика нейрона. Внутри нейрона находится желеобразное вещество - нейроплазма. Тела нервных клеток выполняют трофическую функцию по отношению к отросткам, т. е. регулируют их обмен веществ. Трофическое влияние на эффекторные клетки организма с помощью химических веществ самих нервных клеток. Питательная функция глии была предположена Гольджи, исходя из структурных соотношений нервных и глиальных клеток и соотношения последних с капиллярами мозга. Отростки протоплазматических астроцитов (сосудистые ножки) тесно контактируют с базальной мембраной капилляров, покрывая до 80% их поверхности. Трофическая функция глиальных клеток осуществляется либо одним астроцитом (сосудистая ножка ножка на капилляре а другие отростки – на нейроне), либо через систему астроцит – олигодендроцит – нейрон. Показано также что глиальные клетки принимают участие в образовании гемато-энцефалического барьера, обеспечивающего, как известно, селективный перенос веществ из крови в нервную ткань. Однако, следует отметить, что существенная роль глиальных клеток в функционировании гемато-энцефалического барьера признается не всеми исследователями 27. Концепции реактивности и активности в рассмотрении функционирования нейрона.

Парадигма реактивности: нейрон, как и индивид, отвечает на стимул. С позиций традиционной парадигмы реактивности поведение индивида представляет собой реакцию на стимул. В основе реакции лежит проведение возбуждения по рефлекторной дуге: от рецепторов через центральные структуры к исполнительным органам. Нейрон при этом оказывается элементом, входящим в рефлекторную дугу, а его функция - обеспечением проведения возбуждения. Тогда совершенно логично рассмотреть детерминацию активности этого элемента следующим образом: ответ на стимул, подействовавший на некоторую часть поверхности нервной клетки, может распространяться дальше по клетке и действовать как стимул на другие нервные клетки. В рамках парадигмы реактивности рассмотрение нейрона вполне методологически последовательно: нейрон, как и организм, реагирует на стимулы. В качестве стимула выступает импульсация, которую нейрон получает от других клеток, в качестве реакции - следующая за синаптическим притоком импульсация данного нейрона. Парадигма активности: нейрон, как и индивид, достигает «результат», получая необходимые метаболиты из своей микросреды.

28. Стандартные диапазоны фоновой электроэнцефалограммы.

ЭЭГ - метод регистрации электрической активности (биопотенциалов) головного мозга через неповрежденные покровы головы (интактный метод), позволяющий судить о его физиологической зрелости, функциональном состоянии, наличии очаговых поражений, общемозговых расстройствах и их характере.

(Регистрация биопотенциалов непосредственно с обнаженного мозга называется электрокортикографией, ЭКоГ, и обычно проводится во время нейрохирургических операций).

Первым ученым, продемонстрировавшим возможность такой регистрации электрической активности головного мозга человека был Ганс Бергер (работы 1929-1938 гг).

Основными понятиями, на которые опирается характеристика ЭЭГ, являются:

Средняя частота колебаний

Максимальная амплитуда

Суммарная фоновая ЭЭГ коры и подкорковых образований мозга животных, варьируя в зависимости от уровня филогенетического развития и отражая цитоархитектонические и функциональные особенности структур мозга, также состоит из различных по частоте медленных колебаний.

Одной из основных характеристик ЭЭГ является частота. Однако из-за ограниченных перцепторных возможностей человека при визуальном анализе ЭЭГ, применяемом в клинической электроэнцефалографии, целый ряд частот не может быть достаточно точно охарактеризован оператором, так как глаз человека выделяет только некоторые основные частотные полосы, явно присутствующие в ЭЭГ. В соответствии с возможностями ручного анализа была введена классификация частот ЭЭГ по некоторым основным диапазонам, которым присвоены названия букв греческого алфавита:

альфа - 8-13 Гц,

бета - 14-40 Гц,

тета - 4-6 Гц,

дельта - 0,5-3 Гц,

гамма - выше 40 Гц и др.).

У здорового взрослого человека при закрытых глазах регистрируется основной альфа-ритм. Это так называемая синхронизированная ЭЭГ.

