Химическая природа вторичных посредников и их роль. Внутриклеточные рецепторы гормонов. Механизмы вторичных посредников. Пептидные и белковые гормоны




Эффекты, осуществляемые через ц АМФ.

1. через цАМФ гипоталамические либерины (рилизинг-факторы) действуют на секреторный ответ аденогипофиза: АКТГ, ФСГ, ТТГ

2. через цАМФ увеличивается проницаемость для воды в собирательных трубочках под действием АДГ.

3. через цАМФ происходит мобилизация и депонирование жиров, распад гликогена, изменяется функционирование ионных каналов в постсинаптических мембранах. цГМФ - присутствует в клетках в меньшем количестве. цГМФ образуется аналогично см. предыдущий каскад. ГЦ - гуанилатциклаза.

цГМФ вызывает эффекты противоположные цАМФ. Например, в сердечной мышце адреналин стимулирует образование цАМФ, ацетилхолин - цГМФ, т.е. оказывают противоположные действия. Адреналин увеличивает силу и частоту сердечных сокращений. Активность цГМФ зависит от присутствия ионов Са. Через цГМФ действует Na-уретический пептид. Также оксид азота NO, который находится в эндотелии капилляров и способен релаксировать (расслаблять их через цГМФ)

Действие Са как второго посредника связано с повышением концентрации Са 2+ цитоплазме. Концентрация Са может увеличиваться двумя способами:

1. из внутриклеточных депо, например, саркоплазматический ретикулум

2. поступление Са внутрь через управляемые мембранные каналы.

Из внутриклеточных депо Са может высвобождаться под действием инозитол-3-фосфата и в ответ на деполяризацию мембраны, т.е. электрическим стимулом кратковременно открываются кальциевые потенциалзависимые каналы. В некоторых тканях, например, в сердечной мышце число каналов изменяется в результате фосфорилирования белков мембранных каналов цАМФ - зависимой протеинкиназой. Кальциевые каналы активируются химическим способом. Пример, в печени и в слюнных железах приток Са наблюдается при активации а-адренергических рецепторов адреналина. Большая часть Са связывается с белками, небольшая часть находится в ионизированной форме. В клетке существуют специфические белки, такие как кальмодулин или гуанилатциклаза. Они обладают особенностями:

1. у них есть специфические участки связывания с ионами Са, обладающие высоким сродством к Са (даже при низких концентрациях Са)

2. при взаимодействии с Са 2+ они меняют свою конформацию, могут активироваться и вызывать различные аллостерические эффекты.

Каскад - это цепь биохимических реакций, приводящих к усилению первоначального сигнала.

Специфические кальциевые каналы плазматической мембраны или ЭПР активируются различными стимулами. В результате ионы Са 1+ -> внутрь по градиенту -> [Са] увеличивается до 10- 10 моль. Повышение Са активирует несколько путей внутриклеточной регуляции:


1. Са взаимодействует с кальмодулином, затем происходит активация Са - кальмодулинзависимой протеинкиназы. Она переводит белки из неактивного в активное состояние, что приводит к различным клеточным ответам. Пример: в гладких мышечных волокнах может фосфорилировать легкие цепи головки миозина, в результате чего она присоединяется к актину, возникает сокращение.

2. Са может активировать мембранную гуанилатциклазу и способствовать выработке второго посредника цГМФ

3. ионы Са могут активировать С-киназу, тропонин С в поперечно-полосатых мышцах и другие Са-зависимые белки (глицерол - 3 - фосфатДГ)(гликолиз), пируваткиназа (гликолиз); пируваткарбоксилаза (глюконеогенез)

Мембранные липиды в роли вторичных посредников. Общие черты с предыдущими:

1. присутствует G-белок;

2. присутствует фермент, усиливающий сигнал.

Особенность : фосфолипидный компонент мембраны сам служит фосфорилированным предшественником для образования молекул-посредников. Этот предшественник находится в основном на внутренней половине билипидного слоя и называется фосфатидилинозитол-4,5-бифосфат.

Гормон взаимодействует с рецептором, образовавшийся ГР-комплекс, влияет на G-белок, способствуя его связыванию с ГТФ. G-белок активируется и может активировать фосфолипазу, катализирующую гидролиз фосфатидилинозитол-4,5-бифосфат на вторых посредника: диацилглицерол (ДАТ) и инозитол-3-фосфат.

Диацилглицерол-гидрофобный , может перемещаться путем латеральной диффузии и активировать мембранносвязанную С-киназу, для этого рядом должен находиться фосфатидилсерин. С-киназа способна фосфорилировать белки, переводя их из неактивного в активное состояние. ИФЗ растворим в воде -> цитоплазма, здесь он стимулирует высвобождение Са из внутриклеточных депо, т. е. ИФЗ высвобождает третьего посредника ионов Са.

См. Са - как второй посредник. Ионы Са активируют С-киназу, способствуя ее связыванию с мембраной.

Вне связывания с мембраной она неактивна.

Эффекты действия:

АКТГ в коре надпочечников через ИФЗ,

Ангиотензин II

ЛГ в яичниках и клетках Лейдига.

При передаче сигналов в клетке первичными посредниками являются химические соединения или физические факторы (квантсвета), способные активировать механизм передачи сигнала в клетке. По отношению к воспринимающей клетке первичные посредники являются экстраклеточными сигналами. Стоит отметить, что в качестве экстраклеточных стимулов могут выступать и молекулы в изобилии присутствующие внутри клетки, но находящиеся в норме в очень низкой концентрации в межклеточном пространстве (например,АТФилиглутамат). В зависимости от функций первичные посредники могут быть разделены на несколько групп:

  • цитокины

    нейротрансмиттеры

    факторы роста

    хемокины

Рецепторы особые белки, обеспечивающие получение клеткой сигнала от первичных посредников. Для этих белков первичные посредники являются лигандами.

Для обеспечения рецепторной функции молекулы белков должны отвечать ряду требований:

    Обладать высокой избирательностью к лиганду;

    Кинетикасвязываниялигандадолжна описываться кривой с насыщением, соответствующим состоянию полной занятости всех молекул рецепторов, число которых на мембране ограничено;

    Рецепторы должны обладать тканевой специфичностью, отражающей наличие или отсутствие данных функций в клетках органа-мишени;

    Связывание лиганда и его клеточный (физиологический) эффект должны быть обратимы, параметры сродства должны соответствовать физиологическим концентрациям лиганда.

Клеточные рецепторы делятся на следующие классы:

    мембранные

    • рецепторные тирозинкиназы

      рецепторы, сопряжённые с G-белками

      ионные каналы

    цитоплазматические

Мембранные рецепторы распознают крупные (например, инсулин) или гидрофильные (например, адреналин) сигнальные молекулы, которые не могут самостоятельно проникать в клетку. Небольшие гидрофобные сигнальные молекулы (например, трийодтиронин,стероидные гормоны, CO, NO) способны проникать в клетку за счётдиффузии. Рецепторы таких гормонов обычно являются растворимыми цитоплазматическими или ядерными белками. После связывания лиганда с рецептором информация об этом событии передаётся дальше по цепи и приводит к формированию первичного и вторичного клеточного ответа.

Механизмы активации рецепторов . Если внешняя сигнальная молекулавоздействует нарецепторыклеточной мембраны и активирует их, то последние передают полученную информацию на систему белковых компонентов мембраны, называемую каскадом передачи сигнала. Мембранные белки каскада передачи сигнала подразделяют на:

    белки-преобразователи, связанные с рецепторами

    ферменты-усилители, связанные с белками-преобразователями (активируютвторичные внутриклеточные посредники, переносящие информацию внутрь клетки).

Так действуют рецепторы, сопряженные с G-белками. Другие рецепторы (ионные каналы, рецепторы спротеинкиназнойактивностью) сами служат умножителями.

4.3.2. Вторичные посредники

Это низкомолекулярные вещества, которые образуются или высвобождаются в результате ферментативной активности одного из компонентов цепи передачи сигнала и способствуют его дальнейшей передаче и амплификации. Вторичные посредники характеризуются следующими свойствами: имеют небольшую молекулярную массу и с высокой скоростью диффундируютвцитоплазме; быстро расщепляются и быстро удаляются из цитоплазмы. Ко вторичным посредникам относятся:

    Ионы кальция(Ca2+);

    циклический аденозинмонофосфат (цАМФ) и циклический гуанозинмонофосфат (цГМФ)

    инозитолтрифосфат

    липофильные молекулы (например, диацилглицерол);

    оксид азота(NO) (эта молекула выступает и в роли первичного посредника, проникающего в клетку извне).

Иногда в клетке образуются и третичные посредники. Так, обычно ионы Ca2+ выступают в роли вторичного посредника, но при передаче сигнала с помощью инозитолтрифосфата (вторичный посредник) выделяющиеся при его участии из ЭПРионы Ca2+ служат третичным посредником.

Механизм передачи сигнала предполагает примерно следующую схему:

    Взаимодействие внешнего агента (стимула) с клеточным рецептором,

    Активация эффекторной молекулы, находящейся в мембране и отвечающей за генерацию вторичных посредников,

    Образование вторичных посредников,

    Активация посредниками белков-мишеней, вызывающих генерацию следующих посредников,

    Исчезновение посредника.

Передача сигнала в клетке (клеточная сигнализация) - это часть сложной системы коммуникации, которая управляет основными клеточными процессами и координирует действия клетки. Возможность клеток корректно отвечать на изменения окружающей их среды (microenvironment) является основой развития, репарации тканей,иммунитетаи системы поддержаниягомеостазав целом. Ошибки в системах обработки клеточной информации могут привести краку,аутоиммунным заболеваниямидиабету. Понимание механизмов передачи сигнала внутри клетки может привести к разработке методов лечения заболеваний и даже созданию искусственных тканей.

Традиционно биологические исследования сфокусированы на изучении отдельных частей системы передачи сигнала. Знания о компонентах сигнальных систем помогают понять общую структуру сигнальных систем клетки и то, как изменения в них могут повлиять на передачу и утечку информации. Системы передачи сигнала в клетке являются сложно организованными комплексами и обладают такими качествами, как ультрачувствительность и бистабильность (возможность находиться в одном из двух существующих состояний). Анализ систем передачи сигнала в клетке затрагивает комбинацию экспериментальных и теоретических исследований, которые включают в себя развитие и анализ моделей и симуляторов.

Резюме. В данной главе рассмотрены основные закономерности и проблемы молекулярной биологии на примере явления программируемой клеточной смерти (апоптоза), межклеточного и внутриклеточного взаимодействия, использования молекулярно-генетических маркеров (на примере полимеразно-цепной реакции) в фундаментальных и прикладных целях.

Контрольные задания

    Происхождение и эволюция апоптоза у разных групп организмов.

    Характеристика и основные пути индукции основных фаз апоптоза.

    Основные механизмы регуляции апоптоза.

    Патологии, обусловленные нарушениями процесса апоптоза.

    Основные типы молекулярно-генетических маркеров.

    История открытия, методика проведения полимеразно-цепной реакции.

    Особенности проведения и применения основных разновидностей ПЦР.

