Избыток глюкозы печени превращается в. Избыток глюкозы преобразуется в гликоген, который запасается в печени и в мышцах и служит источником энергии между приемами пищи, во сне и при спортивной нагрузке. Превращение глюкозы в гликоген




На протяжении многих тысячелетий человек претерпевал массу эволюционных изменений.

Одним из важных приобретенных умений стала способность организма впрок запасать энергетические материалы на случай голода и синтезировать их из других соединений.

Избытки углеводов аккумулируются в организме при участии печени и сложных биохимических реакций. Все процессы накопления, синтеза и использования глюкозы регулируются гормонами.

Какую роль играет печень в накоплении углеводов в организме?

Существуют следующие пути для использования глюкозы печенью:

  1. Гликолиз. Сложный многоступенчатый механизм окисления глюкозы без участия кислорода, в результате которого образуется универсальные источники энергии: АТФ и НАДФ - соединения, обеспечивающие энергией протекание всех биохимических и обменных процессов в организме;
  2. Запасание в виде гликогена при участии гормона инсулина. Гликоген – неактивная форма глюкозы, которая может накапливаться и сберегаться в организме;
  3. Липогенез. Если глюкозы поступает больше, чем необходимо даже для образования гликогена, начинается синтез липидов.

Роль печени в углеводном обмене огромна, благодаря ей в организме постоянно присутствует запас углеводов, жизненно необходимых организму.

Что происходит с углеводами в организме?

Основная роль печени - регуляция углеводного обмена и глюкозы с последующим депонированием гликогена в гепатоцитах человека. Особенностью является превращение сахара под воздействием узкоспециальных ферментов и гормонов в особую его форму, этот процесс происходит исключительно в печени (необходимое условие потребления её клетками). Эти преобразования ускоряются ферментами гексо- и глюкокиназой при понижении уровня содержания сахара.

В процессе пищеварения (а углеводы начинают расщепляться сразу после попадания еды в ротовую полость) содержание глюкозы в крови повышается, вследствие чего происходит ускорение реакций, направленных на депонирование излишков. Тем самым предупреждается возникновение гипергликемии во время приёма пищи.

Сахар из крови с помощью ряда биохимических реакций в печени преобразуется в неактивное его соединение – гликоген и накапливается в гепатоцитах и мышцах. При наступлении энергетического голода с помощью гормонов организм способен высвобождать гликоген из депо и синтезировать из него глюкозу - это основной путь получения энергии.

Схема синтеза гликогена

Излишки глюкозы в печени используются в производстве гликогена под воздействием гормона поджелудочной железы - инсулина. Гликоген (животный крахмал) - это полисахарид, особенностью строения которого является древообразная структура. Запасают его гепатоциты в форме гранул. Содержание гликогена в печени человека может увеличиваться до 8% от массы клетки после принятия углеводистой еды. Распад нужен, как правило, для удержания уровня глюкозы в процессе пищеварения. При длительном голодании содержание гликогена понижается почти до нуля и снова синтезируется во время пищеварения.

Биохимия гликогенолиза

Если у организма повышается потребность в глюкозе - гликоген начинает распадаться. Механизм преобразования происходит, как правило, между приемами пищи, и ускоряется при мышечных нагрузках. Голодание (отсутствие приема пищи в течение не менее 24 часов) приводит к практически полному распаду гликогена в печени. Но при регулярном питании его запасы полностью восстанавливаются. Подобное аккумулирование сахара может существовать очень долго, до возникновения потребности в распаде.

Биохимия глюконеогенеза (путь получения глюкозы)

Глюконеогенез – процесс синтеза глюкозы из неуглеводных соединений. Его главная задача - удержание стабильного содержания углеводов в крови при недостатке гликогена или тяжёлой физической работе. Глюконеогенез обеспечивает продукцию сахара до 100 грамм в сутки. В состоянии углеводного голода организм способен синтезировать энергию с альтернативных соединений.

Для использования пути гликогенолиза при необходимости получения энергии нужны следующие вещества:

  1. Лактат (молочная кислота) – синтезируется при распаде глюкозы. После физических нагрузок возвращается в печень, где снова преобразуется в углеводы. Благодаря этому молочная кислота постоянно участвует в образовании глюкозы;
  2. Глицерин – результат распада липидов;
  3. Аминокислоты – синтезируются при распаде мышечных белков и начинают участвовать в образовании глюкозы при истощении запасов гликогена.

Основное количество глюкозы производится в печени (более 70 грамм в сутки). Главной задачей глюконеогенеза является снабжение сахаром мозга.

В организм попадают углеводы не только в виде глюкозы - это может быть и манноза, содержащаяся в цитрусовых. Манноза в результате каскада биохимических процессов преобразуется в соединение, подобное глюкозе. В этом состоянии она вступает в реакции гликолиза.

Схема пути регулирования гликогенеза и гликогенолиза

Путь синтеза и распада гликогена регулируется такими гормонами:

  • Инсулин – гормон поджелудочной железы белковой природы. Он понижает содержание сахара в крови. В целом особенностью гормона инсулина является влияние на обмен гликогена, в противоположность глюкагону. Инсулин регулирует дальнейший путь преобразования глюкозы. Под его влиянием происходит транспортировка углеводов в клетки организма, а из их избытков - образование гликогена;
  • Глюкагон – гормон голода – вырабатывается поджелудочной железой. Имеет белковую природу. В противоположность инсулину, ускоряет распад гликогена, и способствует стабилизации уровня глюкозы в крови;
  • Адреналин – гормон стресса и страха. Его выработка и выделение происходят в надпочечниках. Стимулирует выброс избытка сахара из печени в кровь, для снабжения тканей «питанием» в стрессовой ситуации. Так же, как и глюкагон, в отличие от инсулина, ускоряет катаболизм гликогена в печени.

Перепад количества углеводов в крови активирует производство гормонов инсулина и глюкагона, смену их концентрации, что переключает распад и образование гликогена в печени.

Одной из важных задач печени является регулирование пути синтеза липидов. Липидный обмен в печени включает производство разных жиров (холестерина, триацилглицеридов, фосфолипидов, и др.). Эти липиды поступают в кровь, их присутствие обеспечивает энергией ткани организма.

Печень непосредственно участвует в поддержании энергетического баланса в организме. Ее заболевания способны привести к нарушению важных биохимических процессов, в результате чего будут страдать все органы и системы. Необходимо тщательно следить за своим здоровьем и при необходимости не откладывать визит к врачу.

Внимание! Информация о препаратах и народных средствах лечения представлена только для ознакомления. Ни в коем случае нельзя применять лекарство или давать его своим близким без врачебной консультации! Самолечение и бесконтрольный прием препаратов опасен развитием осложнений и побочных эффектов! При первых признаках болезней печени необходимо обратиться к врачу.

©18 Редакция портала «Моя Печень».

Использование материалов сайта разрешено только с предварительного согласования с редакцией.

Гликогенез биохимия

Гликоген – основной резервный полисахарид в животных тканях. Он представляет собой разветвленный гомополимер глюкозы, в котором остатки глюкозы соединены в линейных участках α-1,4-гликозидными связями, а в точках ветвления – α-1,6- гликозидными связями. Эти связи образуются примерно с каждым десятым остатком глюкозы, то есть точки ветвления в гликогене встречаются примерно через каждые десять остатков глюкозы. Так возникает древообразная структура с молекулярной массой 105 – 108 Да и выше. При полимеризации глюкозы снижается растворимость образующейся молекулы гликогена и, следовательно, её влияние на осмотическое давление в клетке. Это обстоятельство объясняет, почему в клетке депонируется гликоген, а не свободная глюкоза.

После приема пищи, богатой углеводами, запас гликогена в печени может составлять примерно 5 % от её массы. В мышцах запасается около 1 % гликогена, однако масса мышечной ткани значительно больше и поэтому общее количество гликогена в мышцах приблизительно в 2 раза больше, чем в печени. Гликоген может синтезироваться во многих клетках, например в нейронах, макрофагах, адипоцитах, но содержание его в этих тканях незначительно. В организме может содержаться до 400 г гликогена. Распад гликогена печени служит в основном для поддержания уровня глюкозы в крови в постабсорбтивном периоде. Поэтому содержание гликогена печени служит в основном для поддержания уровня глюкозы в крови в постабсорбтивном периоде. Поэтому содержание гликогена в печени изменяется в зависимости от режима питания. Гликоген мышц служит резервом глюкозы – источника энергии при мышечном сокращении. Мышечный гликоген не используется для поддержания уровня глюкозы в крови.

3. Образование α-1,4-гликозидных связей. В присутствии «затравки» гликогена (молекулы, включающей не менее 4 остатков глюкозы) фермент гликогенсинтаза присоединяет остатки глюкозы из УДФ-глюкозы к С4-атому концевого остатка глюкозы в гликогене, образуя α-1,4-гликозидную связь.

4. Образование α-1,6-гликозидных связей (точки ветвления молекулы). Образование их осуществляется амилозо-1,4 → 1,6-трансглюкозидазой (ветвящий или бранчинг фермент). Когда длина линейного участка цепи включает минимально 11 остатков глюкозы, этот фермент переносит фрагмент (1 → 4) цепи с минимальным количеством 6 остатков глюкозы на соседнюю цепь или на несколько участков глюкозы дальше, образуя α-1,6-гликозидную связь. Таким образом, образуется точка ветвления. Ветви растут путем последовательного присоединения (1–4)-глюкозильных единиц и дальнейшего ветвления.

Нарушения обмена гликогена

Гликогеновые болезни – группа наследственных нарушений в основе которых лежит снижение или отсутствие активности ферментов, катализирующих реакции синтеза или распада гликогена. К данным нарушениям относятся гликогенозы и агликогеноз.

Гликогенозы – заболевания, обусловленные дефектом ферментов участвующих в распаде гликогена. Они проявляются или необычной структурой гликогена, или его избыточным накоплением в печени, мышцах и других органах. В настоящее время предлагается деление гликогенозов на 2 группы: печеночные и мышечные.

Печеночные формы гликогенозов проявляются в нарушении использования гликогена для поддержания уровня глюкозы в крови. Общий симптом этих форм – гипогликемия в постабсорбтивный период. К этой группе относятся гликогенозы I, III, IY, YI, IX и X типов по нумерации Кори.

Мышечные формы гликогенозов характеризуются нарушениями в энергоснабжении скелетных мышц. Эти болезни проявляются при физических нагрузках и сопровождаются болями и судорогами в мышцах, слабостью и быстрой утомляемостью. К ним относятся гликогенозы Y и YII типов.

Агликогеноз (гликогеноз О по классификации) – заболевание, возникающее в результате дефекта гликогенсинтазы. В печени и других тканях наблюдается очень низкое содержание гликогена. Это проявляется резко выраженной гипогликемией в постабсорбтивном периоде. Характерным симптомом являются судороги, особенно по утрам. Болезнь совместима с жизнью, но больные дети нуждаются в частом кормлении.

Гликогенез биохимия

до 150 г, в мышцах - около 300 г). Более интенсивно гликогенез осуществляется в печени.

Гликогенсинтаза - ключевой фермент процесса - катализирует присоединение глюкозы к молекуле гликогена с образованием -1,4-гликозидных связей.

Итак, инсулин и глюкоза стимулируют гликогенез, адреналин и глюкагон - тормозят.

Синтез гликогена бактериями полости рта. Некоторые бактерии полости рта способны синтезировать гликоген при избытке углеводов. Механизм синтеза и распада гликогена бактериями подобен таковым у животных за исключением того, что для синтеза используются не УДФ-производные глюкозы, а АДФ-производные. Гликоген используется этими бактериями для поддержки жизнеобеспечения в отсутствие углеводов.

Гликогенез биохимия

VI. МЕТАБОЛИЗМ ГЛИКОГЕНА

Многие ткани синтезируют в качестве резервной формы глюкозы гликоген. Синтез и распад гликогена обеспечивают постоянство концентрации глюкозы в крови и создают депо для её использования тканями по мере необходимости.

А. Строение и функции гликогена

Гликоген - разветвлённый гомополимер глюкозы, в котором остатки глюкозы соединены в линейных участках α-1,4-гликозидной связью. В точках ветвления мономеры соединены α-1,6-гликозидными связями. Эти связи образуются примерно с каждым десятым остатком глюкозы. Следовательно, точки ветвления в гликогене встречаются примерно через каждые десять остатков глюкозы. Так возникает древообразная структура с молекулярной массой >10 7 Д, что соответствует приблизительноостатков глюкозы (рис. 7-21). Таким образом, в молекуле гликогена имеется только одна свободная аномерная ОН-группа и, следовательно, только один восстанавливающий (редуцирующий) конец.

Рис. 7-20. Метаболизм глюкозо-6-фосфата.

Рис. 7-21. Структура гликогена. А. Строение молекулы гликогена: 1 - остатки глюкозы, соединённые α-1,4-гликозидной связью; 2 - остатки глюкозы, соединённые α-1,6-гликозидной связью; 3 - нередуцирующие концевые мономеры; 4 - редуцирующий концевой мономер. Б. Строение отдельного фрагмента молекулы гликогена.