При открытых глазах или при поступлении сигналов от других органов чувств происходит блокада альфа-ритма и появляются бета-волны . Это называется десинхронизацией ЭЭГ.

Тета-волны и дельта-волны в норме у бодрствующих взрослых не выявляются, они появляются только во время сна.

Для ЭЭГ подростков и детей напротив характерны более медленные и нерегулярные дельта-волны даже в бодрствующем состоянии.

В зависимости от частотного диапазона, но также и от амплитуды, формы волны, топографии и типа реакции различают ритмы ЭЭГ, которые также обозначают греческими буквами. Например, альфа-ритм , бета-ритм , гамма-ритм , дельта-ритм , тета-ритм , каппа-ритм , мю-ритм , сигма-ритм и др. Считается, что каждый такой «ритм» соответствует некоторому определённому состоянию мозга и связан с определёнными церебральными механизмами.

Наряду с функцией передачи импульсов, вызывающих мышечные сокращения, нервные волокна и их окончания оказывают также трофическое воздействие на мышцу, т. е. участвуют в регуляции ее обмена веществ. Хорошо известно, что денервация мышцы, развивающаяся при дегенерации двигательного нерва, приводит к атрофии мышечных волокон, которая проявляется в том, что вначале уменьшается количество саркоплазмы, а затем и диаметр мышечных волокон; позднее происходит разрушение миофибрилл. Специальные исследования показали, что эта атрофия не является результатом лишь бездеятельности мышцы, потерявшей двигательную активность. Бездеятельность мышцы может быть вызвана и путем тендотомии, т. е. перерезки сухожилия. Однако, если сравнить мышцу после тендотомии и после денервации, можно убедиться, что в последнем случае в мышце развиваются качественно иные изменения ее свойств, не обнаруживающиеся при тендотомии. Наиболее ярко это проявляется в изменениях чувствительности мышцы к ацетилхолину. В нормальной и тендотомированной мышце к ацетилхолину чувствительна только постсинаптическая мембрана, в которой сосре­доточены хемовозбудимые ионные каналы, снабженные холинорецепторами. Денервация приводит к тому, что такие же каналы появляются и во внесинаптических областях мышечного волокна. В результате чувствительность денервированной мышцы к ацетил­холину резко возрастает. Указанная гиперчувствительность к ацетилхолину не форми­руется, если при помощи определенных химических реагентов затормозить белковый синтез в мышечных волокнах. Реиннервация мышцы вследствие регенерации нервных волокон приводит к исчезновению холинорецептивных каналов области внепостсинаптической мембраны. Эти данные свидетельствуют о том, что нервные волокна регулируют синтез белков, образующих хемовозбудимые холинорецепторные каналы.

В денервированной мышце резко падает также активность ряда ферментов, в частности АТФ-азы, играющей важную роль в процессе освобождения энергии, заклю­ченной в фосфатных связях АТФ. В то же время при денервации значительно усилены процессы распада белков. Это приводит к характерному для атрофии постепенному уменьшению массы мышечной ткани.

Все дегенеративные изменения в денервированной мышце начинаются тем раньше, чем на меньшем расстоянии от мышцы перерезают двигательный нерв. Это позволяет предположить, что определенные вещества («трофические агенты»), вырабатываемые в нервных клетках, продвигаются по нервным волокнам от проксимальных участков к дистальным и выделяются нервными окончаниями. Чем больший отрезок нерва оста­ется соединенным с мышцей, тем дольше она получает важные для ее обмена вещества. Перемещение этих веществ осуществляется благодаря движению нейроплазмы, скорость которого 1-2 мм/ч.

Важную роль в осуществлении трофических влияний нерва играет ацетилхолин, секретируемый нервными окончаниями как в покое, так особенно при возбуждении. Имеются основания счи­тать, что ацетилхолин и продукты его расщепления холинэстеразой - холин и уксусная кислота - участвуют в обмене веществ мышцы, оказывая активирующее влияние на определенные ферментные системы. Так, при введении ацетилхолина в денервированную мышцу кролика резко увеличивается распад аденозинтрифосфата, креатинфосфата и гликогена во время тетануса, вызванного прямым электрическим раздражением этой мышцы.