    Значение сигнальной трансдукции при межклеточных и внутриклеточных взаимодействиях.

    Механизмы активации рецепторных белков.

    Механизмы передачи сигналов при межклеточном взаимодействии.

Гидрофильные гормоны построены из аминокислот, или являются производными аминокислот. Они депонируются в больших количествах в клетках желез внутренней секреции и поступают в кровь по мере необходимости. Большинство этих веществ переносятся в кровотоке без участия переносчиков. Гидрофильные гормоны не способны проходить через липофильную клеточную мембрану, поэтому действуют на клетки-мишени за счет связывания с рецептором на плазматической мембране .

Рецепторы – это интегральные мембранные белки, которые связывают сигнальные вещества на внешней стороне мембраны и за счет изменения пространственной структуры генерируют новый сигнал на внутренней стороне мембраны.

Различают три типа рецепторов:

  1. Рецепторы первого типа – это белки, которые имеют одну трансмембранную цепь. Активный центр этого аллостерического фермента (многие являются тирозиновыми протеинкиназами) расположен на внутренней стороне мембраны. При связывании гормона с рецептором происходит димеризация последнего с одновременной активизацией и фосфорилированием тирозина в рецепторе. С фосфотирозином связывается белок-переносчик сигнала, который передает сигнал внутриклеточным протеинкиназам.
  2. Ионные каналы. Это мембранные белки, которые при связывании с лигандами оказываются открытыми для ионов Na + , K + или Cl + . Так действуют нейромедиаторы.
  3. Рецепторы третьего типа , сопряжены с ГТФ-связывающими белками. Пептидная цепь этих рецепторов включает семь трансмембранных тяжей. Такие рецепторы передают сигнал с помощью ГТФ-связывающих белков (G-белок) на белки-эффекторы. Функция этих белков заключается в изменении концентрации вторичных мессенджеров (см. ниже).

Связывание гидрофильного гормона с мембранным рецептором влечет за собой один из трех вариантов внутриклеточного ответа: 1) рецепторные тирозинкиназы активируют внутриклеточные протеинкиназы, 2) активация ионных каналов ведет к изменению концентрации ионов, 3) активация рецепторов, сопряженных с ГТФ-связывающими белками, запускает синтез веществ-посредников, вторичных мессенджеров . Все три системы передачи гормонального сигнала взаимосвязаны.

Рассмотрим преобразование сигнала G-белками, поскольку этот процесс играет ключевую роль в механизме действия целого ряда гормонов . G-белки переносят сигнал с рецептора третьего типа на белки-эффекторы. Они состоят из трех субъединиц: α, β и g. α-субъединица может связывать гуаниновые нуклеотиды (ГТФ, ГДФ). В неактивном состоянии G-белок связан с ГДФ . При связывании гормона с рецептором, последний меняет свою конформацию таким образом, что может связать G-белок. Соединение G-белка с рецептором приводит к обмену ГДФ на ГТФ . При этом происходит активация G-белка, он отделяется от рецептора и диссоциирует на α-субъединицу и β, g-комплекс. ГТФ-α-субъединица связывается с белками-эффекторами и изменяет их активность, в результате чего происходит синтез вторичных посредников (мессенджеров): цАМФ, цГМФ, диацилглицерин (ДАГ), инозит-1,4,5-трифосфат (И-3-Ф) и др. Медленный гидролиз связанного ГТФ до ГДФ переводит α-субъединицу в неактивное состояние и она вновь ассоциируется с β, g-комплексом, т.е. G-белок возвращается в исходное состояние.


Вторичные мессенджеры , или посредники, это внутриклеточные вещества, концентрация которых строго контролируется гормонами, нейромедиаторами и другими внеклеточными сигналами. Наиболее важными вторичными мессенджерами являются цАМФ, цГМФ, диацилглицерин (ДАГ), инозит-1,4,5-трифосфат (И-3-Ф), монооксид азота.

Механизм действия цАМФ . цАМФ является аллостерическим эффектором протеинкиназ А (ПК-А) и ионных каналов. В неактивном состоянии ПК-А является тетрамером, две каталитические субъединицы (К-субъединицы) которого ингибированы регуляторными субъединицами (R-субъединицы). При связывании цАМф R-субъединицы диссоциируют из комплекса и К-субъединицы активируются.

Активный фермент может фосфорилировать определенные остатки серина и треонина в более чем 100 различных белках и факторах транскрипции. В результате фосфорилирования изменяется функциональная активность этих белков.

Если связать все воедино, то получается следующая схема аденилатциклазной системы:

Активация аденилатциклазной систтемы длится очень короткое время, потому что G-белок после связывания с аденилатциклазой начинает проявлять ГТФ-азную активность. После гидролиза ГТФ G-белок восстанавливает свою конформацию и перестает активировать аденилатциклазу. В результате прекращается реакция образования цАМФ.

Кроме участников аденилатциклазной системы в некоторых клетках-мишенях имеются белки-рецепторы, связанные с G-белками, которые приводят к торможению аденилатциклазы. При этом комплекс “GTP-G-белок” ингибирует аденилатциклазу.

Когда останавливается образование цАМФ, реакции фосфорилирования в клетке прекращаются не сразу: пока продолжают существовать молекулы цАМФ - будет продолжаться и процесс активации протеинкиназ. Для того, чтобы прекратить действие цАМФ, в клетках существует специальный фермент - фосфодиэстераза, который катализирует реакцию гидролиза 3",5"-цикло-АМФ до АМФ.

Некоторые вещества, обладающие ингибирующим действием на фосфодиэстеразу, (например, алкалоиды кофеин, теофиллин), способствуют сохранению и увеличению концентрации цикло-АМФ в клетке. Под действием этих веществ в организме продолжительность активации аденилатциклазной системы становится больше, то есть усиливается действие гормона.

Кроме аденилат-циклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата.

Инозитолтрифосфат - это вещество, которое является производным сложного липида - инозитфосфатида. Оно образуется в результате действия специального фермента - фосфолипазы “С”, который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора.

Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.

Известно, что образование диацилглицерина и инозитолтрифосфата приводит к увеличению концентрации ионизированного кальция внутри клетки. Это приводит к активации многих кальций-зависимых белков внутри клетки, в том числе активируются различные протеинкиназы. И здесь, как и при активации аденилатциклазной системы, одной из стадий передачи сигнала внутри клетки является фосфорилирование белков, которое в приводит к физиологическому ответу клетки на действие гормона.

В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок - кальмодулин. Это низкомолекулярный белок (17 кДа), на 30% состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са +2 . Одна молекула кальмодулина имеет 4 кальций-связывающих участка. После взаимодействия с Са +2 происходят конформационные изменения молекулы кальмодулина и комплекс “Са +2 -кальмодулин” становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты - аденилатциклазу, фосфодиэстеразу, Са +2 ,Мg +2 -АТФазу и различные протеинкиназы.

В разных клетках при воздействии комплекса “Са +2 -кальмодулин” на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других - ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са +2 -кальмодулин будет отличаться.

Таким образом, в роли "вторых посредников" для передачи сигналов от гормонов в клетках-мишенях могут быть:

Циклические нуклеотиды (ц-АМФ и ц-ГМФ);

Ионы Са;

Комплекс “Са-кальмодулин”;

Диацилглицерин;

Инозитолтрифосфат

Механизмы передачи информации от гормонов внутри клеток-мишеней с помощью перечисленных посредников имеют общие черты:

1. одним из этапов передачи сигнала является фосфорилирование белков;

2. прекращение активации происходит в результате специальных механизмов, инициируемых самими участниками процессов, - существуют механизмы отрицательной обратной связи.

Гормоны являются основными гуморальными регуляторами физиологических функций организма, и в настоящее время хорошо известны их свойства, процессы биосинтеза и механизмы действия.

Краткое описание:

Учебный материал по биохимии и молекулярной биологии: Строение и функции биологических мембран.

МОДУЛЬ 4: СТРОЕНИЕ И ФУНКЦИИ БИОЛОГИЧЕСКИХ МЕМБРАН

_Темы _

4.1. Общая характеристика мембран. Строение и состав мембран

4.2. Транспорт веществ через мембраны

4.3. Трансмембранная передача сигналов _

Цели изучения Уметь:

1. Интерпретировать роль мембран в регуляции метаболизма, транспорте веществ в клетку и удалении метаболитов.

2. Объяснять молекулярные механизмы действия гормонов и других сигнальных молекул на органы-мишени.

Знать:

1. Строение биологических мембран и их роль в обмене веществ и энергии.

2. Основные способы переноса веществ через мембраны.

3. Главные компоненты и этапы трансмембранной передачи сигналов гормонов, медиаторов, цитокинов, эйкозаноидов.

ТЕМА 4.1. ОБЩАЯ ХАРАКТЕРИСТИКА МЕМБРАН.

СТРОЕНИЕ И СОСТАВ МЕМБРАН

Все клетки и внутриклеточные органеллы окружены мембранами, которые играют важную роль в их структурной организации и функционировании. Основные принципы построения всех мембран одинаковы. Однако плазматическая мембрана, а также мембраны эндоплазматического ретикулума, аппарата Гольджи, митохондрий и ядра имеют существенные структурные особенности, они уникальны по своему составу и по характеру выполняемых функций.

Мембраны:

Отделяют клетки от окружающей среды и делят ее на компартменты (отсеки);

Регулируют транспорт веществ в клетки и органеллы и в обратном направлении;

Обеспечивают специфику межклеточных контактов;

Воспринимают сигналы из внешней среды.

Согласованное функционирование мембранных систем, включающих рецепторы, ферменты, транспортные системы, помогает поддерживать гомеостаз клетки и быстро реагировать на изменения состояния внешней среды путем регуляции метаболизма внутри клеток.

Биологические мембраны построены из липидов и белков, связанных друг с другом с помощью нековалентных взаимодействий. Основу мембраны составляет двойной липидный слой, в состав которого включены белковые молекулы (рис. 4.1). Липидный бислой образован двумя рядами амфифильных молекул, гидрофобные «хвосты» которых спрятаны внутрь, а гидрофильные группы - полярные «головки» обращены наружу и контактируют с водной средой.

1. Липиды мембран. В состав липидов мембран входят как насыщенные, так и ненасыщенные жирные кислоты. Ненасыщенные жирные кислоты встречаются в два раза чаще чем насыщенные, что определяет текучесть мембран и конформационную лабильность мембранных белков.

В мембранах присутствуют липиды трех главных типов - фосфолипиды, гликолипиды и холестерол (рис. 4.2 - 4.4). Чаще всего встречаются глицерофосфолипиды - производные фосфатидной кислоты.

Рис. 4.1. Поперечный разрез плазматической мембраны

Рис. 4.2. Глицерофосфолипиды.

Фосфатидная кислота - это диацилглицеролфосфат. R 1 , R 2 - радикалы жирных кислот (гидрофобные «хвосты»). Со вторым углеродным атомом глицерола связан остаток полиненасыщенной жирной кислоты. Полярной «головкой» является остаток фосфорной кислоты и присоединенная к нему гидрофильная группа серина, холина, этаноламина или инозитола

Существуют также липиды - производные аминоспирта сфингозина.