В клетках животных гликоген - основной резервный полисахарид. При полимеризации глюкозы снижается растворимость образующейся молекулы гликогена и, следовательно, её влияние на осмотическое давление в клетке. Это обстоятельство объясняет, почему в клетке депонируется гликоген, а не свободная глюкоза.

Гликоген хранится в цитозоле клетки в форме гранул диаметромнм. С гранулами связаны и некоторые ферменты, участвующие в метаболизме гликогена, что облегчает их взаимодействие с субстратом. Разветвлённая структура гликогена обусловливает большое количество концевых мономеров, что способствует работе ферментов, отщепляющих или присоединяющих мономеры при распаде или синтезе гликогена, так как эти ферменты могут одновременно работать на нескольких ветвях молекулы. Гликоген депонируется главным образом в печени и скелетных мышцах.

После приёма пищи, богатой углеводами, запас гликогена в печени может составлять примерно 5% от её массы. В мышцах запасается около 1% гликогена, однако масса мышечной ткани значительно больше и поэтому общее количество гликогена в мышцах в 2 раза больше, чем в печени. Гликоген может синтезироваться во многих клетках, например в нейронах, макрофагах, клетках жировой ткани, но содержание его в этих тканях незначительно. В организме может содержаться до 450 г гликогена.

Распад гликогена печени служит в основном для поддержания уровня глюкозы в крови в постабсорбтивном периоде. Поэтому содержание гликогена в печени изменяется в зависимости от ритма питания. При длительном голодании оно снижается почти до нуля. Гликоген мышц служит резервом глюкозы - источника энергии при мышечном сокращении. Мышечный гликоген не используется для поддержания уровня глюкозы в крови. Как уже упоминалось ранее, в клетках мышц нет фермента глюкозо-6-фосфатазы, и образование свободной глюкозы невозможно. Расход гликогена в мышцах зависит в основном от физической нагрузки (рис. 7-22).

Б. Синтез гликогена (гликогеногенез)

Гликоген синтезируется в период пищеварения (через 1-2 ч после приёма углеводной пищи). Следует отметить, что синтез гликогена из глюкозы (рис. 7-23), как и любой анаболический процесс, является эндергоническим, т.е. требующим затрат энергии.

Рис. 7-22. Функции гликогена в печени и мышцах.

Глюкоза, поступающая в клетку, фосфорилируется при участии АТФ (реакция 1). Затем глюкозо-6-фосфат в ходе обратимой реакции превращается в глюкозо-1 -фосфат (реакция 2) под действием фермента фосфоглюкомутазы. Глюкозо-1-фосфат по термодинамическому состоянию мог бы служить субстратом для синтеза гликогена. Но в силу обратимости реакции глюкозо-6-фосфат ↔ глюкозо-1-фосфат синтез гликогена из глюкозо-1-фосфата и его распад оказались бы также обратимыми и поэтому неконтролируемыми. Чтобы синтез гликогена был термодинамически необратимым, необходима дополнительная стадия образования уридинди-фосфатглюкозы из УТФ и глюкозо-1-фосфата (реакция 3). Фермент, катализирующий эту реакцию, назван по обратной реакции: УДФ-глюкопирофосфорилаза. Однако в клетке обратная реакция не протекает, потому что образовавшийся в ходе прямой реакции пирофосфат очень быстро расщепляется пирофосфатазой на 2 молекулы фосфата (рис. 7-24).

Реакция образования УДФ-глюкозы обусловливает необратимость всей серии реакций, протекающих при синтезе гликогена. Этим же объясняется невозможность протекания распада

Рис. 7-23. Синтез гликогена. 1 - глюкокиназа или гексокиназа; 2 - фосфоглюкомутаза; 3 - УДФ-глюкрпирофосфорилаза; 4 - гликогенсинтаза (глюкозилтрансфераза); 5 - фермент "ветвления" (амило-1,4 → 1,6-глюкозилтрансфераза), светлые и заштрихованные кружки - глюкозные остатки, закрашенные кружки - глюкозные остатки в точке ветвления.

Рис. 7-24. Образование УДФ-глюкозы.

гликогена путём простого обращения процесса его синтеза.

Образованная УДФ-глюкоза далее используется как донор остатка глюкозы при синтезе гликогена (рис. 7-23, реакция 4). Эту реакцию катализирует фермент гликогенсинтаза (глюкозилтрансфераза). Поскольку в данной реакции не используется АТФ, фермент называют син-тазой, а не синтетазой. Нуклеотидная часть УДФ-глюкозы играет существенную роль в действии гликоген синтазы, выполняя функцию "рукоятки", при помощи которой фермент располагает глюкозу в полисахаридной цепи в нужном положении. Кроме того, нуклеотидная часть УДФ-глюкозы, по-видимому, необходима для узнавания субстрата при катализе.

Так как гликоген в клетке никогда не расщепляется полностью, синтез гликогена осуществляется путём удлинения уже имеющейся молекулы полисахарида, называемой "затравка", или "праймер". К "затравке" последовательно присоединяются молекулы глюкозы. Строением молекулы "затравки" как бы предопределяется тип связи, который возникает в реакции трансгли-козилирования. Таким образом, синтезируется полисахарид, аналогичный по строению с "затравочным". В состав "затравки" может входить белок гликогенин, в котором к ОН-группе одного из тирозиновых остатков присоединена олигосахаридная цепочка (примерно 8 остатков глюкозы). Глюкозные остатки переносятся гликогенсинтазой на нередуцирующий конец олигосахарида и связываются α-1,4-гликозидными связями. По окончании синтеза гликогенин остаётся включённым в гранулу гликогена.

Разветвлённая структура гликогена образуется при участии амило-1,4 →1,6-глюкозилтрансферазы, называемой ферментом "ветвления" (от англ, branching enzyme). Как только гликогенсинтаза удлиняет линейный участок примерно до 11 глюкозных остатков, фермент ветвления переносит её концевой блок, содержащий 6-7 остатков, на внутренний остаток глюкозы этой или другой цепи. В точке ветвления концевой остаток глюкозы олигосахарида соединяется с гидроксильной группой в С 6 положении с образованием α-1,6-гликозидной связи. Новая точка ветвления может быть образована на расстоянии не менее 4 остатков от любой уже существующей. Таким образом, по мере синтеза гликогена многократно возрастает число ветвлений. Концы цепей служат точками роста молекулы при её синтезе и началом при её распаде.

В. Распад гликогена (гликогенолиз)

Распад гликогена или его мобилизация происходят в ответ на повышение потребности организма в глюкозе. Гликоген печени распадается в основном в интервалах между приёмами пищи, кроме того, этот процесс в печени и мышцах ускоряется во время физической работы.

Распад гликогена (рис. 7-25) происходит путём последовательного отщепления остатков глюкозы в виде глюкозо-1-фосфата. Гликозидная связь расщепляется с использованием неорганического фосфата, поэтому процесс называется фосфоролизом, а фермент гликогенфосфорилазой.

Так же как и синтез, расщепление гликогена начинается с нередуцирующего конца полисахаридной

цепи. При этом наличие разветвлённой структуры гликогена облегчает быстрое высвобождение глюкозных остатков, так как чем больше концов имеет молекула гликогена, тем больше молекул гликогенфосфорилазы могут действовать одновременно.

Гликогенфосфорилаза расщепляет только α-1,4-гликозидные связи (реакция 1). Последовательное отщепление глюкозных остатков прекращается, когда до точки ветвления остаётся 4 мономера. Подобная особенность в действии гликогенфосфорилазы обусловлена размером и строением её активного центра.

Дальнейший распад гликогена требует участия двух других ферментов. Сначала три оставшихся до точки ветвлении глюкозных остатка переносятся при участии олигосахаридтрансферазы (реакция 2) на нередуцирующий конец соседней цепи, удлиняя её и таким образом создавая условия для действия фосфорилазы. Оставшийся в точке ветвления глюкозный остаток гидролитически отщепляется с помощью α-1,6-глюкозидазы в виде свободной глюкозы (реакция 3), после чего неразветвлённый участок гликогена может вновь атаковаться фосфорилазой.

Считают, что перенос трёх остатков глюкозы и удаление мономера из точки ветвления (реакции 2 и 3) катализирует один и тот же фермент, который обладает двумя разными ферментативными активностями - трансферазной и гликозидазной. Его называют "деветвящим" ферментом (от англ, debranching enzyme).

Продукт действия гликогенфосфорилазы - глюкозо-1-фосфат - затем изомеризуется в глюкозо-6-фосфат фосфоглюкомутазой. Далее глюкозо-6-фосфат включается в процесс катаболизма или другие метаболические пути. В печени (но не в мышцах) глюкозо-6-фосфат может гидролизоваться с образованием глюкозы, которая выделяется в кровь. Эту реакцию катализирует фермент глюкозо-6-фосфатаза. Реакция протекает в просвете ЭР, куда с помощью специального белка транспортируется глюкозо-6-фосфат. Фермент локализован на мембране ЭР таким образом, что его активный центр обращён в просвет ЭР. Продукты гидролиза (глюкоза и неорганический фосфат) возвращаются в цитоплазму также с помощью транспортных систем.

Рис. 7-25. Распад гликогена. В рамке - фрагмент гликогена с точкой ветвления. Закрашенный кружок - глюкозный остаток, связанный α-1,6-гликозидной связью; светлые и заштрихованные кружки - глюкозные остатки в линейных участках и боковых ветвях, связанные α-1,4-гликозидной связью. 1 - Гликогенфосфорилаза; 2 - олигосахаридтрансфераза; 3 - α-1,6-глюкозидаза.

Г. Биологическое значение обмена гликогена в печени и мышцах

На рисунке 7-26 приведена общая схема синтеза и распада гликогена и регуляция этих процессов гормонами.

Сравнение этих процессов позволяет сделать следующие выводы:

  • синтез и распад гликогена протекают по разным метаболическими путям;
  • печень запасает глюкозу в виде гликогена не столько для собственных нужд, сколько для поддержания постоянной концентрации глюкозы в крови, и, следовательно, обеспечивает поступление глюкозы в другие ткани. Присутствие в печени глюкозо-6-фосфатазы обусловливает эту главную функцию печени в обмене гликогена;
  • функция мышечного гликогена заключается в освобождении глюкозо-6-фосфата, потребляемого в самой мышце для окисления и использования энергии;
  • синтез гликогена - процесс эндергонический. Так на включение одного остатка глюкозы в полисахаридную цепь используется 1 моль АТФ и 1 моль УТФ;
  • распад гликогена до глюкозо-6-фосфата не требует энергии;
  • необратимость процессов синтеза и распада гликогена обеспечивается их регуляцией.

Гликоген - это легкоиспользуемый резерв энергии

Мобилизация гликогена (гликогенолиз)

Резервы гликогена используются по-разному в зависимости от функциональных особенностей клетки.

Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Черезчасов голодания запасы гликогена в печени полностью истощаются.

В мышцах количество гликогена снижается обычно только во время физической нагрузки – длительной и/или напряженной. Гликоген здесь используется для обеспечения глюкозой работы самих миоцитов. Таким образом, мышцы, как впрочем и остальные органы, используют гликоген только для собственных нужд.

Мобилизация (распад) гликогена или гликогенолиз активируется при недостатке свободной глюкозы в клетке, а значит и в крови (голодание, мышечная работа). При этом уровень глюкозы крови «целенаправленно» поддерживает только печень, в которой имеется глюкозо-6-фосфатаза, гидролизующая фосфатный эфир глюкозы. Образуемая в гепатоците свободная глюкоза выходит через плазматическую мембрану в кровь.

В гликогенолизе непосредственно участвуют три фермента:

1. Фосфорилаза гликогена (кофермент пиридоксальфосфат) – расщепляет α-1,4-гликозидные связи с образованием глюкозо-1-фосфата. Фермент работает до тех пор, пока до точки ветвления (α1,6-связи) не останется 4 остатка глюкозы.

Роль фосфорилазы при мобилизации гликогена

2. α(1,4)-α(1,4)-Глюкантрансфераза – фермент, переносящий фрагмент из трех остатков глюкозы на другую цепь с образованием новой α1,4-гликозидной связи. При этом на прежнем месте остается один остаток глюкозы и «открытая» доступная α1,6-гликозидная связь.

3. Амило-α1,6-глюкозидаза, («деветвящий» фермент) – гидролизует α1,6-гликозидную связь с высвобождением свободной (нефосфорилированной) глюкозы. В результате образуется цепь без ветвлений, вновь служащая субстратом для фосфорилазы.

Роль ферментов в расщеплении гликогена

Синтез гликогена

Гликоген способен синтезироваться почти во всех тканях, но наибольшие запасы гликогена находятся в печени и скелетных мышцах.

В мышцах количество гликогена снижается обычно только во время физической нагрузки – длительной и/или напряженной. Накопление гликогена здесь отмечается в период восстановления, особенно при приеме богатой углеводами пищи.

Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи (постабсорбтивный период). Черезчасов голодания запасы гликогена в печени полностью истощаются. Накапливается гликоген в печени только после еды, при гипергликемии. Это объясняется особенностями печеночной гексокиназы (глюкокиназы), которая имеет низкое сродство к глюкозе и может работать только при ее высоких концентрациях.

При нормальных концентрациях глюкозы в крови ее захват печенью не производится.

Непосредственно синтез гликогена осуществляют следующие ферменты:

1. Фосфоглюкомутаза – превращает глюкозо-6-фосфат в глюкозо-1-фосфат;

2. Глюкозо-1-фосфат-уридилтрансфераза – фермент, осуществляющий ключевую реакцию синтеза. Необратимость этой реакции обеспечивается гидролизом образующегося дифосфата;

Реакции синтеза УДФ-глюкозы

3. Гликогенсинтаза – образует α1,4-гликозидные связи и удлиняет гликогеновую цепочку, присоединяя активированный С 1 УДФ-глюкозы к С 4 концевого остатка гликогена;

Химизм реакции гликогенсинтазы

4. Амило-α1,4-α1,6-гликозилтрансфераза,»гликоген-ветвящий» фермент – переносит фрагмент с минимальной длиной в 6 остатков глюкозы на соседнюю цепь с образованием α1,6-гликозидной связи.

Роль гликогенсинтазы и гликозилтрансферазы в синтезе гликогена

Вы можете спросить или оставить свое мнение.

Синтез гликогена (гликогеногенез)

Синтез гликогена (гликогеногенез)

Гликоген синтезируется в период пищеварения (через 1–2 часа после приема углеводный пищи). Синтез гликогена из глюкозы, как и любой анаболический процесс, является эндергоническим, т. е. требует затрат энергии.

Синтез гликогена включает 4 этапа:

1. Фосфорилирование глюкозы до глюкозо-6-фосфата при участии гексокиназы или глюкокиназы.

2. Активация первого углеродного атома с образованием активной формы – УДФ – глюкозы.

3. Образование?-1,4-гликозидных связей. В присутствии «затравки» гликогена (молекулы, включающей не менее 4 остатков глюкозы) фермент гликогенсинтаза присоединяет остатки глюкозы из УДФ-глюкозы к С4-атому концевого остатка глюкозы в гликогене, образуя?-1,4-гликозидную связь.

4. Образование?-1,6-гликозидных связей (точки ветвления молекулы). Образование их осуществляется амилозо-1,4 ? 1,6-трансглюкозидазой (ветвящий или бранчинг фермент). Когда длина линейного участка цепи включает минимально 11 остатков глюкозы, этот фермент переносит фрагмент (1 ? 4) цепи с минимальным количеством 6 остатков глюкозы на соседнюю цепь или на несколько участков глюкозы дальше, образуя?-1,6-гликозидную связь. Таким образом, образуется точка ветвления. Ветви растут путем последовательного присоединения (1–4)-глюкозильных единиц и дальнейшего ветвления.

Гликогенсинтаза – регуляторный фермент, существующий в двух формах:

1. – дефосфорилированной, активной (форма а);

2. – фосфорилированной, неактивной (форма b).

Активная форма образуется из неактивной под действием фосфатазы гликогенсинтазы при дефосфорилировании. Превращение активной формы в неактивную происходит при участии протеинкиназы путем фосфорилирования за счет АТФ.

Рис. 18.-1. Регуляция активности гликогенсинтазы.

Распад гликогена может проходить двумя путями.

1. Гидролитический – при участии амилазы с образованием декстринов и даже свободной глюкозы.

2. Фосфоролитический – под действием фосфорилазы и образованием глюкозо-1-фосфата. Это основной путь распада гликогена.

Фосфорилаза – сложный регуляторный фермент, существующий в двух формах – активной и неактивной. Активная форма (фосфорилаза а) – это тетрамер, в котором каждая субъединица соединена с остатком ортофосфата через гидроксильную группу серина. Под действием фосфатазы фосфорилазы происходит дефосфорилирование, отщепление 4 молекул фосфорной кислоты, и фосфорилаза а превращается в неактивную форму – фосфорилазу b, распадаясь на две димерные молекулы. Фосфорилаза b активируется путем фосфорилирования остатков серина за счет АТФ под действием фермента киназы фосфорилазы. В свою очередь этот фермент также существует в двух формах. Активная киназа фосфорилазы – фосфорилированный фермент, превращается в неактивную форму под действием фосфатазы. Активация киназы фосфорилазы осуществляется путем фосфорилирования за счет АТФ в присутствии ионов Mg 2+ протеинкиназой.

Регуляция синтеза и распада гликогена носит каскадный характер и происходит путем химической модификации ферментов.

Поскольку синтез и распад гликогена протекают по разным метаболическим путям, эти процессы могут контролироваться реципрокно. Влияние гормонов на синтез и распад гликогена осуществляется путем изменения в противоположных направлениях активности двух ключевых ферментов: гликогенсинтазы и гликогенфосфорилазы с помощью их фосфорилирования и дефосфорилирования. Инсулин стимулирует синтез гликогена и тормозит распад, адреналин и глюкагон обладают противоположным эффектом.

5. Синтез рибосомных РНК

5. Синтез рибосомных РНК В обычных клетках синтез трех видов рРНК (28S, 18S и малой 5S) координирован, т. е. на одну молекулу 28S образуется одна молекула 18S и одна молекула 5S. Синтез 28S и 18S происходит в виде одного большого, общего для них предшественника (пре-рРНК), который затем

6. Гормоны регулируют синтез желтка и белка

6. Гормоны регулируют синтез желтка и белка Мы уже говорили, что у позвоночных животных желток будущего яйца синтезируется в печени. Этот синтез стимулируется женскими половыми стероидными гормонами - эстрогенами (подробнее см. специальную главу). Один из таких гормонов

Великий синтез

Великий синтез Как связать эволюцию с генетикой. Можно ли подойти к вопросам изменчивости, борьбы за существование, отбора - словом, дарвинизма, исходя не из тех совершенно бесформенных, расплывчатых, неопределенных воззрений на наследственность, которые только и

2.4. Конфронтация или новый синтез?

2.4. Конфронтация или новый синтез? Наиболее оправданной позицией многим эволюционистам уже давно представлялся синтез положений СТЭ с концепциями направленной эволюции и сальтационизма на основе достижений генетики. Разные авторы говорили, что пора переходить от

3. ПОВТОРНЫЙ ВХОД ВОЗБУЖДЕНИЯ И ИНФОРМАЦИОННЫЙ СИНТЕЗ

3. ПОВТОРНЫЙ ВХОД ВОЗБУЖДЕНИЯ И ИНФОРМАЦИОННЫЙ СИНТЕЗ Описанная ранее концепция «светлого пятна» исходит из того, что сознание определяется некоторым уровнем возбудимости мозговых структур. Однако можно предположить, что этого недостаточно и в действительности

Синтез белка у эукариот

Глава 18. Обмен гликогена

Глава 18. Обмен гликогена Гликоген – основной резервный полисахарид в животных тканях. Он представляет собой разветвленный гомополимер глюкозы, в котором остатки глюкозы соединены в линейных участках?-1,4-гликозидными связями, а в точках ветвления – ?-1,6- гликозидными

Нарушения обмена гликогена

Нарушения обмена гликогена Гликогеновые болезни – группа наследственных нарушений в основе которых лежит снижение или отсутствие активности ферментов, катализирующих реакции синтеза или распада гликогена. К данным нарушениям относятся гликогенозы и

Синтез жирных кислот

Синтез жирных кислот Синтез жирных кислот происходит в основном в печени, в меньшей степени – в жировой ткани и лактирующей молочной железе. Гликолиз и последующее окислительное декарбоксилирование пирувата способствуют увеличению концентрации ацетил-КоА в матриксе

5.5. Альтернативные теории и синтез идей эволюционизма

5.5. Альтернативные теории и синтез идей эволюционизма В рамках научной методологии эволюционизму нет альтернативы, поскольку такой альтернативой может служить только креационизм. Однако сам эволюционизм не является однородным течением. Хотя после чтения популярных

Передача гормонального сигнала: синтез, секреция, транспорт гормонов, их действие на клетки-мишени и инактивация

Передача гормонального сигнала: синтез, секреция, транспорт гормонов, их действие на клетки-мишени и инактивация В определении понятия «гормон» было указано несколько этапов распространения гормонального сигнала (рис. 2.6). Рис. 2.6. Этапы распространения гормонального

17. ОБЩЕСТВО ПО ИЗУЧЕНИЮ ПОВЕДЕНИЯ ЖИВОТНЫХ, УОШО И СИНТЕЗ ВОЗЗРЕНИЙ СКИННЕРА И ЛОРЕНЦА

17. ОБЩЕСТВО ПО ИЗУЧЕНИЮ ПОВЕДЕНИЯ ЖИВОТНЫХ, УОШО И СИНТЕЗ ВОЗЗРЕНИЙ СКИННЕРА И

Они осуществляют транспорт глюкозы между клетками и кровью по градиенту концентрации (в отличие от переносчиков, транспортирующих мсх при их всасывании в кишечнике против градиента концентрации). GluT1 находится в эндотелии ГЭБ. Он служит для обеспечения глюкозой мозга. GluT2 в стенке кишечника, печени и почках - органах, осуществляющих выделение глюкозы в кровь. GluT3 находится в нейронах мозга. GluT4 - главный переносчик глюкозы в мышцах и адипоцитах. GluT5 находится в тонкой кишке, подробности его функции неизвестны.

Особенно интенсивно используют глюкозу следующие клетки и ткани: 1) нервная ткань, т.к. для нее глюкоза - единственный источник энергии, 2) мышцы (для выработки энергии на сокращения), 3) стенка кишечника (процессы всасывания различных веществ требуют затраты энергии), 4) почки (образование мочи - процесс энергозависимый), 5) надпочечники (необходима энергия для синтеза гормонов); 6) эритроциты; 7) жировая ткань (глюкоза необходима для нее как источник глицерина для образования ТАГ); 8) молочная железа, особенно в период лактации (глюкоза необходима для образования лактозы).

В тканях около 65% глюкозы окисляется, 30% идет на липонеогенез, 5% на гликогеногенез.

Глюкостатическая функция печени обеспечивается тремя процессами: 1) гликогеногенезом, 2) гликогенолизом, 3) глюконеогенезом (синтез глюкозы из промежуточных продуктов распада белков, липидов, углеводов).

При увеличении глюкозы в крови ее избыток используется на образование гликогена (гликогеногенез). При уменьшении содержания глюкозы в крови усиливается гликогенолиз (распад гликогена) и глюконеогенез. Под действием алкоголя глюконеогенез тормозится, что сопровождается падением глюкозы в крови при большом количестве выпитого алкоголя. Клетки печени, в отличие от других клеток способны пропускать глюкозу в обоих направлениях в зависимости от концентрации глюкозы в межклеточном веществе и крови. Т.о., печень выполняет глюкостатическую функцию, поддерживая постоянство содержания глюкозы в крови, которое равно 3,4-6,1 мМ/л. Додней после рождения отмечается физиологическая гипогликемия, это связано с тем, что связь с матерью после родов прекратилась, а своих запасов гликогена мало.

Гликогеногенез 5% глюкозы превращается в гликоген. Образование гликогена называется гликогеногенезом. 2/5 запасов гликогена (примерно 150 грамм) откладывается в паренхиме печени в виде глыбок (10% на сырую массу печени). Остальной гликоген откладывается в мышцах и других органах. Гликоген служит резервом УГВ для всех органов и тканей. Запас УГВ в виде гликогена обусловлен тем, что гликоген как ВМС в отличие от глюкозы не повышает осмотического давления клеток.

Гликогеногенез - сложный, многоступенчатый процесс, который состоит из следующих стадий - реакции знать (только текст)см. материалы стр.35:

1 - Образование глюкозо-6-фосфата - в печени под действием глюкокиназы, а в других тканях под действием гексокиназы глюкоза фосфорилируется и превращается в глюкозо-6-фосфат (реакция необратимая).

2 - Превращение глюкозо-6-фосфата в глюкозо-1-фосфат Под действием фосфоглюкомутазы из глюкозо-6-фосфата образуется глюкозо-1-фосфат (реакция обратимая).

3 - Образование УДФ-глюкозы - глюкозо-1-фосфат взаимодействует с УТФ под действием УДФГ-пирофосфорилазы и образуется УДФ-глюкоза и пирофосфат (реакция обратимая)

4 - Удлинение цепи гликогена начинается с включения в работу фермента гликогенина: УДФ-глюкоза взаимодействует с ОН группой тирозина в составе фермента гликогенина (УДФ отщепляется и в дальнейшем при перефосфорилировании вновь дает УТФ). Затем гликозилированный гликогенин взаимодействует с гликогенсинтазой, под действием которой к первому остатку глюкозы через 1-4 связь присоединяется еще до 8 молекул УДФ-глюкозы. При этом УДФ отщепляется (реакции см. стр.Биохимия в схемах и рисунках, 2изд. - Н.Р. Аблаев).