Из нервных окончаний выделяются вещества, которые оказывают специфическое влияние на синтез белков мышечного волокна. Об этом свидетельствуют опыты с пере­крестным сшиванием двигательных нервов, иннервирующих быстрые и медленные скелетные мышцы. При таком сшивании периферические отрезки нервов и их окончания в мышце дегенерируют, а по их путям в мышцу прорастают новые волокна из централь­ных отрезков нервов. Вскоре после того, как эти волокна образуют двигательные оконча­ния, происходит отчетливая перестройка функциональных свойств мышц. Мышцы, кото­рые ранее были быстрыми, теперь становятся медленными, а те, которые были медлен­ными, становятся быстрыми. При такой перестройке изменяется активность АТФ-азы их сократительного белка миозина: в бывших быстрых мышцах она резко падает, а в медленных возрастает. Соответственно в первых скорость распада АТФ увеличивается, а во вторых - уменьшается. Изменяются также свойства ионных каналов клеточной мембраны.

Трофическое влияние на скелетную мышцу оказывают и волокна симпатической нервной системы, окончания которых высвобождают норадреналин.

ОСОБЕННОСТИ НЕРВНО-МЫШЕЧНОЙ ПЕРЕДАЧИ ВОЗБУЖДЕНИЯ В ГЛАДКИХ МЫШЦАХ

Механизм передачи возбуждения с двигательного нервного волокна на волокна гладкой мышцы в принципе сходен с механизмом нервно-мышечной передачи в скелетной мускулатуре. Различия касаются лишь химической природы медиатора и особенностей суммации постсинаптических потенциалов.

Во всех скелетных мышцах возбуждающим медиатором является ацетилхолин. В гладких мышцах передача возбуждения в нервных окончаниях осуществляется при помощи разных медиаторов. Так, для гладких мышц желудочно-кишечного тракта возбуждающим медиатором является ацетилхолин, а для гладких мышц кровеносных сосудов - норадреналин.

Порция медиатора, высвобождаемая нервным окончанием в ответ на одиночный нервный импульс, в большинстве случаев оказывается недостаточной для критической деполяризации мембраны гладкомышечной клетки. Критическая деполяризация проис­ходит только при поступлении к нервному окончанию нескольких следующих друг за другом импульсов. Тогда одиночные возбуждающие постсинаптические потенциалы суммируются (рис. 57) и в момент, когда их сумма достигает пороговой величины, возникает потенциал действия.

В скелетном мышечном волокне частота следования потенциалов действия соответ­ствует частоте ритмического раздражения двигательного нерва. В отличие от этого в гладких мышцах такое соответствие нарушается уже при частотах 7-15 имп/с. Если же частота стимуляции превышает 50 имп/с, возникает торможение типа пессимального.

Тормозные синапсы в гладких мышцах. Раздражение некоторых нервных волокон, иннервирующих гладкие мышцы, может вызывать их торможение, а не возбуждение. Нервные импульсы, приходящие в определенные нервные окончания, высвобождают тормозной медиатор.

Воздействуя на постсинаптическую мембрану, тормозной медиатор взаимодейст­вует с хемовозбудимыми каналами, обладающими преимущественной проницаемостью для ионов К + . Выходящий поток калия через эти каналы вызывает гиперполяризацию постсинаптической мембраны, проявляющуюся в форме «тормозного постсинаптического потенциала», подобного тому, который наблюдается в тормозных синапсах нейронов в ЦНС.

При ритмическом раздражении тормозных нервных волокон тормозные постсинап­тические потенциалы суммируются друг с другом, причем эта суммация оказывается наиболее эффективной в диапазоне частот 5-25 имп/с (рис. 58).