Аминоспирт сфингозин при ацилировании, т.е. присоединении жирной кислоты к NH 2 -группе, превращается в церамид. Церамиды различаются по остатку жирной кислоты. С ОН-группой церамида могут быть связаны разные полярные группы. В зависимости от строения полярной «головки» эти производные разделены на две группы - фосфолипиды и гликолипиды. Строение полярной группы сфингофосфолипидов (сфингомиелинов) сходно с глицерофосфолипидами. Много сфингомиелинов содержится в составе миелиновых оболочек нервных волокон. Гликолипиды представляют собой углеводные производные церамида. В зависимости от строения углеводной составляющей различают цереброзиды и ганглиозиды.

Холестерол содержится в мембранах всех животных клеток, он придает мембранам жесткость и снижает их жидкостность (текучесть). Молекула холестерола располагается в гидрофобной зоне мембраны параллельно гидрофобным «хвостам» молекул фосфо- и гликолипидов. Гидроксильная группа холестерола, как и гидрофильные «головки» фосфо- и гликолипидов,

Рис. 4.3. Производные аминоспирта сфингозина.

Церамид - ацилированный сфингозин (R 1 - радикал жирной кислоты). К фосфолипидам относятся сфингомиелины, у которых полярная группа состоит из остатка фосфорной кислоты и холина, этаноламина или серина. Гидрофильной группой (полярной «головкой») гликолипидов является углеводный остаток. Цереброзиды содержат моноили олигосахаридный остаток линейного строения. В состав ганглиозидов входит разветвленный олигосахарид, одним из мономерных звеньев которого является НАНК - N-ацетилнейраминовая кислота

обращена к водной фазе. Молярное соотношение холестерола и других липидов в мембранах равно 0,3-0,9. Самое высокое значение имеет эта величина для цитоплазматической мембраны.

Увеличение содержания холестерола в мембранах уменьшает подвижность цепей жирных кислот, что влияет на конформационную лабильность мембранных белков и снижает возможность их латеральной диффузии. При повышении текучести мембран, вызванном действием на них липофильных веществ или перекисным окислением липидов, доля холестерола в мембранах возрастает.

Рис. 4.4. Положение в мембране фосфолипидов и холестерола.

Молекула холестерола состоит из жесткого гидрофобного ядра и гибкой углеводородной цепи. Полярной «головкой» является ОН-группа у 3-го углеродного атома молекулы холестерола. Для сравнения на рисунке представлено схематическое изображение фосфолипида мембран. Полярная головка этих молекул значительно больше и имеет заряд

Липидный состав мембран различен, содержание того или другого липида, по-видимому, определяется разнообразием функций, которые выполняют эти молекулы в мембранах.

Главные функции липидов мембран состоят в том, что они:

Формируют липидный бислой - структурную основу мембран;

Обеспечивают необходимую для функционирования мембранных белков среду;

Участвуют в регуляции активности ферментов;

Служат «якорем» для поверхностных белков;

Участвуют в передаче гормональных сигналов.

Изменение структуры липидного бислоя может привести к нарушению функций мембран.

2. Белки мембран. Белки мембран различаются по своему положению в мембране (рис. 4.5). Мембранные белки, контактирующие с гидрофобной областью липидного бислоя, должны быть амфифильными, т.е. иметь неполярный домен. Амфифильность достигается благодаря тому, что:

Аминокислотные остатки, контактирующие с липидным бислоем, в основном неполярны;

Многие мембранные белки ковалентно связаны с остатками жирных кислот (ацилированы).

Ацильные остатки жирных кислот, присоединенные к белку, обеспечивают его «заякоревание» в мембране и возможность латеральной диффузии. Кроме того, белки мембран подвергаются таким посттрансляционным модификациям, как гликозилирование и фосфорилирование. Гликозилирование наружной поверхности интегральных белков защищает их от повреждения протеазами межклеточного пространства.

Рис. 4.5. Белки мембран:

1, 2 - интегральные (трансмембранные) белки; 3, 4, 5, 6 - поверхностные белки. В интегральных белках часть полипептидной цепи погружена в липидный слой. Те участки белка, которые взаимодействуют с углеводородными цепями жирных кислот, содержат преимущественно неполярные аминокислоты. Участки белка, находящиеся в области полярных «головок», обогащены гидрофильными аминокислотными остатками. Поверхностные белки разными способами прикрепляются к мембране: 3 - связанные с интегральными белками; 4 - присоединенные к полярным «головкам» липидного слоя; 5 - «заякоренные» в мембране с помощью короткого гидрофобного концевого домена; 6 - «заякоренные» в мембране с помощью ковалентно связанного ацильного остатка

Наружный и внутренний слои одной и той же мембраны различаются по составу липидов и белков. Эта особенность в строении мембран называется трансмембранней асимметрией.

Белки мембран могут участвовать в:

Избирательном транспорте веществ в клетку и из клетки;

Передаче гормональных сигналов;

Образовании «окаймленных ямок», участвующих в эндоцитозе и экзоцитозе;

Иммунологических реакциях;

Качестве ферментов в превращениях веществ;

Организации межклеточных контактов, обеспечивающих образование тканей и органов.

ТЕМА 4.2. ТРАНСПОРТ ВЕЩЕСТВ ЧЕРЕЗ МЕМБРАНЫ

Одна из главных функций мембран - регуляция переноса веществ в клетку и из клетки, удержание веществ, которые нужны клетке и выведение ненужных. Транспорт ионов, органических молекул через мембраны может проходить по градиенту концентрации - пассивный транспорт и против градиента концентрации - активный транспорт.

1. Пассивный транспорт может осуществляться следующими способами (рис. 4.6, 4.7):

Рис. 4.6. Механизмы переноса веществ через мембраны по градиенту концентрации

К пассивному транспорту относится диффузия ионов по белковым каналам, например диффузия Н+, Са 2 +, N+, К+. Функционирование большинства каналов регулируется специфическими лигандами или изменением трансмембранного потенциала.

Рис. 4.7. Са 2 +-канал мембраны эндоплазматического ретикулума, регулируемый инози- тол-1,4,5-трифосфатом (ИФ 3).

ИФ 3 (инозитол-1,4,5-трифосфат) образуется при гидролизе мембранного липида ФИФ 2 (фосфатидилинозитол-4,5-бисфосфата) под действием фермента фосфолипазы С. ИФ 3 связывается специфическими центрами протомеров Са 2 +- канала мембраны эндоплазматического ретикулума. Изменяется конформация белка и канал открывается - Са 2 + поступает в цитозоль клетки по градиенту концентрации

2. Активный транспорт. Первично-активный транспорт происходит против градиента концентрации с затратой энергии АТФ при участии транспортных АТФаз, например Na+, К+-АТФаза, Н+-АТФаза, Са 2 +-АТФаза (рис. 4.8). Н + -АТФазы функционируют как протонные насосы, с помощью которых создается кислая среда в лизосомах клетки. С помощью Са 2+ -АТФазы цитоплазматической мембраны и мембраны эндоплазматического ретикулума поддерживается низкая концентрация кальция в цитозоле клетки и создается внутриклеточное депо Са 2+ в митохондриях и эндоплазматическом ретикулуме.

Вторично-активный транспорт происходит за счет градиента концентрации одного из переносимых веществ (рис. 4.9), который создается чаще всего Na+, К+-АТФазой, функционирующей с затратой АТФ.

Присоединение в активный центр белка-переносчика вещества, концентрация которого выше, изменяет его конформацию и увеличивает сродство к соединению, которое проходит в клетку против градиента концентрации. Вторично-активный транспорт бывает двух типов: активный симпорт и антипорт.

Рис. 4.8. Механизм функционирования Са 2 +-АТФазы

Рис. 4.9. Вторично-активный транспорт

3. Перенос макромолекул и частиц с участием мембран - эндоцитоз и экзоцитоз.

Перенос из внеклеточной среды в клетку макромолекул, например белков, нуклеиновых кислот, полисахаридов или еще более крупных частиц, происходит путем эндоцитоза. Связывание веществ или высокомолекулярных комплексов происходит в определенных участках плазматической мембраны, которые называются окаймленными ямками. Эндоцитоз, происходящий с участием рецепторов, встроенных в окаймленные ямки, позволяет клеткам поглощать специфические вещества и называется рецептор-зависимым эндоцитозом.

Макромолекулы, например пептидные гормоны, пищеварительные ферменты, белки внеклеточного матрикса, липопротеиновые комплексы, секретируются в кровь или межклеточное пространство путем экзоцитоза. Этот способ транспорта позволяет выводить из клетки вещества, которые накапливаются в секреторных гранулах. В большинстве случаев экзоцитоз регулируется путем изменения концентрации ионов кальция в цитоплазме клеток.

ТЕМА 4.3. ТРАНСМЕМБРАННАЯ ПЕРЕДАЧА СИГНАЛОВ

Важное свойство мембран - способность воспринимать и передавать внутрь клетки сигналы из окружающей среды. Восприятие клетками внешних сигналов происходит при их взаимодействии с рецепторами, расположенными в мембране клеток-мишеней. Рецепторы, присоединяя сигнальную молекулу, активируют внутриклеточные пути передачи информации, это приводит к изменению скорости различных метаболических процессов.

1. Сигнальная молекула, специфически взаимодействующая с мембранным рецептором, называется первичным мессенджером. В качестве первичных мессенджеров выступают различные химические соединения - гормоны, нейромедиаторы, эйкозаноиды, ростовые факторы или физические факторы, например квант света. Рецепторы клеточной мембраны, активированные первичными мессенджерами, передают полученную информацию системе белков и ферментов, которые образуют каскад передачи сигнала, обеспечивающий усиление сигнала в несколько сот раз. Время ответа клетки, заключающееся в активации или инактивации метаболических процессов, мышечного сокращения, транспорта веществ из клеток-мишеней, может составлять несколько минут.

Мембранные рецепторы подразделяются на:

Рецепторы, содержащие субъединицу, связывающую первичный мессенджер, и ионный канал;

Рецепторы, способные проявлять каталитическую активность;

Рецепторы, с помощью G-белков активирующие образование вторичных (внутриклеточных) мессенджеров, передающих сигнал специфическим белкам и ферментам цитозоля (рис. 4.10).

Вторичные мессенджеры имеют небольшую молекулярную массу, с высокой скоростью диффундируют в цитозоле клетки, изменяют активность соответствующих белков, а затем быстро расщепляются или удаляются из цитозоля.

Рис. 4.10. Рецепторы, локализованные в мембране.