5 - Ветвление молекулы гликогена - под действием амило(14)(16)-трансглюкозидазы происходит образование альфа(16)-гликозидной связи (см. пленку, не списывать).

Таким образом, 1) в образовании зрелой молекулы гликогена принимают участие гликогенсинтетаза и амилотрансглюкозидаза; 2) для синтеза гликогена требуется много энергии - для присоединения 1молекулы глюкозы к фрагменту гликогена используется 1молекула АТФ и 1 молекула УТФ; 3) для инициации процесса обязательно наличие затравки гликогена и екоторые специализированные белки-праймеры; 4) этот процесс не безграничен - избыток глюкозы превращается в липиды.

Гликогенолиз Процесс распада гликогена осуществляется 2 путями: 1 путь - фосфоролиз, 2 путь - гидролиз.

Фосфоролиз происходит во многих тканях (сразу пишем реакции, на откр. Только текст). При этом к крайним молекулам глюкозы присоединяются фосфорные кислоты и одновременно происходит их отщепление в виде глюкозо-1-фосфатов. Ускоряет реакцию фосфорилаза. Глюкозо-1-фосфат затем переходит в глюкозо-6-фосфат, который не проникает через клеточную мембрану и используется только там где образовался. Такой процесс возможен во всех тканях кроме печени, в которой много фермента глюкозо-6-фосфатазы, который ускоряет отщепление фосфорной кислоты и при этом образуется свободная глюкоза, которая может поступать в кровь - показать на пленке, реакции знать, см. материалы стр.36-37 (на откр. не списывать).

Обязательно в виде текста - Фосфорилаза не действует на альфа(16)гликозидные связи. Поэтому окончательное разрушение гликогена осуществляется амило-1,6-глюкозидазой. Этот фермент проявляет 2 вида активности. Во-первых, активность трансферазы, которая переносит фрагмент из 3-х молекул глюкозы с альфа(16)положения в альфа(14)положение. Во-вторых, активность глюкозидазы, которая ускоряет отщепление свободной глюкозы на уровне альфа(16) гликозидной связи (см. пленку).

Второй путь гликогенолиза - гидролиз, осуществляется преимущественно в печени под действием гамма-амилазы. При этом происходит отщепление крайней молекулы глюкозы от гликогена и свободная глюкоза может поступать в кровь реакции знать, см. материалы стр. 37, показать на пленке.

Т.о., в результате гликогенолиза образуется или глюкозо-монофосфат (при фосфоролизе) или свободная глюкоза (при гидролизе), которые используется на синтетические процессы или подвергаются распаду (окислению).

Kombatan & Mano Mano Supercamp & Competitions 2018 Перейти.

10th International training seminar of sports judges Перейти.

Stage Di Kali 14&15 Ottobre Перейти.

Internationales Sommercamp Taekwondo Friedrichshafen Перейти.

Международный турнир по каратэ "Кубок Черного Моря" пройдет в шестнадцатый раз Перейти.

Combat Ju-Jutsu Open European Championship 2017 Перейти.

Кубок України з Комбат Дзю-Дзюцу 2017 Перейти.

Відкриті Всеукраїнські змагання з виду бойового мистецтва Макотокай карате з ПОСИЛЕННОЇ ФІЗИЧНОЇ ПІДГОТОВКИ Перейти.

Вариант защиты от ножа по школе кэмпо-дзюц Перейти.

Куботан и явара: использование в самозащите Перейти.

Защиты от атаки автоматом со штык-ножом Перейти.

A new illustrated book on Shastra vidya by researcher, writer and illustrator, Harjt Singh Sagoo Перейти.

С ЮБИЛЕЕМ ОТ КОЛЛЕГ! Перейти.

ЧИТАЙТЕ В февральском НОМЕРЕ Перейти.

Специализированный клуб единоборств «Джук Лум» Перейти.

Окинава Каратэ-до Киокай Украина (ОКИКУКАЙ Украина) Перейти.

УКРАЇНСЬКА ФЕДЕРАЦІЯ ХОРТИНГУ ДНІПРОПЕТРОВСЬКА ФЕДЕРАЦІЯ ХОРТИНГУ ХОРТИНГ-ЦЕНТР Перейти.

Спортивный клуб «Шелест» Перейти.

Cамобытность боевых искусств Перейти.

«ЖЕЛЕЗНАЯ РУБАШКА» УЭТИ РЮ: ИНТЕРВЬЮ С ВЛАДИМИРОМ ПОПОВИЧЕМ Перейти.

Snake Blocker – легендарный индейский воин современности Перейти.

Превращение глюкозы в клетках

При поступлении глюкозы в клетки осуществляется фосфорилирование глюкозы. Фосфорилированная глюкоза не может пройти через цитоплазматическую мембрану и остается в клетке. Реакция требует энергии АТФ и практически необратима.

Общая схема превращения глюкозы в клетках:

Метаболизм гликогена

Пути синтеза и распада гликогена различаются, что позволяет этим метаболическим процессам протекать независимо друг от друга и исключает переключение промежуточных продуктов с одного процесса на другой.

Процессы синтеза и распада гликогена наиболее активно идут в клетках печени и скелетных мышц.

Синтез гликогена (гликогенез)

Гликогенсинтаза - ключевой фермент процесса - катализирует присоединение глюкозы к молекуле гликогена с образованием a-1,4-гликозидных связей.

Схема синтеза гликогена :

Включение одной молекулы глюкозы в синтезирующуюся молекулу гликогена требует затраты энергии двух молекул АТФ.

Регуляция синтеза гликогена осуществляется через регуляцию активности гликоген-синтазы. Гликогенсинтаза в клетках присутствует в двух формах: гликогенсинтаза в (D ) - фосфорилированная неактивная форма, гликогенсинтаза а (I) - нефосфорилированная активная форма. Глюкагон в гепатоцитах и кардиомиоцитах по аденилатциклазному механизму инактивирует гликогенсинтазу. Аналогично действует адреналин в скелетных мышцах. Гликогенсинтаза D может аллостерически активироваться высокими концентрациями глюкозо-6-фосфата. Инсулин активирует гликогенсинтазу.

Итак, инсулин и глюкоза стимулируют гликогенез, адреналин и глюкагон - тормозят.

Синтез гликогена бактериями полости рта. Некоторые бактерии полости рта способны синтезировать гликоген при избытке углеводов. Механизм синтеза и распада гликогена бактериями подобен таковым у животных за исключением того, что для синтеза используются не УДФ-производные глюкозы, а АДФ-производные. Гликоген используется этими бактериями для поддержки жизнеобеспечения в отсутствие углеводов.

Распад гликогена (гликогенолиз)

Распад гликогена в мышцах происходит при мышечных сокращениях, а в печени - при голодании и в перерывах между приёмами пищи. Основной механизм гликогенолиза - фосфоролиз (расщепление a-1,4-гликозидных связей с участием фосфорной кислоты и гликогенфосфорилазы).

Схема фосфоролиза гликогена :

Различия гликогенолиза в печени и мышцах . В гепатоцитах есть фермент глюкозо-6-фосфатаза и образуется свободная глюкоза, которая поступает в кровь. В миоцитах нет глюкозо-6-фосфатазы. Образовавшийся глюкозо-6-фосфат не может выйти из клетки в кровь (фосфорилированная глюкоза не проходит цитоплазматическую мембрану) и используется на нужды миоцитов.

Регуляция гликогенолиза . Глюкагон и адреналин стимулируют гликогенолиз, инсулин - тормозит. Регуляция гликогенолиза осуществляется на уровне гликогенфосфо-рилазы. Глюкагон и адреналин активируют (переводят в фосфорилированную форму) гликогенфосфорилазу. Глюкагон (в гепатоцитах и кардиомиоцитах) и адреналин (в миоцитах) активируют гликогенфосфорилазу по каскадному механизму через посредника - цАМФ. Связываясь со своими рецепторами на цитоплазматической мембране клеток, гормоны активируют мембранный фермент аденилатциклазу. Аденилатциклаза нарабатывает цАМФ, который активирует протеинкиназу А, и запускается каскад превращений ферментов, заканчивающийся активацией гликогенфосфорилазы. Инсулин инактивирует, то есть переводит в нефосфорилированную форму, гликогенфосфорилазу. Мышечная гликогенфосфорилаза активируется АМФ по аллостерическому механизму.

Таким образом, гликогенез и гликогенолиз координированно регулируются глюкагоном, адреналином и инсулином.

Для продолжения скачивания необходимо собрать картинку:

Большая Энциклопедия Нефти и Газа

Превращение - гликоген

Превращение гликогена в глюкозу осуществляется в печени путем фосфоролиза при участии фермента L-глюканфоефори-лазы. При фосфоролизе гликоген распадается с образованием глюкозо-1 - фосфата (эфир Кори) без предварительного превращения в декстрины и мальтозу. Глюкозо-1 - фосфат под влиянием фосфатазы (глюкозо-1 - фосфатазы) дефосфорилиру-ется, и свободная глюкоза поступает в кровь. В печени, кроме фосфоролитического расщепления гликогена, существует и гидролитический путь распада при участии фермента амилазы.  

Гликоген-фосфорилаза катализирует превращение запасенного гликогена в глюкозо-1 - фосфат. Глюкозо-1 - фосфат служит предшественником глюкозо-6 - фосфа-та-промежуточного продукта гликолиза. При усиленной работе скелетным мышцам требуются большие количества глю-козо-6 - фосфата. Вместе с тем в печени расход гликогена используется для поддержания постоянного уровня глюкозы в крови в промежутках между приемами пищи, б) В активно работающих мышцах, где очень высока потребность в АТР, необходимо, чтобы глюкозр-1 - фосфат образовывался быстро-для этого нужна большая Ктах.  

В задаче предлагается исследовать превращение гликогена экстрактами мышц, не содержащими митохондрий, в присутствии йодацетата и без него.  

Окислительное фосфорилирование, происходящее в процессе превращения гликогена в молочную кислоту, заключается в трансформации энергии окисления в богатые энергией сложно-эфирные связи. Эти связи возникают при взаимодействии спиртовой группы альдегиде - или кетоспиртов с фосфорной кислотой.  

Первой реакцией гликолизного цикла в мышцах является превращение гликогена в 1-фосфат глюкозы (эфир Кори) при действии мышечной фосфорилазы и при помощи неорганического фосфата.  

Приведенная схема условна, и в ней не отражены те аномальные превращения гликогена, о которых упоминалось в начале нашего сообщения.  

Остальные процессы при созревании мяса связаны с глик зом - превращением гликогена в молочную кислоту, денат цией и протеолизом, частичным распадом в основном саркоп менных белков до пептидов и аминокислот. Эти процессы п (кают при О С и усиливаются при повышении температуры, приводит к размягчению ткани и улучшению органолептиче свойств мяса.  

Гипергликемия (и связанная с нею глюкозурия) может быть вызвана действием гормона надпочечников - адреналина, стимулирующего превращение гликогена в глюкозу.  

Он отмечал, что метаболические реакции, усиливающие синтез АТФ, получают положительную обратную связь от АДФ; эти реакции входят в процессы превращения гликогена в глюкозу, а также глюкозы в пировиноградную кислоту посредством гликолитического пути; они же входят в процесс обеспечения электронами окислительной фосфоризации в митохондриях посредством превращения пировиноградной кислоты в двуокись углерода в цикле образования лимонной кислоты. Скорости гликолиза и реакции введения пировиноградной кислоты в цикл образования лимонной кислоты, напротив, получают отрицательную обратную связь от АТФ. Совместное влияние обратной связи состоит в ускорении гликолиза и окис - лительной фосфоризации для усиления синтеза АТФ при увеличении использования АТФ и в замедлении тех же реакций при уменьшении использования АТФ.  

Он отмечал, что метаболические реакции, усиливающие синтез АТФ, получают положительную обратную связь от АДФ; эти реакции входят в процессы превращения гликогена в глкшояу, а также глюкозы в пировиноградную кислоту посредством гликолитического пути; они же входят в процесс обеспечения электронами окислительной фосфорнзации в митохондриях посредством превращения пировиноградной кислоты в двуокись углерода в цикле образования лимонной кислоты. Скорости гликолиза и реакции введения пировиноградной кислоты в цикл образования лимонной кислоты, напротив, получают отрицательную обратную связь от АТФ. Совместное влияние обратной связи состоит в ускорении гликолиза и окислительной фосфоризации для усиления синтеза АТФ при увеличении использования АТФ и в замедлении тех же реакций при уменьшении использования АТФ.  

Детальному исследованию козимазы предшествовало открытие О. Мейергофом факта, что мышечный сок для превращения гликогена в молочную кислоту нуждается в кофермен-те, близком по своим свойствам 1 коферменту, открытому А.  

Глюкагон оказывает двойное действие: ускоряет распад гликогена (гликолиз, гликогенолиз) и ингибирует его синтез из. УДФ-глюкозы, суммарным результатом которого является ускорение превращения гликогена печени в глюкозу. Гипергликемический эффект глюкагона обеспечивает и глюконеогенез, который по времени действия более продолжителен, чем гликолиз.  