Если раздражение тормозящего нерва несколько предшествует стимуляции акти­вирующего нерва, то возбуждающий постсинаптический потенциал, вызываемый по-




следним, ослабляется и может оказаться недостаточным для критической деполяризации мембраны. Раздражение тормозного нерва на фоне спонтанной активности мышцы угнетает генерацию потенциалов действия и, следовательно, приводит к прекращению ее сокращений.

Роль тормозного медиатора в гладких мышцах, возбуждаемых ацетилхолином (например, кишечника, бронхов), исполняет норадреналин. Наоборот, в мышечных клетках сфинктера мочевого пузыря и некоторых других гладких мышцах, для которых возбуждающим медиатором является норадреналин, тормозным медиатором служит ацетилхолин. Последний оказывает тормозящее действие и на клетки водителя ритма сердца.

В скелетных мышцах нервно-мышечная передача, осуществляемая при помощи ацетилхолина, блокируется препаратами кураре, обладающими большим сродством к холинорецепторам. В гладких мышцах холинорецептор имеет иную химическую струк­туру, чем в скелетных, поэтому она блокируется не препаратами кураре, а атропином.

В тех гладких мышцах, в которых медиатором служит норадреналин, хемовозбудимые каналы снабжены адренорецепторами. Различают два основных вида адренорецепторов: а-адренорецепторы. и (b-адренорецепторы, которые блокируются различными химическими соединениями - адреноблокаторами.

ЗАКЛЮЧЕНИЕ

К возбудимым тканям кроме нервной и мышечной относится и железистая ткань, но механизмы возбуждения клеток желез внешней секреции несколько отличны от таковых у нервных и мышечных.

Как показали микроэлектродные исследования мембрана секреторных клеток в состоянии покоя является поляризованной, причем наружная поверхность ее заряжена положительно, а внутренняя - отрицательно. Разность потенциалов составляет 30- 40 мв. При стимуляции секреторных нервов, иннервирующих железу, возникает не деполяризация, а гиперполяризация мембраны и разность потенциалов достигает 50-60 мв. Предполагают, что это происходит вследствие нагнетания С1~ и дру­гих отрицательных ионов в клетку. Под влиянием электростатических сил в клетку вслед за этим начинают поступать положительные ионы, что приводит к повышению осмотического давления, поступлению в клетку воды, увеличению гидростатического давления и набуханию клетки. В результате возникает выброс секрета из клетки в просвет железы.

Выброс секрета может стимулироваться не только нервными, но и химическими (гуморальными) влияниями. Здесь, как и везде в организме, регуляция функций осу­ществляется двумя способами - нервным и гуморальным.

Нервный импульс представляет собой наиболее быстрый способ передачи информа­ции в организме. Поэтому в процессе эволюции в тех случаях, когда была необходима большая скорость реакций, когда от быстроты ответных реакций зависело само сущест­вование организма, этот способ передачи сигналов стал основным.

В области нервных окончаний - в синаптических щелях нервный импульс, как правило, вызывает выделение медиатора и, таким образом, взаимодействие между клетками остается по существу химическим. При этом вместо медленного распростра­нения химического вещества с током жидкости (с движущейся кровью, лимфой, тканевой жидкостью и т. д.) в нервной системе с большой скоростью распространяется сигнал к выделению биологически активного вещества (медиатора) в области нервных оконча­ний (на месте). Все это резко повысило быстроту ответных реакций организма, сохранив по существу принцип химического взаимодействия между клетками. Вместе с тем в ряде случаев, когда при клеточном взаимодействии необходима еще более быстрая и притом всегда однозначная реакция, межклеточная передача сигнала обеспечивается прямым электрическим взаимодействием клеток. Такой тип связи наблюдается, например, при взаимодействии клеток миокарда, а также некоторых электрических синапсов ЦНС, получивших название эфапсов.

Межклеточные связи сводятся не только к электрическим взаимодействиям или влияниям медиаторов. Химическая взаимосвязь между клетками является более слож­ной. Клетки органов и тканей вырабатывают ряд специфических химических веществ, действующих на другие клетки и вызывающих не только включение и выключение (или усиление или ослабление) функции, но и изменение интенсивности обмена веществ и процессов синтеза клеткой специфических белков. Механизмы всех этих рефлекторных влияний и межклеточных взаимодействий подробно рассмотрены во втором разделе учебника.