Мембранные рецепторы можно разделить на три группы. Рецепторы: 1 - содержащие субъединицу, связывающую сигнальную молекулу и ионный канал, например рецептор ацетилхолина на постсинаптической мембране; 2 - проявляющие каталитическую активность после присоединения сигнальной молекулы, например рецептор инсулина; 3, 4 - передающие сигнал на фермент аденилатциклазу (АЦ) или фосфолипазу С (ФЛС) при участии мембранных G-белков, например разные типы рецепторов адреналина, ацетилхолина и других сигнальных молекул

Роль вторичных мессенджеров выполняют молекулы и ионы:

ЦАМФ (циклический аденозин-3",5"-монофосфат);

ЦГМФ (циклический гуанозин-3",5"-монофосфат);

ИФ 3 (инозитол-1,4,5-трифосфат);

ДАГ (диацилглицерол);

Существуют гормоны (стероидные и тиреоидные), которые, проходя липидный бислой, проникают в клетку и взаимодействуют с внутриклеточными рецепторами. Физиологически важным различием между мембранными и внутриклеточными рецепторами является скорость ответа на поступающий сигнал. В первом случае эффект будет быстрым и непродолжительным, во втором - медленным, но длительным.

Рецепторы, сопряженные с G-белками

Взаимодействие гормонов с рецепторами, сопряженными с G-белками, приводит к активации инозитолфосфатной системы трансдукции сигнала или изменению активности аденилатциклазной регуляторной системы.

2. Аденилатциклазная система включает (рис. 4.11):

- интегральные белки цитоплазматической мембраны:

R s - рецептор первичного мессенджера - активатора аденилатциклазной системы (АЦС);

R ; - рецептор первичного мессенджера - ингибитора АЦС;

Фермент аденилатциклазу (АЦ).

- «заякоренные» белки:

G s - ГТФ-связывающий белок, состоящий из α,βγ-субъединиц, в котором (α,-субъединица связана с молекулой ГДФ;

Рис. 4.11. Функционирование аденилатциклазной системы

G ; - ГТФ-связывающий белок, состоящий из αβγ-субъединиц, в котором а; -субъединица связана с молекулой ГДФ; - цитозольный фермент протеинкиназу А (ПКА).

Последовательность событий передачи сигнала первичных мессенджеров с помощью аденилатциклазной системы

Рецептор имеет центры связывания первичного мессенджера на наружной поверхности мембраны и G-белка (α,βγ-ГДФ) на внутренней поверхности мембраны. Взаимодействие активатора аденилатциклазной системы, например гормона с рецептором (R s), приводит к изменению конформации рецептора. Увеличивается сродство рецептора к G..-белку. Присоединение комплекса гормон-рецептор к GS-ГДФ снижает сродство α,-субъединицы G..-белка к ГДФ и увеличивает сродство к ГТФ. В активном центре α,-субъединицы ГДФ замещается на ГТФ. Это вызывает изменение конформации субъединицы α, и снижение ее сродства к субъединицам βγ. Отделившаяся субъединица α,-ГТФ латерально перемещается в липидном слое мембраны к ферменту аденилатциклазе.

Взаимодействие α,-ГТФ с регуляторным центром аденилатциклазы изменяет конформацию фермента, приводит к его активации и увеличению скорости образования вторичного мессенджера - циклического аденозин- 3",5"-монофосфата (цАМФ) из АТФ. В клетке повышается концентрация цАМФ. Молекулы цАМФ могут обратимо соединяться с регуляторными субъединицами протеинкиназы А (ПКА), которая состоит из двух регуляторных (R) и двух каталитических (С) субъединиц - (R 2 С 2). Комплекс R 2 С 2 ферментативной активностью не обладает. Присоединение цАМФ к регуляторным субъединицам вызывает изменение их конформации и потерю комплементарности к С-субъединицам. Каталитические субъединицы приобретают ферментативную активность.

Активная протеинкиназа А с помощью АТФ фосфорилирует специфические белки по остаткам серина и треонина. Фосфорилирование белков и ферментов повышает или понижает их активность, поэтому изменяется скорость метаболических процессов, в которых они участвуют.

Активация сигнальной молекулой рецептора R стимулирует функционирование Gj-белка, которое протекает по тем же правилам, что и для G..-белка. Но при взаимодействии субъединицы α i -ГТФ с аденилатциклазой активность фермента снижается.

Инактивация аденилатциклазы и протеинкиназы А

α,-Субъединица в комплексе с ГТФ при взаимодействии с аденилатциклазой начинает проявлять ферментативную (ГТФ-фосфатазную) активность, она гидролизует ГТФ. Образующаяся молекула ГДФ остается в активном центре α,-субъединицы, изменяет ее конформацию и уменьшает сродство к АЦ. Комплекс АЦ и α,-ГДФ диссоциирует, α,-ГДФ включается в G..-белок. Отделение α,-ГДФ от аденилатциклазы инактивирует фермент и синтез цАМФ прекращается.

Фосфодиэстераза - «заякоренный» фермент цитоплазматической мембраны гидролизует образовавшиеся ранее молекулы цАМФ до АМФ. Снижение концентрации цАМФ в клетке вызывает расщепление комплекса цАМФ 4 К" 2 и повышает сродство R- и С-субъединиц, образуется неактивная форма ПКА.

Фосфорилированные ферменты и белки под действием фосфопротеинфосфатазы переходят в дефосфорилированную форму, изменяется их конформация, активность и скорость процессов, в которых участвуют эти ферменты. В результате система приходит в исходное состояние и готова вновь активироваться при взаимодействии гормона с рецептором. Таким образом, обеспечивается соответствие содержания гормона в крови и интенсивности ответа клеток-мишеней.

3. Участие аденилатциклазной системы в регуляции экспрессии генов. Многие белковые гормоны: глюкагон, вазопрессин, паратгормон и др., передающие свой сигнал посредством аденилатциклазной системы, могут не только вызвать изменение скорости реакций путем фосфорилирования уже имеющихся в клетке ферментов, но и увеличивать или уменьшать их количество, регулируя экспрессию генов (рис. 4.12). Активная протеинкиназа А может проходить в ядро и фосфорилировать фактор транскрипции (СRЕВ). Присоединение фосфорного

Рис. 4.12. Аденилатциклазный путь, приводящий к экспрессии специфических генов

остатка повышает сродство фактора транскрипции (СRЕВ-(Р) к специфиче-ской последовательности регуляторной зоны ДНК-СRЕ (цАМФ-response element) и стимулирует экспрессию генов определенных белков.

Синтезированные белки могут быть ферментами, увеличение количества которых повышает скорость реакций метаболических процессов, или мембранными переносчиками, обеспечивающими поступление или выход из клетки определенных ионов, воды или других веществ.

Рис. 4.13. Инозитолфосфатная система

Работу системы обеспечивают белки: кальмодулин, фермент протеинкиназа С, Са 2 +-кальмодулин-зависимые протеинкиназы, регулируемые Са 2 +-каналы мембраны эндоплазматического ретикулума, Са 2 +-АТФазы клеточной и митохондриальной мембран.

Последовательность событий передачи сигнала первичных мессенджеров с помощью инозитолфосфатной системы

Связывание активатора инозитолфосфатной системы с рецептором (R) приводит к изменению его конформации. Повышается сродство рецептора к Gф лс -белку. Присоединение комплекса первичный мессенджер-рецептор к Gф лс -ГДФ снижает сродство аф лс -субъединицы к ГДФ и увеличивает сродство к ГТФ. В активном центре аф лс -субъединицы ГДФ замещается на ГТФ. Это вызывает изменение конформации субъединицы аф лс и снижение сродства к субъединицам βγ, происходит диссоциация Gф лс -белка. Отделившаяся субъединица аф лс -ГТФ латерально перемещается по мембране к ферменту фосфолипазе С.

Взаимодействие аф лс -ГТФ с центром связывания фосфолипазы С изменяет конформацию и активность фермента, возрастает скорость гидролиза фосфолипида клеточной мембраны - фосфатидилинозитол-4,5-бисфосфа- та (ФИФ 2) (рис. 4.14).

Рис. 4.14. Гидролиз фосфатидилинозитол-4,5-бисфосфата (ФИФ 2)

В ходе реакции образуются два продукта - вторичные вестники гормонального сигнала (вторичные мессенджеры): диацилглицерол, который остается в мембране и участвует в активации фермента протеинкиназы С, и инозитол-1,4,5-трифосфат (ИФ 3), который, будучи гидрофильным соединением, уходит в цитозоль. Таким образом, сигнал, принятый рецептором клетки, раздваивается. ИФ 3 связывается специфическими центрами Са 2+ - канала мембраны эндоплазматического ретикулума (Э)), что приводит к изменению конформации белка и открытию Са 2+ -канала. Так как концентрация кальция в ЭР примерно на 3-4 порядка выше, чем в цитозоле, после открытия канала Са 2+ по градиенту концентрации поступает в цитозоль. В отсутствие ИФ 3 в цитозоле канал закрыт.

В цитозоле всех клеток содержится небольшой белок кальмодулин, имеющий четыре центра связывания Са 2+ . При повышении концентрации

кальция он активно присоединяется к кальмодулину, образуя комплекс 4Са 2+ -кальмодулин. Этот комплекс взаимодействует с Са 2+ -кальмодулинзависимыми протеинкиназами, другими ферментами и повышает их активность. Активированная Са 2 +-кальмодулин-зависимая протеинкиназа фосфорилирует определенные белки и ферменты, в результате чего изменяется их активность и скорость метаболических процессов, в которых они участвуют.

Повышение концентрации Са 2+ в цитозоле клетки увеличивает скорость взаимодействия Са 2 + с неактивным цитозольным ферментом протеинкиназой С (ПКС). Связывание ПКС с ионами кальция стимулирует перемещение белка к плазматической мембране и позволяет ферменту вступать во взаимодействие с отрицательно заряженными «головками» молекул фосфатидилсерина (ФС) мембраны. Диацилглицерол, занимая специфические центры в протеинкиназе С, в еще большей степени увеличивает ее сродство к ионам кальция. На внутренней стороне мембраны образуется активная форма ПКС (ПКС? Са 2 + ? ФС? ДАГ), которая фосфорилирует специфические ферменты.

Включение ИФ-системы непродолжительно, и после ответа клетки на стимул происходит инактивация фосфолипазы С, протеинкиназы С и Са 2 +-кальмодулин-зависимых ферментов. аф лс -Субъединица в комплексе с ГТФ и фосфолипазой С проявляет ферментативную (ГТФ-фосфатазную) активность, она гидролизует ГТФ. Связанная с ГДФ аф лс -субъединица теряет сродство к фосфолипазе С и возвращается в исходное неактивное состояние, т.е. включается в комплекс αβγ-ГДФ Gф лс -белок).

Отделение аф лс -ГДФ от фосфолипазы С инактивирует фермент и гидролиз ФИФ 2 прекращается. Повышение концентрации Са 2+ в цитозоле активирует работу Са 2+ -АТФаз эндоплазматического ретикулума, цитоплазматической мембраны, которые «выкачивают» Са 2 + из цитозоля клетки. В этом процессе принимают участие также Na+/Са 2 +- и Н+/Са 2 +-переносчики, функционирующие по принципу активного антипорта. Снижение концентрации Са 2+ приводит к диссоциации и инактивации Са 2+ -кальмодулинзависимых ферментов, а также потере сродства протеинкиназы С к липидам мембраны и снижению ее активности.

ИФ 3 и ДАГ, образовавшиеся в результате активации системы, могут снова взаимодействовать друг с другом и превращаться в фосфатидилинозитол- 4,5-бисфосфат.