Таким образом, адреналин оказывает двойное действие на обмен углеводов: ингибирует синтез гликогена из УДФ-глюкозы, поскольку для проявления максимальной активности D-формы гликогенсинтазы нужны очень высокие концентрации глюкозо-6 - фосфата, и ускоряет распад гликогена, так как способствует образованию активной фосфорилазы а. В целом суммарный результат действия адреналина состоит в ускорении превращения гликогена в глюкозу.  

Метаболитами называют промежуточные продукты, образующиеся в процессе ступенчатых реакций метаболизма. Они обычно содержатся в тканях в незначительной концентрации. Например, молочная кислота представляет собой один из метаболитов, образующихся в процессе превращения гликогена в двуокись углерода и воду.  

Для превращения неактивной формы в активную необходимо присутствие особого фермента, а также Mg2 и аденозин-3 5 -фосфата (циклического аденилата; см. гл. Образование аденозин-3 5 -фосфата из АТФ катализируется специфичным ферментом аденилциклазой, активность которого стимулируется адреналином - гормоном, представляющим собой катехоламин. Известно, что адреналин является мощным стимулятором катаболизма гликогена in vivo; он вызывает превращение гликогена в глюкозу, которая поступает в кровь; избыточное поступление глюкозы в кровь ведет к гипергликемии.  

Превращение глюкозы в гликоген

Большинство мышц организма для получения энергии используют в основном углеводы, для этого они расщепляются посредством гликолиза до пировиноградной кислоты с последующим ее окислением. Однако процесс гликолиза не является единственным способом, с помощью которого глюкоза может расщепляться и использоваться для энергетических целей. Другим важным механизмом расщепления и окисления глюкозы служит пентозофосфатный путь (или фосфоглюконатный путь), который ответствен за 30% распада глюкозы в печени, что превышает ее расщепление в жировых клетках.

Этот путь особенно важен, поскольку обеспечивает клетки энергией независимо от всех ферментов цикла лимонной кислоты, поэтому он является альтернативным путем обмена энергии в случаях нарушений ферментных систем цикла Кребса, что принципиально важно для обеспечения энергией многочисленных процессов синтеза в клетках.

Выделение углекислого газа и водорода в пентозофосфатном цикле. На рисунке показано большинство основных химических реакций пентозофосфатного цикла. Видно, что на различных этапах превращения глюкозы могут выделяться 3 молекулы углекислого газа и 4 атома водорода с образованием сахара, содержащего 5 атомов углерода, - D-рибулезы. Это вещество может последовательно превращаться в различные другие пяти-, четырех-, семи- и трехуглеродные сахара. В итоге путем различных комбинаций этих углеводов может ресинтезироваться глюкоза.

При этом ресинтезируются только 5 молекул глюкозы на каждые 6 молекул, исходно вступивших в реакции, поэтому пентозофосфатный путь является циклическим процессом, приводящим к метаболическому распаду одной молекулы глюкозы в каждом завершившемся цикле. При повторении цикла вновь все молекулы глюкозы превращаются в углекислый газ и водород. Затем водород вступает в реакции окислительного фосфорилирования, образуя АТФ, однако чаще он используется для синтеза жиров и других веществ следующим образом.

Использование водорода для синтеза жиров. Функции никотинамидадениндинуклеотидфосфата. Водород, выделяющийся во время пентозофосфатного цикла, не объединяется с НАД+, как во время гликолиза, но взаимодействует с НАДФ+, который практически идентичен НАД+, за исключением фосфатного радикала. Эта разница имеет существенное значение, т.к. только при условии связывания с НАДФ+ с образованием НАДФ-Н водород может использоваться для образования жиров из углеводов и синтеза некоторых других веществ.

Когда гликолитический процесс использования глюкозы замедляется в связи с меньшей активностью клеток, пентозофосфатный цикл остается действенным (особенно в печени) и обеспечивает расщепление глюкозы, которая продолжает поступать в клетки. Образующийся при этом в достаточных количествах НАДФ-Н способствует синтезу из ацетил-КоА (производного глюкозы) длинных цепочек жирных кислот. Это еще один путь, который обеспечивает использование энергии, заключенной в молекуле глюкозы, но в этом случае для образования не АТФ, а запасов жира в организме.

Превращение глюкозы в гликоген или жиры

Если глюкоза не используется сразу на энергетические нужды, но избыток ее продолжает поступать в клетки, она начинает запасаться в виде гликогена либо жиров. Пока глюкоза хранится преимущественно в виде гликогена, который запасается в максимально возможном количестве, этого количества гликогена хватает для обеспечения энергетических потребностей организма в течениеч.

Если гликоген-запасающие клетки (главным образом клетки печени и мышц) приближаются к пределу своих возможностей по запасанию гликогена, продолжающая поступать глюкоза превращается в клетках печени и жировой ткани в жиры, которые направляются на хранение в жировые ткани.

Будем рады вашим вопросам и отзывам:

Материалы для размещения и пожелания просим присылать на адрес

Присылая материал для размещения вы соглашаетесь с тем, что все права на него принадлежат вам

При цитировании любой информации обратная ссылка на MedUniver.com - обязательна

Вся предоставленная информация подлежит обязательной консультации лечащим врачом

Администрация сохраняет за собой право удалять любую предоставленную пользователем информацию

Что происходит в печени с избытком глюкозы? Схема гликогенеза и гликогенолиза

Глюкоза является главным энергетическим материалом для функционирования человеческого тела. В организм она поступает с пищей в виде углеводов. На протяжении многих тысячелетий человек претерпевал массу эволюционных изменений.

Одним из важных приобретенных умений стала способность организма впрок запасать энергетические материалы на случай голода и синтезировать их из других соединений.

Избытки углеводов аккумулируются в организме при участии печени и сложных биохимических реакций. Все процессы накопления, синтеза и использования глюкозы регулируются гормонами.

Какую роль играет печень в накоплении углеводов в организме?

Существуют следующие пути для использования глюкозы печенью:

  1. Гликолиз. Сложный многоступенчатый механизм окисления глюкозы без участия кислорода, в результате которого образуется универсальные источники энергии: АТФ и НАДФ - соединения, обеспечивающие энергией протекание всех биохимических и обменных процессов в организме;
  2. Запасание в виде гликогена при участии гормона инсулина. Гликоген – неактивная форма глюкозы, которая может накапливаться и сберегаться в организме;
  3. Липогенез. Если глюкозы поступает больше, чем необходимо даже для образования гликогена, начинается синтез липидов.

Роль печени в углеводном обмене огромна, благодаря ей в организме постоянно присутствует запас углеводов, жизненно необходимых организму.

Что происходит с углеводами в организме?

Основная роль печени - регуляция углеводного обмена и глюкозы с последующим депонированием гликогена в гепатоцитах человека. Особенностью является превращение сахара под воздействием узкоспециальных ферментов и гормонов в особую его форму, этот процесс происходит исключительно в печени (необходимое условие потребления её клетками). Эти преобразования ускоряются ферментами гексо- и глюкокиназой при понижении уровня содержания сахара.

В процессе пищеварения (а углеводы начинают расщепляться сразу после попадания еды в ротовую полость) содержание глюкозы в крови повышается, вследствие чего происходит ускорение реакций, направленных на депонирование излишков. Тем самым предупреждается возникновение гипергликемии во время приёма пищи.

Сахар из крови с помощью ряда биохимических реакций в печени преобразуется в неактивное его соединение – гликоген и накапливается в гепатоцитах и мышцах. При наступлении энергетического голода с помощью гормонов организм способен высвобождать гликоген из депо и синтезировать из него глюкозу - это основной путь получения энергии.

Схема синтеза гликогена

Излишки глюкозы в печени используются в производстве гликогена под воздействием гормона поджелудочной железы - инсулина. Гликоген (животный крахмал) - это полисахарид, особенностью строения которого является древообразная структура. Запасают его гепатоциты в форме гранул. Содержание гликогена в печени человека может увеличиваться до 8% от массы клетки после принятия углеводистой еды. Распад нужен, как правило, для удержания уровня глюкозы в процессе пищеварения. При длительном голодании содержание гликогена понижается почти до нуля и снова синтезируется во время пищеварения.

Биохимия гликогенолиза

Если у организма повышается потребность в глюкозе - гликоген начинает распадаться. Механизм преобразования происходит, как правило, между приемами пищи, и ускоряется при мышечных нагрузках. Голодание (отсутствие приема пищи в течение не менее 24 часов) приводит к практически полному распаду гликогена в печени. Но при регулярном питании его запасы полностью восстанавливаются. Подобное аккумулирование сахара может существовать очень долго, до возникновения потребности в распаде.

Биохимия глюконеогенеза (путь получения глюкозы)

Глюконеогенез – процесс синтеза глюкозы из неуглеводных соединений. Его главная задача - удержание стабильного содержания углеводов в крови при недостатке гликогена или тяжёлой физической работе. Глюконеогенез обеспечивает продукцию сахара до 100 грамм в сутки. В состоянии углеводного голода организм способен синтезировать энергию с альтернативных соединений.

Для использования пути гликогенолиза при необходимости получения энергии нужны следующие вещества:

  1. Лактат (молочная кислота) – синтезируется при распаде глюкозы. После физических нагрузок возвращается в печень, где снова преобразуется в углеводы. Благодаря этому молочная кислота постоянно участвует в образовании глюкозы;
  2. Глицерин – результат распада липидов;
  3. Аминокислоты – синтезируются при распаде мышечных белков и начинают участвовать в образовании глюкозы при истощении запасов гликогена.

Основное количество глюкозы производится в печени (более 70 грамм в сутки). Главной задачей глюконеогенеза является снабжение сахаром мозга.

В организм попадают углеводы не только в виде глюкозы - это может быть и манноза, содержащаяся в цитрусовых. Манноза в результате каскада биохимических процессов преобразуется в соединение, подобное глюкозе. В этом состоянии она вступает в реакции гликолиза.

Схема пути регулирования гликогенеза и гликогенолиза

Путь синтеза и распада гликогена регулируется такими гормонами:

  • Инсулин – гормон поджелудочной железы белковой природы. Он понижает содержание сахара в крови. В целом особенностью гормона инсулина является влияние на обмен гликогена, в противоположность глюкагону. Инсулин регулирует дальнейший путь преобразования глюкозы. Под его влиянием происходит транспортировка углеводов в клетки организма, а из их избытков - образование гликогена;
  • Глюкагон – гормон голода – вырабатывается поджелудочной железой. Имеет белковую природу. В противоположность инсулину, ускоряет распад гликогена, и способствует стабилизации уровня глюкозы в крови;
  • Адреналин – гормон стресса и страха. Его выработка и выделение происходят в надпочечниках. Стимулирует выброс избытка сахара из печени в кровь, для снабжения тканей «питанием» в стрессовой ситуации. Так же, как и глюкагон, в отличие от инсулина, ускоряет катаболизм гликогена в печени.

Перепад количества углеводов в крови активирует производство гормонов инсулина и глюкагона, смену их концентрации, что переключает распад и образование гликогена в печени.

Одной из важных задач печени является регулирование пути синтеза липидов. Липидный обмен в печени включает производство разных жиров (холестерина, триацилглицеридов, фосфолипидов, и др.). Эти липиды поступают в кровь, их присутствие обеспечивает энергией ткани организма.

Печень непосредственно участвует в поддержании энергетического баланса в организме. Ее заболевания способны привести к нарушению важных биохимических процессов, в результате чего будут страдать все органы и системы. Необходимо тщательно следить за своим здоровьем и при необходимости не откладывать визит к врачу.

Внимание! Информация о препаратах и народных средствах лечения представлена только для ознакомления. Ни в коем случае нельзя применять лекарство или давать его своим близким без врачебной консультации! Самолечение и бесконтрольный прием препаратов опасен развитием осложнений и побочных эффектов! При первых признаках болезней печени необходимо обратиться к врачу.

©18 Редакция портала «Моя Печень».

Использование материалов сайта разрешено только с предварительного согласования с редакцией.

1) гликоген

2) гормоны

3) адреналин

4) ферменты

145. Вредные вещества, об­ра­зо­вав­ши­е­ся в про­цес­се пищеварения, обез­вре­жи­ва­ют­ся в

1) толстом кишечнике

2) тонком кишечнике

3) поджелудочной железе

146. Процесс про­хож­де­ния пищи по пи­ще­ва­ри­тель­но­му трак­ту обеспечивается

1) слизистыми обо­лоч­ка­ми пи­ще­ва­ри­тель­но­го тракта

2) секретами пи­ще­ва­ри­тель­ных желёз

3) перистальтикой пищевода, желудка, кишечника

4) активностью пи­ще­ва­ри­тель­ных соков

147. Всасывание пи­та­тель­ных ве­ществ в пи­ще­ва­ри­тель­ной си­сте­ме че­ло­ве­ка наи­бо­лее ин­тен­сив­но про­ис­хо­дит в

1) полости желудка

2) толстом кишечнике

3) тонком кишечнике

4) поджелудочной железе

148. При не­до­стат­ке в ор­га­низ­ме че­ло­ве­ка желчи на­ру­ша­ет­ся усвоение

3) углеводов

4) нуклеиновых кислот

149. Где про­ис­хо­дит под­го­то­ви­тель­ный этап энер­ге­ти­че­ско­го об­ме­на ве­ществ у человека?