Физиологические основы оздоровительной системы.

Трофическая функция нервной системы . (по Я.И. Ажипа, 1990)

(Материал для углубленного понимания проблем, связанных со здоровьем.)

Питание, или трофика (от греч. trophe - питание), является неп­ременным свойством животных, растений и микроорганизмов, без которого немыслимо существование живых объектов. Кроме объектов, находящихся в состоянии анабиоза - временного, обратимого прекращения жизнедеятельности, из которого орга­низм может снова перейти к активной жизнедеятельности при благоприятных условиях.

Под понятием «питание» в широком смысле слова подразумевают сложное, многоступенчатое прояв­ление организма. Оно слагается из процессов поиска и поглощения пищи, внеклеточного дистантного (полостного или внеполостного), внутриклеточного и мембранного (пристеночного) пищеварения, всасывания питательных веществ, своевременного удаления промежуточных и конечных продуктов рас­пада в межклеточную среду и восстановления внутриклеточного молекулярного и органоидного гомеостаза.

Нарушение соотношения между процессами доставки питательных веществ к клеткам, ассимиляции этих веществ, диссимиляции молекул, входящих в состав клеток, полного их очищения от конечных и промежуточных продуктов метаболизма и адекватного биосин­теза пластического и энергетического материала клеток может привести к их деградации и гибели.

В зависимости от трофического обеспечения организма органы, ткани и клетки могут испытывать различное трофическое состоя­ние, к которому применяют в соответствии с общепринятой терминологией определенное название. Выделяют следующие состояния. Эйтрофия - оптимальное питание, т. е. такое взаимо­отношение между уровнем утилизации питательных веществ, притекающих к клеткам, и скоростью удаления продуктов распада, а также между процессами ассимиляции и диссимиляции веществ, при котором не наблюдается отклонений от нормального мор­фологического строения, физико-химических свойств и функции клеток и нормальной способности к росту, развитию и дифференцировке. Гипертрофия - усиленное питание, выражающееся в увеличении массы клеток (истинная гипертрофия) или их количества (гиперплазия) обычно с повышением их функции (например, физиологическая гипертрофия скелетных мышц при их тренировке, компенсаторная гипертрофия одной части парного органа после удаления другой части). Гипотрофия - пониженное питание, выражающееся в уменьшении массы клеток (истинная гипотрофия) или их количества (гипоплазия) обычно с пониже­нием их функции (например, физиологическая гипотрофия скелетных мышц при их бездеятельности, физиологическая гипотрофия различных тканей и органов при гипокинезии, весьма распространенном в настоящее время состоянии организма чело­века). Атрофия - отсутствие питания - постепенное уменьшение массы клеток и их исчезновение. Дистрофия - качественно изме­ненное, неправильное питание, приводящее к патологическим сдвигам морфологического строения, физико-химических свойств и функции клеток, тканей и органов, их роста, развития и дифференцировки.

Различают дистрофии, иначе говоря, трофические расстрой­ства, местные, системные и общие, врожденные и приобретенные в результате повреждающих воздействий на организм факторов внешней и внутренней среды. Дистрофические изменения могут быть обратимыми, если вредоносные факторы прекращают свое действие, и необратимыми, заканчивающимися гибелью клеток, если дистрофия с самого начала была несовместима с их жизнью. При развитии ряда стандартных и специфических физиоло­гических процессов (воспаление, регенерация, опухоли, цикли­ческие изменения в яичниках, пре-, постнатальное развитие и старение организма, различные виды денервации тканей и ор­ганов, рефлекторные дистрофии центрогенного происхожде­ния и т. д.) в тканях и органах могут наблюдаться одновременно явления гипертрофии, гиперплазии, гипотрофии, гипоплазии, атрофии, дистрофии. Часто эти изменения трофического состояния сменяют друг друга.