Фосфорилированные ферменты и белки под действием фосфопротеинфосфатазы переходят в дефосфорилированную форму, изменяется их конформация и активность.

5. Каталитические рецепторы. Каталитические рецепторы являются ферментами. Активаторами этих ферментов могут быть гормоны, ростовые факторы, цитокины. В активной форме - рецепторы-ферменты фосфорилируют специфические белки по -ОН-группам тирозина, поэтому их называют тирозиновыми протеинкиназами (рис. 4.15). При участии специальных механизмов сигнал, полученный каталитическим рецептором, может быть передан в ядро, где он стимулирует или подавляет экспрессию определенных генов.

Рис. 4.15. Активация рецептора инсулина.

Фосфопротеинфосфатаза дефосфорилирует специфические фосфопротеины.

Фосфодиэстераза превращает цАМФ в АМФ и цГМФ в ГМФ.

ГЛЮТ 4 - переносчики глюкозы в инсулинзависимых тканях.

Тирозиновая протеинфосфатаза дефосфорилирует β-субъединицы рецептора

инсулина

Примером каталитического рецептора может служить рецептор инсулина, в состав которого входят две а- и две β-субъединицы. а-Субъединицы расположены на наружной поверхности клеточной мембраны, β-субъединицы пронизывают мембранный бислой. Центр связывания инсулина образован N-концевыми доменами а-субъединиц. Каталитический центр рецептора находится на внутриклеточных доменах β-субъединиц. Цитозольная часть рецептора имеет несколько остатков тирозина, которые могут фосфорилироваться и дефосфорилироваться.

Присоединение инсулина в центр связывания, образованный а-субъединицами, вызывает кооперативные конформационные изменения рецептора. β-Субъединицы проявляют тирозинкиназную активность и катализируют трансаутофосфорилирование (первая β-субъединица фосфорилирует вторую β-субъединицу, и наоборот) по нескольким остаткам тирозина. Фосфорилирование приводит к изменению заряда, конформации и субстратной специфичности фермента (Тир-ПК). Тирозиновая-ПК фосфорилирует определенные клеточные белки, которые получили название субстратов рецептора инсулина. В свою очередь эти белки участвуют в активации каскада реакций фосфорилирования:

фосфопротеинфосфатазы (ФПФ), которая дефосфорилирует специфические фосфопротеины;

фосфодиэстеразы, которая превращает цАМФ в АМФ и цГМФ в ГМФ;

ГЛЮТ 4 - переносчиков глюкозы в инсулинзависимых тканях, поэтому повышается поступление глюкозы в клетки мышц и жировой ткани;

тирозиновой протеинфосфатазы, которая дефосфорилирует β-субъединицы рецептора инсулина;

регуляторных белков ядра, факторов транскрипции, повышающих или снижающих экспрессию генов определенных ферментов.

Реализация эффекта ростовых факторов может осуществляться с помощью каталитических рецепторов, которые состоят из одной полипептидной цепи, но при связывании первичного мессенджера образуют димеры. Все рецепторы этого типа имеют внеклеточный гликозилированный домен, трансмембранный (а-спираль) и цитоплазматический домен, способный при активации проявлять протеинкиназную активность.

Димеризация способствует активации их каталитических внутриклеточных доменов, которые осуществляют трансаутофосфорилирование по аминокислотным остаткам серина, треонина или тирозина. Присоединение фосфорных остатков приводит к формированию у рецептора центров связывания для специфических цитозольных белков и активации протеинкиназного каскада передачи сигнала (рис. 4.16).

Последовательность событий передачи сигнала первичных мессенджеров (ростовых факторов) при участии Ras- и Raf-белков.

Связывание рецептора (R) с фактором роста (ФР) приводит к его димеризации и трансаутофосфорилированию. Фосфорилированный рецептор приобретает сродство к Grb2-белку. Образованный комплекс ФР*R*Grb2 взаимодействует с цитозольным белком SOS. Изменение конформации SOS

обеспечивает его взаимодействие с заякоренным белком мембраны Ras-ГДФ. Образование комплекса ФР?R?Gгb2?SOS?Ras-ГДФ снижает сродство Ras- белка к ГДФ и увеличивает сродство к ГТФ.

Замена ГДФ на ГТФ изменяет конформацию Ras-белка, который отделяется от комплекса и взаимодействует с Raf-белком в примембранной области. Комплекс Ras-ГТФ?Raf проявляет протеинкиназную активность и фосфорилирует фермент МЕК-киназу. Активированная МЕК-киназа в свою очередь фосфорилирует МАП-киназу по треонину и тирозину.

Рис.4.16. МАП-киназный каскад.

Рецепторы такого типа имеют эпидермальный фактор роста (ЭФР), фактор роста нервов (ФРН) и другие ростовые факторы.

Grb2 - протеин, взаимодействующий с рецептором ростового фактора (growth receptor binding protein); SOS (GEF) - ГДФ-ГТФ обменный фактор (guanine nucleotide exchange factor); Ras - G-белок (гуанидинтрифосфатаза); Raf-киназа - в активной форме - фосфорилирующая МЕК-киназу; МЕК-киназа - киназа МАП-киназы; МАП-киназа - митогенактивированная протеинкиназа (mitogen-aktivated protein kinase)

Присоединение группы -РО 3 2- к аминокислотным радикалам МАП-киназы изменяет ее заряд, конформацию и активность. Фермент фосфорилирует по серину и треонину специфические белки мембран, цитозоля и ядра.

Изменение активности этих белков оказывает влияние на скорость метаболических процессов, функционирование мембранных транслоказ, митотическую активность клеток-мишеней.

Рецепторы с гуанилатциклазной активностью также относятся к каталитическим рецепторам. Гуанилатциклаза катализирует образование из ГТФ цГМФ, который является одним из важных мессенджеров (посредников) внутриклеточной передачи сигнала (рис. 4.17).

Рис. 4.17. Регуляция активности мембранной гуанилатциклазы.

Мембранно-связанная гуанилатциклаза (ГЦ) - трансмембранный гликопротеин. Центр связывания сигнальной молекулы находится на внеклеточном домене, внутриклеточный домен гуанилатциклазы в результате активации проявляет каталитическую активность

Присоединение первичного мессенджера к рецептору активирует гуанилатциклазу, которая катализирует превращение ГТФ в циклический гуанозин-3",5"-монофосфат (цГМФ) - вторичный мессенджер. В клетке повышается концентрация цГМФ. Молекулы цГМФ могут обратимо присоединяться к регуляторным центрам протеинкиназы G (ПКЧ5), которая состоит из двух субъединиц. Четыре молекулы цГМФ изменяют конформацию и активность фермента. Активная протеинкиназа G катализирует фосфорилирование определенных белков и ферментов цитозоля клетки. Одним из первичных мессенджеров протеинкиназы G является предсердный натриуретический фактор (ПНФ), регулирующий гомеостаз жидкости в организме.

6. Передача сигнала с помощью внутриклеточных рецепторов. Гидрофобные по химической природе гормоны (стероидные гормоны и тироксин) могут диффундировать через мембраны, поэтому их рецепторы находятся в цитозоле или ядре клетки.

Цитозольные рецепторы связаны с белком-шапероном, который предотвращает преждевременную активацию рецептора. Ядерные и цитозольные рецепторы стероидных и тиреоидных гормонов содержат ДНКсвязывающий домен, обеспечивающий в ядре взаимодействие комплекса гормон-рецептор с регуляторными участками ДНК и изменение скорости транскрипции.

Последовательность событий, приводящих к изменению скорости транскрипции

Гормон проходит через двойной липидный слой клеточной мембраны. В цитозоле или ядре гормон взаимодействует с рецептором. Комплекс гормон-рецептор проходит в ядро и присоединяется к регуляторной нуклеотидной последовательности ДНК - энхансеру (рис. 4.18) или сайленсеру. Доступность промотора для РНК-полимеразы увеличивается при взаимодействии с энхансером или уменьшается при взаимодействии с сайленсером. Соответственно увеличивается или уменьшается скорость транскрипции определенных структурных генов. Зрелые мРНК выходят из ядра. Увеличивается или уменьшается скорость трансляции определенных белков. Изменяется количество белков, которые влияют на метаболизм и функциональное состояние клетки.

В каждой клетке существуют рецепторы, включенные в состав разных сигнал-трансдукторных систем, преобразующих все внешние сигналы во внутриклеточные. Число рецепторов для конкретного первичного мессенджера может варьировать в пределах от 500 до более 100 000 на клетку. Они располагаются на мембране отдаленно друг от друга либо сосредоточены в определенных ее участках.

Рис. 4.18. Передача сигнала на внутриклеточные рецепторы

б) из таблицы выберите липиды, участвующие в:

1. Активации протеинкиназы С

2. Реакции образования ДАГ под действием фосфолипазы С

3. Формировании миелиновых оболочек нервных волокон

в) напишите реакцию гидролиза липида, выбранного вами в п. 2;

г) укажите, какой из продуктов гидролиза участвует в регуляции Са 2 +-канала эндоплазматического ретикулума.

2. Выберите правильные ответы.

На конформационную лабильность белков-переносчиков может влиять:

Б. Изменение электрического потенциала на мембране

B. Присоединение специфических молекул Г. Жирнокислотный состав липидов бислоя Д. Количество переносимого вещества

3. Установите соответствие:

A. Кальциевый канал ЭР Б. Са 2 +-АТФаза

Г. Ка+-зависимый переносчик Са 2 + Д. N+, К+-АТФаза

1. Переносит Na+ по градиенту концентрации

2. Функционирует по механизму облегченной диффузии

3. Переносит Na+ против градиента концентрации

4. Перенесите табл. 4.2. в тетрадь и заполните ее.

Таблица 4.2. Аденилатциклазная и инозитолфосфатная системы

Строение и этапы функционирования

Аденилатциклазная система

Инозитолфосфатная система

Пример первичного мессенджера системы

Интегральный белок клеточной мембраны, взаимодействующий комплементарно с первичным мессенджером

Белок, активирующий фермент сигнальной системы

Фермент системы, образующий вторичный (е) мессенджер (ы)

Вторичный (ые) мессенджер (-ы) системы

Цитозольный (е) фермент (ы) системы, взаимодействующий (е) с вторичным мессенджером

Механизм регуляции (в данной системе) активности ферментов метаболических путей

Механизмы снижения концентрации вторичных мессенджеров в клетке-мишени

Причина снижения активности мембранного фермента сигнальной системы

ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ

1. Установите соответствие:

A. Пассивный симпорт Б. Пассивный антипорт

B. Эндоцитоз Г. Экзоцитоз

Д. Первично-активный транспорт

1. Транспорт вещества в клетку происходит вместе с частью плазматической мембраны

2. Одновременно в клетку по градиенту концентрации проходят два разных вещества

3. Перенос веществ идет против градиента концентрации

2. Выберите правильный ответ.

ag -Субъединица G-белка, связанная с ГТФ, активирует:

A. Рецептор

Б. Протеинкиназу А

B. Фосфодиэстеразу Г. Аденилатциклазу Д. Протеинкиназу С

3. Установите соответствие.