1) в ци­то­плаз­ме клеток

2) в пи­ще­ва­ри­тель­ном тракте

3) в митохондриях

4) на эн­до­плаз­ма­ти­че­ской сети

150. В каком от­де­ле пи­ще­ва­ри­тель­но­го ка­на­ла че­ло­ве­ка вса­сы­ва­ет­ся ос­нов­ная масса воды?

1) ротовой полости

2) пищеводе

3) желудке

4) толстой кишке

151. Чихание пред­став­ля­ет собой ре­флек­тор­ный рез­кий выдох через нос, воз­ни­ка­ю­щий при раз­дра­же­нии рецепторов, рас­по­ло­жен­ных на сли­зи­стой оболочке

1) корня языка и надгортанника

2) хрящей гортани

3) трахеи и бронхиол

4) носовой полости

152. Какие пи­та­тель­ные ве­ще­ства по­сту­па­ют в кровь че­ло­ве­ка в про­цес­се вса­сы­ва­ния через вор­син­ки тон­кой кишки?

1) аминокислоты

3) полисахариды

4) нуклеиновые кислоты

153. Моча у че­ло­ве­ка об­ра­зу­ет­ся в

1) мо­че­ис­пус­ка­тель­ном ка­на­ле

2) мо­че­вом пу­зы­ре

3) мочеточниках

4) нефронах

154. Отсутствие витаминов в пище человека приводит к нарушению обмена веществ, так как витамины участвуют в образовании

1) углеводов

2) нуклеиновых кислот

3) ферментов

4) минеральных солей

Витамины в организме человека и животных

1) регулируют поступление кислорода

2) оказывают влияние на рост, развитие, обмен веществ

3) вызывают образование антител

4) увеличивают скорость образования и распада оксигемоглобина

Ржаной хлеб является источником витамина

В коже человека под действием ультрафиолетовых лучей синтезируется витамин

1) уничтожает яды, выделяемые микробами

2) уничтожает яды, выделяемые вирусами

3) защищает от окисления ферменты, ответственные за синтез антител

4) является составной частью антител

Какой витамин входит в состав зрительного пигмента, содержащегося в светочувствительных клетках сетчатки

Какой витамин следует включить в рацион человека, больного цингой?

Какую роль играют витамины в организме человека

1) являются источником энергии

2) выполняют пластическую функцию

3) служат компонентами ферментов

4) влияют на скорость движения крови

Недостаток у человека витамина А приводит к заболеванию

1) куриной слепотой

2) сахарным диабетом

4) рахитом

В рыбьем жире много витамина:

Недостаток в организме человека витамина А приводит к заболеванию

1) куриной слепотой

2) сахарным диабетом

4) рахитом

165. Недостаток в ор­га­низ­ме человека ви­та­ми­на С при­во­дит к заболеванию

1) ку­ри­ной слепотой

2) са­хар­ным диабетом

4) рахитом

Недостаток в организме человека витамина Д приводит к заболеванию

1) куриной слепотой

2) сахарным диабетом

4) рахитом

167. Употребление про­дук­тов или спе­ци­аль­ных ле­кар­ствен­ных препаратов, со­дер­жа­щих ви­та­мин D,

1) увеличивает массу мышц

2) предупреждает рахит

3) улучшает зрение

4) увеличивает со­дер­жа­ние гемоглобина

168. Витамины груп­пы B син­те­зи­ру­ют­ся бактериями-симбионтами в

2) желудке

3) тол­стой кишке

4) тон­кой кишке

Фагоциты человека способны

2) вырабатывать гемоглобин

3) участвовать в свёртывании крови

4) вырабатывать антитела

Первый барьер на пути микробов в организме человека создают

1) волосяной покров и железы

2) кожа и слизистые оболочки

3) фагоциты и лимфоциты

4) эритроциты и тромбоциты

Что происходит в организме человека после предохранительной прививки?

1) вырабатываются ферменты

2) кровь свертывается, образуется тромб

3) образуются антитела

4) нарушается постоянство внутренней среды

172. Какой вирус нарушает работу иммунной системы человека:

1) полиомиелита

173. Невосприимчивость ор­га­низ­ма к воз­дей­ствию возбудителя за­бо­ле­ва­ния обеспечивается:

1) обменом веществ

2) иммунитетом

3) ферментами

4) гормонами

Заболевание СПИДом может привести:

1) к несвертываемости крови

2) к полному разрушению иммунной системы организма

3) к резкому повышению содержания тромбоцитов в крови

4) к понижению гемоглобина в крови и развитию малокровия

В экстренных случаях больному вводят лечебную сыворотку, в которой содержится:

1) ослабленные возбудители болезни

2) ядовитые вещества, выделяемые микроорганизмами

3) готовые антитела против возбудителя данного заболевания

4) погибшие возбудители заболевания

176. Предупредительные прививки защищают человека от:

1) любых заболеваний

2) ВИЧ - инфекции и СПИДа

3) хронических заболеваний

4) большинства инфекционных заболеваний

177. При предупредительной прививке в организм вводится:

1) убитые или ослабленные микроорганизмы

2) готовые антитела

3) лейкоциты

4) антибиотики

Защиту организма человека от чужеродных тел и микроорганизмов осуществляют

1) лейкоциты, или белые кровяные клетки

2) эритроциты, или красные кровяные клетки

3) тромбоциты, или кровяные пластинки

4) жидкая часть крови - плазма

Введение в кровь сыворотки, содержащей антитела против возбудителей определённого заболевания, приводит к формированию иммунитета

1) активного искусственного

2) пассивного искусственного

3) естественного врожденного

4) естественного приобретённого

Лейкоциты участвуют в

1) свертывании крови

2) переносе кислорода

3) переносе конечных продуктов обмена

4) уничтожении чужеродных тел и веществ

Защита организма от инфекции осуществляется не только клетками фагоцитами, но и

1) эритроцитами

2) тромбоцитами

3) антителами

4) резус-фактором

Вакцинация населения - это

1) лечение инфекционных заболеваний антибиотиками

2) укрепление иммунной системы стимуляторами

3) введение здоровому человеку ослабленных возбудителей болезни

4) введение заболевшему человеку антител к возбудителю заболевания

Молоко матери защищает грудных детей от инфекционных заболеваний, так как оно содержит:

1) ферменты

2) гормоны

3) антитела

4) соли кальция

Пассивный искусственный иммунитет возникает у человека, если ему в кровь вводят:

2) готовые антитела

3) фагоциты и лимфоциты

4) эритроциты и тромбоциты

Вакцина содержит

1) только яды, выделяемые возбудителями

2) ослабленных или убитых возбудителей или их яды

3) готовые антитела

4) неослабленных возбудителей в небольших количествах

Какие вещества обезвреживают в организме человека и животных чужеродные тела и их яды

1) ферменты

2) антитела

3) антибиотики

4) гормоны

Пассивный искусственный иммунитет возникает у человека, если ему в кровь вводят

1) ослабленных возбудителей болезни

2) готовые антитела

3) фагоциты и лимфоциты

4) вещества, вырабатываемые возбудителями

Фагоцитозом называют

1) способность лейкоцитов выходить из сосудов

2) уничтожение лейкоцитами бактерий, вирусов

3) превращение протромбина в тромбин

4) перенос эритроцитами кислорода от легких к тканям

Фагоциты человека способны

1) захватывать чужеродные тела

2) вырабатывать гемоглобин

Обмен веществ

Организм человека получает необходимые для жизнедеятельности строительный материал и энергию в процессе

1) роста и развития

2) транспорта веществ

3) обмена веществ

4) выделения

Кислород, поступающий в организм человека в процессе дыхания, способствует

1) образованию органических веществ из неорганических

2) окислению органических веществ с освобождением энергии

3) образованию более сложных органических веществ из менее сложных

4) выделению продуктов обмена из организма

Какие вещества в организме человека определяют интенсивность и направление химических процессов, составляющих основу обмена веществ

2) ферменты

3) витамины

2533. Железы внутренней секреции выделяют гормоны в

В) клетки органов

2534. Выберите пример ароморфоза

А) образование нектарников в цветках

Б) формирование различий в строении цветков у растений

В) появление корневой системы у древних папоротников

Г) формирование разнообразных листьев у растений

2535. Верны ли следующие суждения о формах естественного отбора?

1. Возникновение устойчивости к ядохимикатам у насекомых – вредителей сельскохозяйственных растений – пример стабилизирующей формы естественного отбора.

2. Движущий отбор способствует увеличению числа особей вида со средним значением признака

А) верно только 1

Б) верно только 2

В) верны оба суждения

Г) оба суждения неврены

2536. Отсутствие в клетке митохондрий, комплекса Гольджи, ядра указывает на ее принадлежность к

2537. Лизосома представляет собой

А) систему связанных между собой канальцев и полостей

Б) органоид, отграниченный от цитоплазмы одной мембраной

В) две центриоли, расположенные в уплотненной цитоплазме

Г) две связанные между собой субъединицы

2538. Какое размножение обеспечивает генетическое разнообразие растений?

2539. Организм, гомологичные хромосомы которого содержат гены темного и светлого цвета волос, является

2540. В условиях тропической Африки у капусты белокочанной не образуются кочаны. Какая форма изменчивости проявляется в данном случае?

в печени избыток глюкозы преобразуется в

Излишки глюкозы в печени превращаются в

В разделе Школы на вопрос Что происходит в печени с избытком глюкозы? заданный автором Денис шумаков лучший ответ это в печени из глюкозы под воздействием гормона инсулина образуется гликоген

проследите за ферментами алт и аст!

не знаю, что происходит с печенью от глюкоза, но точно знаю, когда сладкого мого ешь, начинается ее воспаление, печень увеличивается, а сгоняют эт все глюкозой с аскорбинкой

Большая Энциклопедия Нефти и Газа

Избыток - глюкоза

В печеночной вене и в сосудах большого круга кровообращения при нормальных условиях содержание глюкозы удерживается на постоянном уровне и колеблется в очень небольших пределах - от 85 до НО мг в 100 мл крови. Постоянство содержания сахара в печеночной вене объясняется тем, что избыток глюкозы задерживается печенью. При малом поступлении глюкоза полностью переходит в печеночную вену, а при большом поступлении избыток глюкозы под влиянием ферментов печени превращается в гликоген. Процесс образования гликогена из глюкозы и отложение его в качестве запасного питательного материала в печени и частично в мышцах активируются гормоном поджелудочной железы инсулином.  

Весь комплекс метаболических сдвигов, обусловленный недостаточностью инсулина, можно рассматривать как свидетельство того, что при диабете организм стремится превратить все имеющиеся в его распоряжении питательные вещества в глюкозу крови. Ткани остро нуждаются в глюкозе, и печень напряженно синтезирует ее, однако это приводит только к тому, что большая часть глюкозы уходит в мочу. Согласно этому взгляду на нарушение обмена веществ при диабете, ткани больного оказываются не способными поглощать глюкозу из крови при ее нормальном уровне, составляющеммМ; для эффективного поглощения им требуется гораздо более высокая концентрация глюкозы. Однако при увеличении концентрации глюкозы в крови свыше 10 мМ, т.е. выше порогового значения для почек, избыток глюкозы выделяется с мочой, что приводит к потере больших количеств глюкозы организмом.  

В растениях молекула глюкозы полимеризуется в цепи, состоящие из тысяч мономерных единиц, в результате чего получается целлюлоза, а если полимеризация происходит несколько иным образом, получается крахмал. Близкородственный к глюкозе N-ацетилглюкозамин в результате полимеризации образует хитин - вещество, из которого состоит роговица насекомых. Другое близкое по составу вещество, N-ацетилмурановая кислота, сополимеризуется в другую последовательность цепей, из которых построены стенки бактериальных клеток. Глюкоза разлагается в несколько стадий, выделяя энергию, которая требуется живому организму. Избыток глюкозы переносится кровотоком в печень и превращается в животный крахмал - гликоген, который при необходимости снова превращается в глюкозу. Глюкоза, целлюлоза, крахмал и гликоген относятся к углеводам.  

На рис. 8.2 приведены результаты такого внеклеточного переваривания. Амилазы и про-теиназы осуществляют соответственно расщепление крахмала до глюкозы и белков до аминокислот. Тонкий и хорошо разветвленный мицелий у Мисог и Rhizopus обеспечивает большую поверхность всасывания. Глюкоза используется во время дыхания для обеспечения гриба энергией, необходимой для протекания метаболических процессов. Кроме того, глюкоза и аминокислоты идут на рост и восстановление тканей гриба. В цитоплазме хранятся избыток глюкозы, превращенный в гликоген и жир, и избыток аминокислот в виде белковых гранул.  