Дистрофические сдвиги в организме обращают на себя вни­мание благодаря многообразию причин своего возникновения и форм проявления

Еще Гиппократом была подмечена связь между трофичес­кими изменениями отдельных органов и частей тела. Указывая на такую связь, он отмечал, что «органы сочувствуют друг другу в отношении своего питания». Винслоу (Winslow) в 1732 году высказал предположение, согласно которому взаимное влияние («сочувствие - симпатия») внутрен­них органов друг на друга, при котором заболевание одного из них обусловливало вовлечение в болезненный процесс других органов, осуществляется «сочувственным», или симпатическим, нервом.

Более 200 лет назад Гунтер (Hunter) в 1772 году установил корреляцию между повреждением цент­ральной нервной системы и язвообразованиями в желудке и кишеч­нике у человека . И уже первые экспериментальные исследования привели к выводу, что такого рода расстройства обязаны своим происхождением нарушению трофической функции нервной системы, носителем которой являются якобы специальные трофи­ческие нервы.

Начало учения о нервной трофике положено французским физи­ологом и невропатологом Маженди (F.Magendi), создавшим в 1824 году модель нейропаралитического кератита (воспаления роговицы) путем перерезки первой ветви трой­ничного нерва у кроликов. Он связывал его развитие с поражением специальных трофических волокон, находящихся в составе каждого периферического нерва. Н.Н.Бурденко, Б.Н.Могильницкий (1926), Вельдеман (S.Veldmann) (1961) наблюдали трофические язвы в желудке и кишечнике при раздра­жении солнечного сплетения, блуждающего нерва, спинного мозга и гипоталамуса. В.М.Банщиков и В.М.Русских (1969), повреждая переднюю долю гипофиза, кору надпочечников, поджелудочную железу, создали модели дегенеративных заболеваний нервной систе­мы с избирательной локализацией патологического процесса. Раздражая гипоталамус или одну из рефлексогенных зон норадреналином , С.В.Аничков и его ученики (1969) наблюдали дис­трофические процессы в сердце, желудке, печени, легких. Примечательно, что связи дистрофических расстройств периферических тканей и органов с повреждением различных отделов нервной системы были впервые установлены не экспериментаторами, а клиницистами.

Известно, что нервная трофика и механизмы ее осуществле­ния были излюбленной проблемой И. П. Павлова, над которой он много и плодотворно работал даже в те времена, когда эта проблема предавалась забвению. После открытия «усиливающего нерва сердца» И. П. Павлов , проводя наблюдения над собаками, отмечал трофические расстройства различных тканей и органов и подробно описал картину этих расстройств. Единственно возможной причиной описанных патологических изменений в организме И. П. Павлов считает патологические рефлексы, возникающие с ЖКТ в ответ на длительное и сильное ненормальное его раздражение. Эти рефлексы, по мнению И. П. Павлова влияют непосредственно на физико-химические процессы в тканях, т. е. на их трофическое состояние.

Рефлекторная теория трофического влияния нервной системы на ткани и рефлекторная теория нейрогенных дистрофий получили дальнейшее развитие в работах акад. А. Д. Сперанского , его сотрудников и последователей. Раздражая седалищный нерв у собаки, исследователи получали картину множественных дистрофий. Язвы появлялись на противоположной задней конечности, передних конечностях, слизистой рта и желудочно-кишечного тракта (ЖКТ). Одновременно проявлялись дистрофии спинного мозга, гипоталамуса, превертебральных и паравертебральных ганглиев (нервных центров вблизи позвоночника) вегетативной нервной системы. При повреждении седалищного нерва у живот­ных могут возникнуть язвы на конечностях с неповрежденными нервами, долевые пневмонии, миокардиодистрофия, дистрофии эндокринных желез, нефрит, дисфункция и камни почек, остеопороз, остеомаляция, облысение на обширных участках кожи, контрактуры, параличи, дистрофия печени и т. п.