Функция:

A. Регулирует активность каталитического рецептора Б. Активирует фосфолипазу С

B. Переводит в активную форму протеинкиназу А

Г. Повышает концентрацию Са 2+ в цитозоле клетки Д. Активирует протеинкиназу С

Вторичный мессенджер:

4. Установите соответствие.

Функционирование:

A. Способен к латеральной диффузии в бислое мембраны

Б. В комплексе с первичным мессенджером присоединяется к энхансеру

B. Проявляет ферментативную активность при взаимодействии с первичным мессенджером

Г. Может взаимодействовать с G-белком

Д. В процессе передачи сигнала взаимодействует с фосфолипазой С Рецептор:

1. Инсулина

2. Адреналина

3. Стероидного гормона

5. Выполните «цепное» задание:

а) пептидные гормоны взаимодействуют с рецепторами:

A. В цитозоле клетки

Б. Интегральными белками мембран клеток-мишеней

B. В ядре клетки

Г. Ковалентно связанными с ФИФ 2

б) взаимодействие такого рецептора с гормоном вызывает повышение концентрации в клетке:

A. Гормона

Б. Промежуточных метаболитов

B. Вторичных мессенджеров Г. Ядерных белков

в) этими молекулами могут быть:

A. ТАГ Б. ГТФ

B. ФИФ 2 Г. цАМФ

г) они активируют:

A. Аденилатциклазу

Б. Са 2+ -зависимый кальмодулин

B. Протеинкиназу А Г. Фосфолипазу С

д) этот фермент изменяет скорость метаболических процессов в клетке путем:

A. Повышения концентрации Са 2 + в цитозоле Б. Фосфорилирования регуляторных ферментов

B. Активации протенфосфатазы

Г. Изменения экспрессии генов регуляторных белков

6. Выполните «цепное» задание:

а) присоединение фактора роста (ФР) к рецептору (R) приводит к:

A. Изменению локализации комплекса ФР-R

Б. Димеризации и трансаутофосфорилированию рецептора

B. Изменению конформации рецептора и присоединению к Gs-белку Г. Перемещению комплекса ФР-R

б) такие изменения в структуре рецептора увеличивают его сродство к поверхностному белку мембраны:

Б. Raf Г. Grb2

в) это взаимодействие повышает вероятность присоединения к комплексу цитозольного белка:

А. Кальмодулина B. Ras

Б. ПКС Г. SOS

г) который увеличивает комплементарность комплекса к «заякоренному» белку:

д) изменение конформации «заякоренного» белка снижает его сродство к:

А. цАМФ B. ГТФ

Б. ГДФ Г. АТФ

е) это вещество заменяется на:

А. ГДФ B. АМФ

Б. цГМФ Г. ГТФ

ж) присоединение нуклеотида способствует взаимодействию «заякоренного» белка с:

А. ПКА B. Кальмодулином

з) этот белок входит в состав комплекса, который фосфорилирует:

А. МЕК-киназу В. Протеинкиназу С

Б. Протеинкиназу А Г. МАП-киназу

и) этот фермент в свою очередь активирует:

А. МЕК-киназу В. Протеинкиназу G

Б. Raf-белок Г. МАП-киназу

к) фосфорилирование белка повышает его сродство к:

А. Белкам SOS и Raf В. Регуляторным белкам ядра Б. Кальмодулину Г. Ядерным рецепторам

л) активация этих белков приводит к:

A. Дефосфорилированию ГТФ в активном центре белка Ras Б. Снижению сродства рецептора к фактору роста

B. Повышению скорости матричных биосинтезов Г. Диссоциации комплекса SOS-Grb2

м) вследствие этого:

A. Белок SOS отделяется от рецептора

Б. Происходит диссоциация протомеров рецептора (R)

B. Ras-белок отделяется от Raf-белка

Г. Возрастает пролиферативная активность клетки-мишени.

ЭТАЛОНЫ ОТВЕТОВ К «ЗАДАНИЯМ ДЛЯ САМОКОНТРОЛЯ»

1. 1-В, 2-А, 3-Д

3. 1-В, 2-Д, 3-Г

4. 1-В, 2-Г, 3-Б

5. а) Б, б) В, в) Г, г) В, д) Б

6. а) Б, б) Г, в) Г, г) А, д) Б, е) Г, ж) Г, з) А, и) Г, к) В, л) В, м) Г

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

1. Структура и функции мембран

2. Транспорт веществ через мембраны

3. Особенности строения белков мембран

4. Трансмембранные системы передачи сигналов (аденилатциклазная, инозитолфосфатная, гуанилатциклазная, каталитические и внутриклеточные рецепторы)

5. Первичные мессенджеры

6. Вторичные мессенджеры (посредники)

ЗАДАНИЯ ДЛЯ АУДИТОРНОЙ РАБОТЫ

1. Ознакомьтесь с рис. 4.19 и выполните следующие задания:

а) назовите вид транспорта;

б) установите порядок событий:

A. Cl - по градиенту концентрации выходит из клетки

Б. Протеинкиназа А фосфорилирует R-субъединицу канала

B. Изменяется конформация R-субъединицы

Г. Происходят кооперативные конформационные изменения мембранного белка

Д. Активируется аденилатциклазная система

Рис. 4.19. Функционирование С1 - -канала эндотелия кишечника.

R - регуляторный белок, который переходит в фосфорилированную форму под действием протеинкиназы А (ПКА)

в) сравните функционирование Са 2+ -канала мембраны эндоплазматического ретикулума и Cl - -канала клетки эндотелия кишечника, заполнив табл. 4.3.

Таблица 4.3. Способы регуляции функционирования каналов

Решите задачи

1. Сокращение сердечной мышцы активирует Са 2 +, содержание которого в цитозоле клетки повышается за счет функционирования цАМФ-зависимых переносчиков цитоплазматической мембраны. В свою очередь, концентрация цАМФ в клетках регулируется двумя сигнальными молекулами - адреналином и ацетилхолином. Причем известно, что адреналин, взаимодействуя с β 2 -адренорецепторами, повышает концентрацию цАМФ в клетках миокарда и стимулирует сердечный выброс, а ацетилхолин, взаимодействуя с М 2 -холинорецепторами, снижает уровень цАМФ и сократимость миокарда. Объясните, почему два первичных мессенджера, используя одну и ту же систему трансдукции сигнала, вызывают различный клеточный ответ. Для этого:

а) представьте схему передачи сигнала для адреналина и ацетилхолина;

б) укажите различие в каскадах передачи сигналов этих мессенджеров.

2. Ацетилхолин, взаимодействуя с М 3 -холинорецепторами слюнных желез, стимулирует выход Са 2+ из ЭР. Повышение концентрации Са 2+ в цитозоле обеспечивает экзоцитоз секреторных гранул и высвобождение в слюнной проток электролитов и небольшого количества белков. Объясните, как регулируется работа Са 2+ -каналов ЭР. Для этого:

а) назовите вторичный мессенджер, обеспечивающий открытие Са 2+ -каналов ЭР;

б) напишите реакцию образования вторичного мессенджера;

в) представьте схему трансмембранной передачи сигнала ацетилхолина, в ходе активации которой образуется регуляторный лиганд Са 2+ -кана-

3. Исследователи рецептора инсулина установили значительное изменение в гене белка - одного из субстратов инсулинового рецептора. Как нарушение в структуре этого белка скажется на функционировании системы передачи сигнала инсулина? Для ответа на вопрос:

а) приведите схему трансмембранной передачи сигнала инсулина;

б) назовите белки и ферменты, которые активирует инсулин в клеткахмишенях, укажите их функцию.

4. Белок Ras является «заякоренным» белком цитоплазматической мембраны. Функцию «якоря» выполняет 15-углеродный остаток фарнезила Н 3 С-(СН 3)С=СН-СН 2 -[СН 2 -(СН 3)С=СН-СН 2 ] 2 -, который присоединяется к белку ферментом фарнезилтрансферазой в ходе посттрансляционной модификации. В настоящее время ингибиторы этого фермента проходят клинические испытания.

Почему использование этих препаратов приводит к нарушению трансдукции сигнала ростовых факторов? Для ответа:

а) представьте схему передачи сигнала с участием Ras-белков;

б) объясните функцию Ras-белков и последствия нарушения их ацилирования;

в) предположите, для лечения каких заболеваний были разработаны эти препараты.

5. Стероидный гормон кальцитриол активирует всасывание пищевого кальция, увеличивая количество белков-переносчиков Са 2+ в клетках кишечника. Объясните механизм действия кальцитриола. Для этого:

а) приведите общую схему передачи сигнала стероидных гормонов и опишите ее функционирование;

б) назовите процесс, который активирует гормон в ядре клетки-мишени;

в) укажите, в каком матричном биосинтезе будут участвовать молекулы, синтезированные в ядре, и где он протекает.

Гормоны. Что это?

Номенклатура и классификация гормонов

Принципы передачи гормонального сигнала клеткам-мишеням

Гидрофильные гормоны

Метаболизм пептидных гормонов

Инактивация и деградация

Механизм действия гидрофильных гормонов

Вторичные мессенджеры

Циклический АМФ

Роль ионов кальция

Основные представители гидрофильных гормонов

Гистамин

Серотонин

Мелатонин

Катехоламиновые гормоны

Пептидные и белковые гормоны

Тиреотропин

Инсулин

Глюкагон

Гастрин

Заключение

Список литературы

Гормоны. Что это?

Гормоны - сигнальные вещества, образующиеся в клетках эндокринных желез. После синтеза гормоны поступают в кровь и переносятся к органам-мишеням, где выполняют определенные биохимические и физиологические регуляторные функции.

Каждый гормон является центральным звеном сложной системы гормональной регуляции. Гормоны синтезируются в виде предшественников, прогормонов, а зачастую и депонируются, в специализированных клетках эндокринных желез. Отсюда они по мере метаболической необходимости поступают в кровоток. Большинство гормонов переносится в виде комплексов с плазматическими белками, так называемыми переносчиками гормонов, причем связывание с переносчиками носит обратимый характер. Гормоны разрушаются соответствующими ферментами, обычно в печени. Наконец, гормоны и продукты их деградации выводятся из организма экскреторной системой, обычно почками. Все перечисленные процессы влияют на концентрацию гормонов и осуществляют контроль за передачей сигналов.

В органах-мишенях имеются клетки, несущие рецепторы, способные связывать гормоны и тем самым воспринимать гормональный сигнал. После связывания гормонов рецепторы передают информацию клетке и запускают цепь биохимических реакций, определяющих клеточный ответ на действие гормона.

Используются гормоны в организме для поддержания его гомеостаза, а также для регуляции многих функций (роста, развития, обмена веществ, реакции на изменения условий среды).

Номенклатура и классификация гормонов

Химическая природа почти всех известных гормонов выяснена в деталях (включая первичную структуру белковых и пептидных гормонов), однако до настоящего времени не разработаны общие принципы их номенклатуры. Химические наименования многих гормонов точно отражают их химическую структуру и очень громоздкие. Поэтому чаще применяются тривиальные названия гормонов. Принятая номенклатура указывает на источник гормона (например, инсулин - от лат. insula - островок) или отражает его функцию (например, пролактин, вазопрессин). Для некоторых гормонов гипофиза (например, лютеинизирующего и фолликулостимулирующего), а также для всех гипоталамических гормонов разработаны новые рабочие названия.