Крахмал составляет по весу главную составную часть пищи человека (хлеб, картофель, крупы, овощи) - главный энергетический ресурс его организма. Уже во рту, под действием слюны, содержащей гидролитический фермент амилазу /, начинается гидролиз крахмала. В кислой среде желудка гидролиз завершается расщеплением до глюкозы, которая из кишечника поступает в кровь и разносится током крови до каждой клетки, подвергаясь там ряду превращений (стр. Концентрация глюкозы регулируется действием гормонов. При повышении содержания глюкозы в крови избыток ее за счет специфического действия выделяемого поджелудочной железой гормона инсулина (белок, см. кн. II) откладывается в печени и частично в мышцах в виде животного крахмала - гликогена. Печень может содержать до 20 вес. Если деятельность поджелудочной железы нарушена и она не продуцирует инсулина, наступает сахарная болезнь - диабет, характеризующаяся повышенным содержанием глюкозы в крови. Организм вынужден тогда сбрасывать избыток глюкозы с мочой.  

Я позволю себе сказать здесь несколько слов о работе, которую я только начал, но которая, может быть, приведет к решению интересующего нас вопроса. Некоторые соображения привели меня к выводу, что дегидратация глюкозы в растениях может происходить только при помощи специального фермента, действующего в обратном направлении, чем амилаза. Существование этих двух ферментов с диаметрально противоположными функциями не является неожиданным, так как мы теперь знаем, что в живом организме существуют один или несколько окислительных ферментов - оксидазы - и один гидрогенизирующий фермент. Если существует гидратирующий фермент, то вполне возможно существование и дегидратирующего. Следующий характерный факт делает это предположение весьма правдоподобным. Известно, что амилаза не действует на крахмал в присутствии концентрированного раствора глюкозы. Допустим, что растение содержит наряду с амилазой дегидратирующий фермент. В тот период, когда в листьях идет с полной интенсивностью процесс ассимиляции углерода и образуется глюкоза, эта последняя нашим гипотетическим ферментом превращается в крахмал. В присутствии избытка глюкозы амилаза не действует на крахмал, отложенный в листьях. Но как только ассимиляция прекращается, количество глюкозы уменьшается, и амилаза вновь приобретает активность: она превращает крахмал в растворимые сахаристые вещества, необходимые для жизнедеятельности растения.  

Печень

Буланов Ю.Б.

Название "печень" происходит от слова "печь", т.к. печень обладает самой высокой температурой из всех органов живого тела. С чем это связано? Скорее всего с тем, что в печени на единицу массы происходит самое высокое количество образования энергии. До 20% массы всей клетки печени занимают митохондрии, "силовые станции клетки", которые непрерывно образуют АТФ, распределяющуюся по всему организму.

Цель воротной вены не в том, чтобы снабдить печень кислородом и избавить от углекислого газа, а в том, чтобы пропустить через печень все питательные (и не питательные) вещества, которые всосались на протяжении всего желудочно-кишечного тракта. Сначала через воротную вену они проходят через печень, а потом уже в печени, претерпев определенные изменения, всасываются в общий кровоток. На долю воротной вены приходится 80% крови, получаемой печенью. Кровь воротной вены имеет смешанный характер. Она содержит как артериальную, так и венозную кровь, оттекающую от желудочно-кишечного тракта. Таким образом в печени имеются 2 капиллярные системы: обычная, между артериями и венами и капиллярная сеть воротной вены, которую иногда называют "чудесной сетью". Обычная и капиллярная чудесная сеть соединяются между собой.

Симпатическая иннервация

Иннервируется печень из солнечного сплетения и ветвями блуждающего нерва (парасимпатическая импульсация).

Углеводный обмен

Глюкоза и другие моносахариды, поступающие в печень, превращаются ею в гликоген. Гликоген откладывается в печени как "сахарный резерв". В гликоген помимо моносахаридов превращается и молочная кислота, продукты расщепления белков (аминокислоты), жиров (триглицериды и жирные кислоты). Все эти вещества начинают превращаться в гликоген в том случае, если углеводов в пище не хватает.

Белковый обмен

Роль печени в белковом обмене заключается в расщеплении и "перестройке" аминокислот, образовании химически нейтральной мочевины из токсичного для организма аммиака, а также в синтезе белковых молекул. Аминокислоты, которые всасываются в кишечнике и образуются при расщеплении тканевого белка, составляют "резервуар аминокислот" организма, который может служить как источником энергии, так и строительным материалом для синтеза белков. Изотопными методами было установлено, что в организме человека в стуки расщепляется и вновь синтезируетсяг белка. Приблизительно половина этого белка трансформируется в печени. Об интенсивности белковых превращений в печени можно судить по тому, что белки печени обновляются примерно за 7 (!) дней. В других органах этот процесс происходит как минимум за 17 дней. В печени содержится так называемый "резервный белок", который идет на нужды организма в том случае, если не хватает белка с пищей. При двухдневном голодании печень теряет примерно 20% своего белка, в то время, как общая потеря белка всех других органов составляет только около 4%.

Жировой обмен

Печень может депонировать жира намного больше, чем гликогена. Так называемый "структурный липоид" - структурные липиды печени фосфолипиды и холестерин составляют 10-16% сухого вещества печени. Это количество довольно постоянно. Помимо структурных липидов печень имеет включения нейтрального жира, сходного по своему составу с жиром подкожной клетчатки. Содержание нейтрального жира в печени подвержено значительным колебаниям. В целом же, можно сказать, что печень имеет определенный жировой запас, который при дефиците нейтрального жира в организме может расходоваться на энергетические нужды. Жирные кислоты при дефиците энергии могут хорошо окисляться в печени с образованием энергии, запасаемой в виде АТФ. В принципе, жирные кислоты могут окисляться и в любых других внутренних органах, однако процентное соотношение будет таким: 60% печень и 40% все остальные органы.

Холестериновый обмен

Холестериновые молекулы составляют структурный каркас всех без исключения клеточных мембран. Деление клеток без достаточного количества холестерина попросту невозможно. Из холестерина образуются желчные кислоты, т.е. по сути сама желчь. Из холестерина образуются все стероидные гормоны: глюкокортикоиды, минералокортикоиды, все половые гормоны.

Витамины

Все жирорастворимые витамины (А, Д, Е, К и др.) всасываются в стенки кишечника только в присутствии желчных кислот, выделяемых печенью. Некоторые витамины (А, В1, Р, Е, К, РР и др.) депонируются печенью. Многие из них участвуют в химических реакция, происходящих в печени (В1, В2, В5, В12, С, К и др.). Часть витаминов активизируется в печени, подвергаясь в ней фосфорицированию (В1, В2, В6, холин и др.). Без фосфорных остатков эти витамины совершенно неактивны и часто нормальный витаминный баланс в организме больше зависит от нормального состояния печени, чем от достаточного поступления того или иного витамина в организм.

Обмен гормонов

Роль печени на метаболизм стероидных гормонов не ограничивается тем, что она синтезирует холестерины - основу, из которой затем образуются все стероидные гормоны. В печени все стероидные гормоны подвергаются инактивации, хотя образуются они и не в печени.

Микроэлементы

Обмен практически всех микроэлементов напрямую зависит от работы печени. Печень, например, оказывает влияние на всасывание железа из кишечника, она депонирует железо и обеспечивает постоянство его концентрации в крови. Печень - депо меди и цинка. Она принимает участие в обмене марганца, молибдена кобальта и других микроэлементов.

Желчеобразование

Желчь, вырабатываемая печенью, как мы уже говорили, принимает активное участие в переваривании жиров. Однако дело не ограничивается всего лишь их эмульгированием. Желчь активизирует жирорасщепляющий фермент липозу панкреатического и кишечного сока. Желчь также ускоряет всасывание в кишечнике жирных кислот, каротина, витаминов Р, Е, К, холестерина, аминокислот, солей кальция. Желчь стимулирует перистальтику кишечника.

Используют, впрочем и теперь. Свойством абсорбировать желчные кислоты и выводить их из организма обладает клетчатка овощей и фруктов, но в еще большей степени пектиновые вещества. Наибольшее количество пектиновых веществ содержится в ягодах и фруктах, из которых можно приготовить желе без применения желатина. В первую очередь, это красная смородина, затем, по желеобразующей способности за ней следуют черная смородина, крыжовник, яблоки. Примечательно, что в печеных яблоках пектинов содержится в несколько раз больше, нежели в свежих. В свежем яблоке содержатся протопектины, которые при печении яблок превращаются в пектины. Печеные яблоки - непременный атрибут всех диет, когда нужно удалить из организма большое количество желчи (атеросклероз, заболевания печени, некоторые отравления и т. д.).

Выделительная (экскреторная) функция

Выделительная функция печени очень тесно связана с желчеобразованием, поскольку экскретируемые печенью вещества экскретируются через желчь и хотя бы уже поэтому они автоматически становятся составной частью желчи. К таким веществам относятся уже вышеописанные гормоны щитовидной железы, стероидные соединения, холестерин, медь и другие микроэлементы, витамины, порфириновые соединеиия (пигменты) и т. д.

Вещества, выделяемые практически только с желчью подразделяются на две группы:

  • · Вещества, связанные в плазме крови с белками (например, гормоны).
  • · Вещества, нерастворимые в воде (холестерин, стероидные соединения).

Одна из особенностей выделительной функции желчи заключается в том, что она способна вводить из организма такие вещества, которые никаким другим образом из организма выведены быть не могут. В крови мало свободных соединений. Большинство тех же гормонов прочно соединены с транспортными белками крови и будучи прочно соединенными с белками не могут преодолеть почечный фильтр. Такие вещества выделяются из организма вместе с желчью. Другой большой группой веществ, которые не могут быть выведены с мочой являются вещества, нерастворимые в воде.

Обезвреживающая функция

Печень выполняет защитную роль не только за счет обезвреживания и выведения токсичных соединений, но, даже за счет попавших в нее микробов, которых она уничтожает. Специальные клетки печени (купферовские клетки) подобно амебам захватывают чужеродные бактерии и переваривают их.

Свертывание крови

В печени синтезируются вещества, необходимые для свертывания крови, компоненты протромбинового комплекса (факторы II, VII, IX, X) для синтеза которых необходим витамин К. В печени образуются также фибраноген (белок, необходимый для свертывания крови), факторы V, XI, XII, XIII. Как это ни странно может показаться на первый взгляд, в печени же происходит синтез элементов противосвертывающей системы - гепарина (вещество, препятствующее свертыванию крови), антитромбина (вещество, препятствующее образованию тромбов), антиплазмина. У эмбрионов (зародышей) печень также служит кроветворным органом, где формируются эритроциты. С рождением человека эти функции берет на себя костный мозг.

Перераспределение крови в организме

Печень, помимо всех своих прочих функций неплохо выполняет функцию депо крови в организме. В связи с этим она может влиять на кровообращение всего организма. Все внутрипеченочные артерии и вены имеют сфинктеры, которые в очень широких пределах могут изменять кровоток в печени. В среднем кровоток в печени составляют 23 мл/кс/мин. В норме почти 75 мелких сосудов печени выключено сфинктерами из общей циркуляции. При повышении общего кровяного давления происходит расширение сосудов печени и печеночный кровоток в несколько раз возрастает. Наоборот, падение кровяного давления приводит к сужению сосудов в печени и печеночный кровоток уменьшается.

Возрастные изменения

Функциональные возможности печени человека наиболее высоки в раннем детском возрасте и очень медленно умньшаются в возрастом.

Печень

Зачем человеку печень

Печень- это самый крупный наш орган, его масса составляет от 3 до 5% массы тела. Основную массу органа составляют клетки гепатоциты. Это название часто встречается, когда речь заходит о функциях и болезнях печени, поэтому запомним его. Гепатоциты специально приспособлены для синтеза, преобразования и хранения множества различных веществ, которые поступают из крови – и в большинстве случаев туда же возвращаются. Вся наша кровь протекает через печень; она наполняет многочисленные печеночные сосуды и специальные полости, а вокруг них сплошным тонким слоем расположились гепатоциты. Такая структура облегчает обмен веществ между печеночными клетками и кровью.

В печени очень много крови, но не вся она «проточная». Довольно значительный ее объем находится в резерве. При большой потере крови сосуды печени сжимаются и выталкивают свои запасы в общее кровеносное русло, спасая человека от шока.

Выделение желчи – одна из важнейших пищеварительных функций печени. Из печеночных клеток желчь поступает в желчные капилляры, которые объединяются в проток, впадающий в двенадцатиперстную кишку. Желчь вместе с пищеварительными ферментами разлагает жир на составляющие и облегчает его всасывание в кишечнике.