Дистрофии органов и тканей акад. А. Д. Сперанский объяснял патологическими рефлекторными влияниями, патогенный характер которых определялся не только силой раздражения, но и дистро­фиями в самой нервной системе . Распространенность нейрогенных дистрофий зависела от распространенности нервных дистрофий в ЦНС. Исследуя медицинский аспект дистрофий, он хотел найти то, что объединяет те или иные заболева­ния. Он считал, что общим фоном, на котором развертываются специфические черты болезни, является состояние нервнотрофического обеспечения органов и тканей. Понять болезнь - это значит изучить её трофический компонент. В этих утверждениях есть преувеличение, но время показало, что они имеют определен­ное значение для теории и практики.

Значительной проблемой стал вопрос о локализации тофических нервов и их принадлежности к типам нервной системы. Исследования, предпринимавшиеся с целью подтверждения правильности рефлекторной теории возникновения и развития трофических расстройств в экспериментах и клинических наблю­дениях привели к заключению, что трофическая рефлектор­ная дуга замыкается в пределах вегетативной нервной системы. Тех же эффектов можно было добиться путем раздражения симпати­ческого ствола. Главную роль в патологических состояниях внутренних органов играет симпатическая нервная система. Но также выяснилось, что раздражение моторных и сенсорных нервов центральной нервной системы способно вызывать развитие нейродистрофических явлений.

Таким образом, в настоящее время вопрос о локализации трофической функции нервной системы решается таким образом, что этой функцией обладают все нервы симпатические, парасим­патические, двигательные соматические и чувствительные. Поскольку функциональное влияние любого нерва сочетается с его трофическим влиянием, можно говорить не о трофической функции нерва, а о нервнотрофическом компо­ненте его действия.

Нейротрофическая, травматическая и сосудистая теории развития неинфекционных заболеваний прошли через всю историю развития учения о нервной трофике , нервных и нейрогенных дистрофиях. Более того, сама история определялась борьбой между сторонниками этих теорий. Как ни парадоксально, но травматическая и сосудистая теории, родив­шиеся в недрах экспериментов, в которых перерезались нервы, и тем самым создавалась нейропаралитическая ситуация, оттес­нили нейротрофическую теорию на задний план и определили общее негативное отношение к нервной трофике. Этому содейство­вали целлюлярная теория заболеваний известного паталогоанатома Вирхова , отвергав­шая роль нервной системы в нарушениях жизнедеятельности органов и тканей, учение Конгейма о значении в механиз­мах этих нарушений уровня кровообращения, а также открытия в области эндокринологии и микробиологии. Идеи этих направ­лений в биологии использовали для объяснения этиологии и пато­генеза заболеваний, в том числе заболеваний, сопровожда­ющихся трофическими расстройствами, без привлечения пред­ставлений о гипотетических трофических нервах . Тем самым проблема трофической иннервации осталась на долгие годы вне поля зрения исследователей.

Доктрина акад. А.Д.Сперанского подтверждена многочисленными экспериментами и клиническими данными. Раздражая гипоталамус или одну из рефлексогенных зон норадреналином, С.В.Аничков и его ученики (1969) наблюдали дис­трофические процессы в сердце, желудке, печени, легких. Патоло­гические импульсы достигают того или другого органа или несколь­ких органов в основном по симпатическим нервам, что при длитель­ном воздействии приводит к истощению тканевых запасов норадреналина и некоторых других необходимых веществ и развитию локальных или диффузных дистрофий. Если же экспериментальному животному вводить ганглиоблокирующие или заместительные препараты, то появление дистрофий удается предотвратить.

С экспериментальными исследованиями согласуются клинические наблюдения, показавшие как неврозы и вегетативные функциональные расстройства могут, в конце концов, завершиться органическим заболеванием - стойкой артериальной гипертензией, инсультом, инфарктом миокарда и т.п. Н.И. Гращенков и его сотрудники (1964) описали развитие разнообразных нарушений у больных с пораже­нием диэнцефальной области вследствие инфекций, травм, интокси­каций, сосудистых заболеваний, а именно: приступы бронхиальной астмы, эмфизему легких, частые пневмонии, язву желудка и двенад­цатиперстной кишки, дискинезию желчных путей, дистрофию миокарда, изменение крови (тромбопению, лейкоцитоз).