Аналогичное положение существует и в отношении классификации гормонов. Гормоны классифицируют в зависимости от места их природного синтеза, в соответствии с которым различают гормоны гипоталамуса, гипофиза, щитовидной железы, надпочечников, поджелудочной железы, половых желез, зобной железы и др. Однако подобная анатомическая классификация недостаточно совершенна, поскольку некоторые гормоны или синтезируются не в тех железах внутренней секреции, из которых они секретируются в кровь (например, гормоны задней доли гипофиза, вазопрессии и окситоцин синтезируются в гипоталамусе, откуда переносятся в заднюю долю гипофиза), или синтезируются и в других железах (например, частичный синтез половых гормонов осуществляется в коре надпочечников, синтез простагландинов происходит не только в предстательной железе, но и в других органах) и т.д. С учётом этих обстоятельств были предприняты попытки создания современной классификации гормонов, основанной на их химической природе. В соответствии с этой классификацией различают три группы истинных гормонов:

) пептидные и белковые гормоны,

) гормоны - производные аминокислот и 3) гормоны стероидной природы. Четвертую группу составляют эйкозаноиды - гормоноподобные вещества, оказывающие местное действие.

Пептидные и белковые гормоны включают от 3 до 250 и более аминокислотных остатков. Это гормоны гипоталамуса и гипофиза (тиролиберин, соматолиберин, соматостатин, гормон роста, кортикотропин, тиреотропин и др. - см. далее), а также гормоны поджелудочной железы (инсулин, глюкагон). Гормоны - производные аминокислот в основном представлены производными аминокислоты тирозина. Это низкомолекулярные соединения адреналин и норадреналин, синтезирующиеся в мозговом веществе надпочечников, и гормоны щитовидной железы (тироксин и его производные). Гормоны 1-й и 2-й групп хорошо растворимы в воде.

Гормоны стероидной природы представлены жирорастворимыми гормонами коркового вещества надпочечников (кортикостероиды), половыми гормонами (эстрогены и андрогены), а также гормональной формой витамина D.

Эйкозаноиды, являющиеся производными полиненасыщенной жирной кислоты (арахидоновой), представлены тремя подклассами соединений: простагландины, тромбоксаны и лейкотриены. Эти нерастворимые в воде и нестабильные соединения оказывают своё действие на клетки, находящиеся вблизи их места синтеза.

Принципы передачи гормонального сигнала клеткам-мишеням

Известны два основных типа передачи гормонального сигнала клеткам-мишеням. Липофильные гормоны проникают в клетку, а затем поступают в ядро. Гидрофильные гормоны оказывают действие на уровне кпеточной мембраны.

гидрофильный гормон гормональный сигнал

Липофильные гормоны, к которым относятся стероидные гормоны, тироксин и ретиноевая кислота, свободно проникают через плазматическую мембрану внутрь клетки, где взаимодействуют с высокоспецифическими рецепторами. Гормон-рецепторный комплекс в форме димера связывается в ядре с хроматином и инициирует транскрипцию определенных генов. Усиление или подавление синтеза мРНК (mRNA) влечет за собой изменение концентрации специфических белков (ферментов), определяющих ответ клетки на гормональный сигнал.

Гормоны, являющиеся производными аминокислот, а также пептидные и белковые гормону, образуют группу гидрофильных сигнальных веществ. Эти вещества связываются со специфическими рецепторами на внешней поверхности плазматической мембраны. Связывание гopмона передает сигнал на внутреннюю поверхность мембраны и тем самым запускает синтез вторичных мессенджеров (посредников). Молекулы-посредники потенциируют клеточный ответ на действие гормона.

Гидрофильные гормоны

Определение.

Гидрофильные гормоны и гормоноподобные вещества построены из аминокислот как, например, белки и пептиды, или являются производными аминокислот. Они депонируются в больших количествах в клетках желез внутренней секреции и поступают в кровь по мере необходимости. Большинство этих веществ переносятся в кровотоке без участия переносчиков. Гидрофильные гормоны действуют на клетки-мишени за счет связывания с рецептором на плазматической мембране.


Метаболизм пептидных гормонов

Биосинтез.

В отличие от стероидов пептидные и белковые гормоны являются первичными продуктами биосинтеза. Соответствующая информация считывается с ДНК (DNA) на стадии транскрипции, а синтезированная гяРНК (hnRNA) освобождается от интронов за счет сплайсинга (1). мРНК (mRNA) кодирует последовательность пептида, который чаще всего существенно превышает по молекулярной массе зрелый гормон. Исходная аминокислотная цепь включает сигнальный пептид и пропептид - предшественник гормона. Трансляция мРНК происходит на рибосомах по обычной схеме (2). Вначале синтезируется сигнальный пептид. Его функция состоит в том, чтобы связать рибосомы на шероховатом эндоплазматическом ретикулуме [ШЭР (rER)] и направить растущую пептидную цепь в просвет ШЭР (3). Синтезированный продукт является предшественником гормона, прогормоном. Созревание гормона происходит путем ограниченного протеолиза и последующей (посттрансляционной) модификации, например образования дисульфидных мостиков, гликозилирования и фосфорилирования (4). Зрелый гормон депонируется в клеточных везикулах, откуда секретируется по мере необходимости за счет экзоцитоза.

Биосинтез пептидных и белковых гормонов и их секреция находятся под контролем иерархической системы гормональной регуляции. В этой системе в качестве вторичного мессенджера принимают участие ионы кальция; увеличение концентрации кальция стимулирует синтез и секрецию гормонов.

Анализ гормональных генов показывает, что иногда многие совершенно разные пептиды и белки кодируются одним и тем же геном. Одним из наиболее изученных является ген проопиомеланокортина [ПОМК (POMC)]. Наряду с нуклеотидной последовательностью, соответствующей кортикотропину [адренокортикотропный гормон, АКТГ (АСТН)], этот ген включает перекрывающиеся последовательности, кодирующие ряд небольших пептидных гормонов, а именно α-, β - и γ-меланотропинов [МСГ (MSH)], β - и γ - липотропинов (ЛПГ (LPH)], β-эндорфина и мет-энкефалина. Последний гормон может также образовываться из β-эндорфина. Прогормоном для этого семейства является так называемый полипротеин. Сигнал о том, какой пептид должен быть получен и секретирован, поступает из системы регуляции после завершения синтеза препропептида. Наиболее важным секретируемым продуктом, полученным из гипофизарного полипротеина кодируемого геном ПОМК, является гормон кортикотропин (АКТГ), стимулирующий секрецию кортизола корой надпочечников. Биологические функции других пептидов до конца не выяснены.

Инактивация и деградация

Деградация пептидных гормонов часто начинается уже в крови или на стенках кровеносных сосудов, особенно интенсивно этот процесс идет в почках. Некоторые пептиды, содержащие дисульфидные мостики, например инсулин, могут инактивироваться за счет восстановления остатков цистина (1), Другие белково-пептидные гормоны гидролизуются протеиназами, а именно экзо - (2) (по концам цепи) и эндопептидазами (3). Протеолиз приводит к образованию множества фрагментов, некоторые из которых могут проявлять биологическую активность. Многие белково-пептидные гормоны удаляются из системы циркуляции за счет связывания с мембранным рецептором и последующего эндоцитоза гормон-рецепторного комплекса. Деградация таких комплексов происходит в лизосомах, конечным продуктом деградации являются аминокислоты, которые вновь используются в качестве субстратов в анаболических и катаболических процессах.

Липофильные и гидрофильные гормоны имеют различный полупериод существования в системе циркуляции (точнее биохимический полупериод, t1/2). По сравнению с гидрофильными гормонами (t1/2 несколько минут или часов) липофильные гормоны живут существенно дольше (t1/2 составляет несколько часов или дней). Биохимический полупериод гормонов зависит от активности системы деградации. Воздействие на систему деградации лекарственными препаратами или повреждение тканей может вызвать изменение скорости распада, а следовательно, и концентрации гормонов.

Механизм действия гидрофильных гормонов

Большинство гидрофильных сигнальных веществ не способны проходить через липофильную клеточную мембрану. Поэтому передача сигнала в клетку осуществляется через мембранные рецепторы (проводники сигнала). Рецепторы - это интегральные мембранные белки, которые связывают сигнальные вещества на внешней стороне мембраны и за счет изменения пространственной структуры генерируют новый сигнал на внутренней стороне мембраны. Данным сигналом определяется транскрипция определенных генов и активность ферментов, которые контролируют обмен веществ и взаимодействуют с цитоскелетом.

Различают три типа рецепторов.

Рецепторы первого типа являются белками, имеющими одну трансмембранную полипептидную цепь. Это аллостерические ферменты, активный центр которых расположен на внутренней стороне мембраны. Многие из них являются тирозиновыми протеинкиназами. К этому типу принадлежат рецепторы инсулина, ростовых факторов и цитокинов.

Связывание сигнального вещества ведет к димеризации рецептора. При этом происходит активация фермента и фосфорилирование остатков тирозина в ряде белков. В первую очередь фосфорилируется молекула рецептора (автофосфорилирование). С фосфотирозином связывается SН2-домен белка-переносчика сигнала, функция которого состоит в передаче сигнала внутриклеточным протеинкиназам.

Ионные каналы. Эти рецепторы второго типа являются олигомерными мембранными белками, образующими лиганд-активируемый ионный канал. Связывание лиганда ведет к открыванию канала для ионов Na+, К+ или Cl-. По такому механизму осуществляется действие нейромедиаторов, таких, как ацетилхолин (никотиновые рецепторы: Na+ - и К+-каналы) и γ-аминомасляная кислота (А-рецептор: Cl--канал).

Рецепторы третьего типа, сопряженные с ГТФ - связывающими белками. Полипептидная цепь этих белков включает семь трансмембранных тяжей. Такие рецепторы передают сигнал с помощью ГТФ-связывающих белков на белки-эффекторы, которые являются сопряженными ферментами или ионными каналами. Функция этих белков заключается в изменении концентрации ионов или вторичных мессенджеров.

Таким образом, связывание сигнального вещества с мембранным рецептором влечет за собой один из трех вариантов внутриклеточного ответа: рецепторные тирозинкиназы активируют внутриклеточные протеинкиназы, активация лиганд-активируемых ионных каналов ведет к изменению концентрации ионов и активация рецепторов, сопряженных с ГТФ-связывающими белками, индуцирует синтез веществ-посредников, вторичных мессенджеров. Все три системы передачи сигнала взаимосвязаны. Так, например, образование вторичного мессенджера цАМФ (сАМР) приводит к активации протеинкиназ А [ПК-А (PK-A)], вторичный мессенджер диацилглицерин [ДАГ (DAG)] активирует [ПК-С (PK-C)], а вторичный мессенджер инозит-1,4,5-трифосфат [ИФ3 (InsP3)] вызывает повышение концентрации ионов Са2+ в цитоплазме клетки.