Печень синтезирует и разрушает жиры

Клетки печени синтезируют некоторые жирные кислоты и их производные, необходимые организму. Правда, есть среди этих соединений и те, которые многие считают вредными, – это липопротеиды низкой плотности (ЛПНП) и холестерин, избыток которых образует атеросклеротические бляшки в сосудах. Но не спешите ругать печень: мы не можем обойтись без этих веществ. Холестерин – непременный компонент мембран эритроцитов (красных кровяных телец), а доставляют его к месту образования эритроцитов именно ЛПНП. Если холестерина слишком много, эритроциты теряют эластичность и с трудом протискиваются сквозь тонкие капилляры. Люди думают, что у них проблемы с кровообращением, а у них печень не в порядке. Здоровая печень мешает образованию атеросклеротических бляшек, ее клетки извлекают из крови избыток ЛПНП, холестерина и других жиров и разрушают их.

Печень синтезирует белки плазмы крови.

Почти половина белка, который синтезирует за сутки наш организм, образуется в печени. Самые важные среди них – белки плазмы крови, прежде всего альбумин. На его долю приходится 50% всех белков, создаваемых печенью. В плазме крови должна быть определенная концентрация белков, и поддерживает ее именно альбумин. Кроме того, он связывает и переносит многие вещества: гормоны, жирные кислоты, микроэлементы. Помимо альбумина, гепатоциты синтезируют белки свертывания крови, препятствующие образованию тромбов, а также многие другие. Когда белки состарятся, их распад происходит в печени.

В печени образуется мочевина

Белки в нашем кишечнике расщепляются на аминокислоты. Часть из них находит применение в организме, а остальные нужно удалить, потому что запасать их организм не может. Распад ненужных аминокислот происходит в печени, при этом образуется токсичный аммиак. Но печень не позволяет организму отравиться и сразу преобразует аммиак в растворимую мочевину, которая затем выводится с мочой.

Печень делает из ненужных аминокислот нужные

Бывает, что в рационе человека не хватает каких-то аминокислот. Некоторые из них печень синтезирует, используя фрагменты других аминокислот. Однако некоторые аминокислоты печень делать не умеет, они называются незаменимыми и человек получает их только с пищей.

Печень превращает глюкозу в гликоген, а гликоген в глюкозу

В сыворотке крови должна быть постоянная концентрация глюкозы (иначе говоря – сахара). Она служит основным источником энергии для клеток головного мозга, мышечных клеток и эритроцитов. Самый надежный способ обеспечить постоянное снабжение клеток глюкозой – запасти ее после еды, а потом использовать по мере необходимости. Эта важнейшая задача возложена на печень. Глюкоза растворима в воде, и запасать ее неудобно. Поэтому печень вылавливает из крови избыток молекул глюкозы и превращает в нерастворимый полисахарид гликоген, который откладывается в виде гранул в клетках печени, а при необходимости снова превращается в глюкозу и поступает в кровь. Запаса гликогена в печени хватает начасов.

Печень запасает витамины и микроэлементы

Печень запасает жирорастворимые витамины А, D, Е и К, а также водорастворимые витамины С, В12, никотиновую и фолиевую кислоты. А еще этот орган хранит минеральные вещества, нужные организму в очень малых количествах, такие как медь, цинк, кобальт и молибден.

Печень разрушает старые эритроциты

У человеческого плода эритроциты (красные кровяные тельца, которые переносят кислород), образуются в печени. Постепенно эту функцию берут на себя клетки костного мозга, а печень начинает играть прямо противоположную роль – не создает эритроциты, а разрушает их. Эритроциты живут около 120 дней, а затем стареют и подлежат удалению из организма. В печени есть специальные клетки, которые отлавливают и разрушают старые эритроциты. При этом освобождается гемоглобин, который вне эритроцитов организму не нужен. Гепатоциты разбирают гемоглобин на «запчасти»: аминокислоты, железо и зеленый пигмент. Железо печень хранит, пока оно не потребуется для образования новых эритроцитов в костном мозге, а зеленый пигмент превращает в желтый – билирубин. Билирубин поступает в кишечник вместе с желчью, которую окрашивает в желтый цвет. Если печень больна, билирубин накапливается в крови и окрашивает кожу – это желтуха.

Печень регулирует уровень некоторых гормонов и активных веществ

В этом органе переводится в неактивную форму или разрушается избыток гормонов. Их список довольно длинный, поэтому здесь мы упомянем только инсулин и глюкагон, которые участвуют в превращении глюкозы в гликоген, и половые гормоны тестостерон и эстрогены. При хронических болезнях печени метаболизм тестостерона и эстрогенов нарушен, и у пациента появляются сосудистые звездочки, выпадают волосы под мышками и на лобке, у мужчин атрофируются яички. Печень удаляет избыток таких активных веществ, как адреналин и брадикинин. Первый из них увеличивает частоту сердечных сокращений, уменьшает отток крови к внутренним органам, направляя ее к скелетным мышцам, стимулирует расщепление гликогена и повышение уровня глюкозы в крови, а второй регулирует водный и солевой баланс организма, сокращения гладкой мускулатуры и проницаемость капилляров, а также выполняет некоторые другие функции. Плохо бы нам пришлось при избытке брадикинина и адреналина.

Печень уничтожает микробов

В печени есть специальные клетки-макрофаги, которые располагаются вдоль кровеносных сосудов и вылавливают оттуда бактерии. Пойманные микроорганизмы эти клетки заглатывают и уничтожают.

Как мы уже поняли, печень – решительный противник всего лишнего в организме, и уж конечно она не потерпит в нем ядов и канцерогенных веществ. Обезвреживание ядов происходит в гепатоцитах. После сложных биохимических преобразований токсины превращаются в безвредные, растворимые в воде вещества, которые покидают наше тело с мочой или желчью. К сожалению, не все вещества удается обезвредить. Например, при распаде парацетамола образуется сильнодействующее вещество, которое может необратимо повредить печень. Если печень нездорова, или пациент принял слишком большую дозу парацетомола, последствия могут быть печальными, вплоть до гибели клеток печени.

По материалам zdorovie.info

Правила использования материалов

Вся информация, размещенная на данном сайте, предназначена только для персонального пользования и не подлежит дальнейшему воспроизведению и/или распространению в печатных СМИ, иначе как с письменного разрешения «мед39.ру».

При использовании материалов в интернете, активная прямая ссылка на med39.ru обязательна!

Сетевое издание «МЕД39.РУ». Свидетельство о регистрации СМИ ЭЛ № ФС1 выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) 26 апреля 2013 года.

Информация, размещенная на сайте не может рассматриваться как рекомендации пациентам по диагностике и лечению каких-либо заболеваний, равно как и не является заменой консультации с врачом!

Что происходит в печени с избытком глюкозы? Схема гликогенеза и гликогенолиза

Глюкоза является главным энергетическим материалом для функционирования человеческого тела. В организм она поступает с пищей в виде углеводов. На протяжении многих тысячелетий человек претерпевал массу эволюционных изменений.

Одним из важных приобретенных умений стала способность организма впрок запасать энергетические материалы на случай голода и синтезировать их из других соединений.

Избытки углеводов аккумулируются в организме при участии печени и сложных биохимических реакций. Все процессы накопления, синтеза и использования глюкозы регулируются гормонами.

Какую роль играет печень в накоплении углеводов в организме?

Существуют следующие пути для использования глюкозы печенью:

  1. Гликолиз. Сложный многоступенчатый механизм окисления глюкозы без участия кислорода, в результате которого образуется универсальные источники энергии: АТФ и НАДФ - соединения, обеспечивающие энергией протекание всех биохимических и обменных процессов в организме;
  2. Запасание в виде гликогена при участии гормона инсулина. Гликоген – неактивная форма глюкозы, которая может накапливаться и сберегаться в организме;
  3. Липогенез. Если глюкозы поступает больше, чем необходимо даже для образования гликогена, начинается синтез липидов.

Роль печени в углеводном обмене огромна, благодаря ей в организме постоянно присутствует запас углеводов, жизненно необходимых организму.

Что происходит с углеводами в организме?

Основная роль печени - регуляция углеводного обмена и глюкозы с последующим депонированием гликогена в гепатоцитах человека. Особенностью является превращение сахара под воздействием узкоспециальных ферментов и гормонов в особую его форму, этот процесс происходит исключительно в печени (необходимое условие потребления её клетками). Эти преобразования ускоряются ферментами гексо- и глюкокиназой при понижении уровня содержания сахара.

В процессе пищеварения (а углеводы начинают расщепляться сразу после попадания еды в ротовую полость) содержание глюкозы в крови повышается, вследствие чего происходит ускорение реакций, направленных на депонирование излишков. Тем самым предупреждается возникновение гипергликемии во время приёма пищи.

Сахар из крови с помощью ряда биохимических реакций в печени преобразуется в неактивное его соединение – гликоген и накапливается в гепатоцитах и мышцах. При наступлении энергетического голода с помощью гормонов организм способен высвобождать гликоген из депо и синтезировать из него глюкозу - это основной путь получения энергии.

Схема синтеза гликогена

Излишки глюкозы в печени используются в производстве гликогена под воздействием гормона поджелудочной железы - инсулина. Гликоген (животный крахмал) - это полисахарид, особенностью строения которого является древообразная структура. Запасают его гепатоциты в форме гранул. Содержание гликогена в печени человека может увеличиваться до 8% от массы клетки после принятия углеводистой еды. Распад нужен, как правило, для удержания уровня глюкозы в процессе пищеварения. При длительном голодании содержание гликогена понижается почти до нуля и снова синтезируется во время пищеварения.

Биохимия гликогенолиза

Если у организма повышается потребность в глюкозе - гликоген начинает распадаться. Механизм преобразования происходит, как правило, между приемами пищи, и ускоряется при мышечных нагрузках. Голодание (отсутствие приема пищи в течение не менее 24 часов) приводит к практически полному распаду гликогена в печени. Но при регулярном питании его запасы полностью восстанавливаются. Подобное аккумулирование сахара может существовать очень долго, до возникновения потребности в распаде.

Биохимия глюконеогенеза (путь получения глюкозы)

Глюконеогенез – процесс синтеза глюкозы из неуглеводных соединений. Его главная задача - удержание стабильного содержания углеводов в крови при недостатке гликогена или тяжёлой физической работе. Глюконеогенез обеспечивает продукцию сахара до 100 грамм в сутки. В состоянии углеводного голода организм способен синтезировать энергию с альтернативных соединений.

Для использования пути гликогенолиза при необходимости получения энергии нужны следующие вещества:

  1. Лактат (молочная кислота) – синтезируется при распаде глюкозы. После физических нагрузок возвращается в печень, где снова преобразуется в углеводы. Благодаря этому молочная кислота постоянно участвует в образовании глюкозы;
  2. Глицерин – результат распада липидов;
  3. Аминокислоты – синтезируются при распаде мышечных белков и начинают участвовать в образовании глюкозы при истощении запасов гликогена.

Основное количество глюкозы производится в печени (более 70 грамм в сутки). Главной задачей глюконеогенеза является снабжение сахаром мозга.

В организм попадают углеводы не только в виде глюкозы - это может быть и манноза, содержащаяся в цитрусовых. Манноза в результате каскада биохимических процессов преобразуется в соединение, подобное глюкозе. В этом состоянии она вступает в реакции гликолиза.

Схема пути регулирования гликогенеза и гликогенолиза

Путь синтеза и распада гликогена регулируется такими гормонами:

  • Инсулин – гормон поджелудочной железы белковой природы. Он понижает содержание сахара в крови. В целом особенностью гормона инсулина является влияние на обмен гликогена, в противоположность глюкагону. Инсулин регулирует дальнейший путь преобразования глюкозы. Под его влиянием происходит транспортировка углеводов в клетки организма, а из их избытков - образование гликогена;
  • Глюкагон – гормон голода – вырабатывается поджелудочной железой. Имеет белковую природу. В противоположность инсулину, ускоряет распад гликогена, и способствует стабилизации уровня глюкозы в крови;
  • Адреналин – гормон стресса и страха. Его выработка и выделение происходят в надпочечниках. Стимулирует выброс избытка сахара из печени в кровь, для снабжения тканей «питанием» в стрессовой ситуации. Так же, как и глюкагон, в отличие от инсулина, ускоряет катаболизм гликогена в печени.

Перепад количества углеводов в крови активирует производство гормонов инсулина и глюкагона, смену их концентрации, что переключает распад и образование гликогена в печени.

Одной из важных задач печени является регулирование пути синтеза липидов. Липидный обмен в печени включает производство разных жиров (холестерина, триацилглицеридов, фосфолипидов, и др.). Эти липиды поступают в кровь, их присутствие обеспечивает энергией ткани организма.

Печень непосредственно участвует в поддержании энергетического баланса в организме. Ее заболевания способны привести к нарушению важных биохимических процессов, в результате чего будут страдать все органы и системы. Необходимо тщательно следить за своим здоровьем и при необходимости не откладывать визит к врачу.

Внимание! Информация о препаратах и народных средствах лечения представлена только для ознакомления. Ни в коем случае нельзя применять лекарство или давать его своим близким без врачебной консультации! Самолечение и бесконтрольный прием препаратов опасен развитием осложнений и побочных эффектов! При первых признаках болезней печени необходимо обратиться к врачу.

©18 Редакция портала «Моя Печень».

Использование материалов сайта разрешено только с предварительного согласования с редакцией.