Преобразование сигнала G-белками.белки (англ. G proteins) - это семейство белков, относящихся к ГТФазам и функционирующих в качестве вторичных посредников во внутриклеточных сигнальных каскадах. G-белки названы так, поскольку в своём сигнальном механизме они используют замену GDP на GTP как молекулярный функциональный "выключатель" для регулировки клеточных процессов.белки переносят сигнал с рецептора третьего типа на белки-эффекторы. Они построены из трех субъединиц: α, β и γ. α-cубъединица обладает свойством связывать гуаниновые нуклеотиды [ГТФ (GTP) или ГДФ (GDP)]. Белок проявляет слабую ГТФ-азную активность и похож на другие ГТФ-связывающие белки, такие, как ras и фактор элонгации Tu (EF-Tu). В неактивном состоянии G-белок связан с ГДФ.

При связывании сигнального вещества с рецептором третьего типа конформация последнего изменяется таким образом, что комплекс приобретает способность связывать G-белок. Ассоциация G-белка с рецептором приводит к обмену ГДФ на ГТФ (1). При этом происходит активация G-белка, он отделяется от рецептора и диссоциирует на α-субъединицу и β,γ-комплекс. ΓΤΦ-α субъединица связывается с белками-эффекторами и изменяет их активность, в результате чего происходит открывание или закрывание ионных каналов, активация или ингибирование ферментов (2). Медленный гидролиз связанного ГТФ до ГДФ переводит α-субъединицу в неактивное состояние и она вновь ассоциирует с β,γ-комплексом, т.е. G-белок возвращается в исходное состояние.

Вторичные мессенджеры

Вторичные мессенджеры, или посредники, это внутриклеточные вещества, концентрация которых строго контролируется гормонами, нейромедиаторами и другими внеклеточными сигналами. Такие вещества образуются из доступных субстратов и имеют короткий биохимический полупериод. Наиболее важными вторичными мессенджерами являются цАМФ (сAMP), цГТФ (cGTP), Са2+, инозит-1,4,5-трифосфат [ИФ3 (lnsP3)], диацилглицерин [ДАГ (DAG)] и монооксид азота (NO).

Циклический АМФ

Биосинтез. Нуклеотид цАМФ (3",5"-циклоаденозинмонофосфат, сАМР} синтезируется мембранными аденилатциклазами - семейством ферментов, катализирующих реакцию циклизации АТФ (АТР) с образованием цАМФ и неорганического пирофосфата. Расщепление цАМФ с образованием АМФ (AMP) катализируется фосфодиэстеразами , которые ингибируются при высоких концентрациях метилированных производных ксантина, например кофеином.

Активность аденилатциклазы контролируется G-белками, которые в свою очередь сопряжены с рецепторами третьего типа, управляемыми внешними сигналами. Большинство G-белков (Gs-белки) активируют аденилатциклазу, некоторые G-белки ее ингибируют (Gi-белки). Некоторые аденилатциклазы активируются комплексом Са2+/кальмодулин.

Механизм действия. цАМФ является аллостерическим эффектором протеинкиназ А (ПК-Α) и ионных каналов (см. с.372). В неактивном состоянии ПК-Α является тетрамером, две каталитические субъединицы (К-субъединицы) которого ингибированы регуляторными субъединицами (Р-субъединицы) (аутоингибирование). При связывании цАМФ Р-субъединицы диссоциируют из комплекса и К-единицы активируются. Фермент может фосфорилировать определенные остатки серина и треонина в более чем 100 различных белках, в том числе во многих ферментах (см. с.158) и факторах транскрипции. В результате фосфорилирования изменяется функциональная активность этих белков.

Наряду с цАМФ функции вторичного мессенджера может выполнять и цГМФ (cGMP). Оба соединения различаются по метаболизму и механизму действия.

Роль ионов кальция

Уровень ионов кальция. Концентрация ионов Са2+ в цитоплазме нестимулированной клетки очень низка (10-100 нМ). Низкий уровень поддерживается кальциевыми АТФ-азами (кальциевыми насосами) и натрий-кальциевыми обменниками. Резкое повышение концентрации ионов Са2+ в цитоплазме (до 500-1000 нМ) происходит в результате открывания кальциевых каналов плазматической мембраны или внутриклеточных кальциевых депо (гладкого и шероховатого эндоплазматического ретикулума). Открывание каналов может быть вызвано деполяризацией мембран или действием сигнальных веществ, нейромедиаторов (глутамат и АТФ, см. с.342), вторичных мессенджеров (ИФ3 и цАМФ), а также вещества растительного происхождения рианодина. В цитоплазме и клеточных органеллах имеется множество белков способных связывать Са2+, некоторые из них выполняют роль буфера.

При высокой концентрации в цитоплазме ионы Са2+ оказывает на клетку цитотоксическое действие. Поэтому уровень кальция в отдельной клетке испытывает кратковременные всплески, увеличиваясь в 5-10 раз, а стимуляция клетки увеличивает лишь частоту этих флуктуаций.

Действие кальция опосредовано специальными Са2+-связывающими белками ("кальциевыми сенсорами"), к которым принадлежат аннексин, кальмодулин и тропонин (см. с.326). Кальмодулин - сравнительно небольшой белок (17 кДа) - присутствует во всех животных клетках. При связывании четырех ионов Са2+ (на схеме голубые кружочки) кальмодулин переходит в активную форму, способную взаимодействовать с многочисленными белками. За счет активации кальмодулина ионы Са2+ оказывают влияние на активность ферментов, ионных насосов и компонентов цитоскелета.

Инозит-1,4,5-трифосфат и диацилглицерин

Гидролиз фосфатидилинозит-4,5-дифосфата [ФИФ2 (PlnsP2)] фосфолипазой С приводит к образованию двух вторичных мессенджеров: инозит-1,4,5-трифосфата и диацилглицерина. Гидрофильный ИФ3 поступает в эндоплазматический ретикулум [ЭР (ЕR)] и индуцирует высвобождение ионов Са2+ из запасающих везикул. Липофильный ДАГ остается в мембране и активирует протеинкиназу C, которая в присутствии Са2+ фосфорилирует различные белковые субстраты, модулируя их функциональную активность.

Основные представители гидрофильных гормонов

Производные аминокислот.

Естественно, самыми большими группами гормонов являются стероидные гормоны и пептидные гормоны. Но есть и другие группы.

Биогенные амины (гистамин, серотонин, мелатонин) и катехоламины (дофа, дофамин, норадреналин и адреналин) образуются путем декарбоксилирования аминокислот.

Гистамин

Гистамин в человеческом организме - тканевый гормон, медиатор, регулирующий жизненно важные функции организма и играющий значительную роль в патогенезе ряда болезненных состояний.

Этот гормон депонируется в тучных клетках и базофилах в виде комплекса с гепарином, свободный гистамин быстро деактивируется окислением, катализируемым диаминоксидазой, либо метилируется гистамин-N-метилтрансферазой. Конечные метаболиты гистамина - имидазолилуксусная кислота и N-метилгистамин выводятся с мочой.

Гистамин в организме человека находится в неактивном состоянии. При травмах, стрессе, аллергических реакциях количество свободного гистамина заметно увеличивается. Количество гистамина увеличивается и при попадании в организм различных ядов, определенных пищевых продуктов, а также некоторых лекарств.

Свободный гистамин вызывает спазм гладких мышц (включая мышцы бронхов и сосудов), расширение капилляров и понижение артериального давления, застой крови в капиллярах и увеличение проницаемости их стенок, вызывает отёк окружающих тканей и сгущение крови, стимулирует выделение адреналина и учащение сердечных сокращений.

Гистамин оказывает свое действие через конкретные клеточными рецепторами гистамина. В настоящее время выделяют три группы рецепторов гистамина, которые обозначаются H1, H2 и H3.

Гистамин играет значительную роль в физиологии пищеварения. В желудке гистамин секретируется энтерохромаффиноподобными (ECL-) клетками слизистой оболочки. Гистамин является стимулятором продукции соляной кислоты, воздействуя на H2 рецепторы обкладочных клеток слизистой оболочки желудка. Разработан и активно применяется при лечении кислотозависимых заболеваний (язвенная болезнь желудка и двенадцатиперстной кишки, ГЭРБ и т.п.) целый ряд лекарств, называемых H2-блокаторами гистаминовых рецепторов, которые блокируют воздействие гистамина на обкладочные клетки, уменьшая тем самым секрецию соляной кислоты в просвет желудка.


Серотонин


Серотонин (5-окситриптамин, 5-НТ) был открыт при поисках сосудосуживающего вещества, содержащегося в крови. Довольно быстро он был идентифицирован с ранее обнаруженным Эрспаймером в кишечнике энтерамином и было расшифровано его химическое строение, оказавшееся весьма простым.

Около 90% серотонина содержится в кишечнике, причём почти исключительно в энтерохромафинных клетках. Также он есть в селезёнке, печени, почках, лёгких, в различных эндокринных железах.

Серотонин есть и в главном мозге (сравнительно много в гипоталамусе и в среднем мозге, меньше в таламусе, гиппокамне, совсем не был найден в мозолистом теле и мозжечке), и в спинном мозге.

Серотонин образуется из аминокислоты триптофана путём её последовательного 5-гидроксилирования ферментом 5-триптофангидроксилазой (в результате чего получается 5-гидрокситриптофан, 5-ГТ) и затем декарбоксилирования получившегося гидрокситриптофана ферментом триптофандекарбоксилазой.5-триптофангидроксилаза синтезируется только в соме серотонинергических нейронов, гидроксилирование происходит в присутствии ионов железа и кофактора птеридина.

Серотонин играет важную роль в процессах свёртывания крови. Тромбоциты крови содержат значительные количества серотонина и обладают способностью захватывать и накапливать серотонин из плазмы крови. Серотонин повышает функциональную активность тромбоцитов и их склонность к агрегации и образованию тромбов. Стимулируя специфические серотониновые рецепторы в печени, серотонин вызывает увеличение синтеза печенью факторов свёртывания крови. Выделение серотонина из повреждённых тканей является одним из механизмов обеспечения свёртывания крови по месту повреждения.

Серотонин участвует в процессах аллергии и воспаления. Он повышает проницаемость сосудов, усиливает хемотаксис и миграцию лейкоцитов в очаг воспаления, увеличивает содержание эозинофилов в крови, усиливает дегрануляцию тучных клеток и высвобождение других медиаторов аллергии и воспаления. Местное (например, внутримышечное) введение экзогенного серотонина вызывает сильную боль в месте введения. Предположительно серотонин наряду с гистамином и простагландинами, раздражая рецепторы в тканях, играет роль в возникновении болевой импульсации из места повреждения или воспаления.

Также большое количество серотонина производится в кишечнике. Серотонин играет важную роль в регуляции моторики и секреции в желудочно-кишечном тракте, усиливая его перистальтику и секреторную активность. Кроме того, серотонин играет роль фактора роста для некоторых видов симбиотических микроорганизмов, усиливает бактериальный метаболизм в толстой кишке. Сами бактерии толстой кишки также вносят некоторый вклад в секрецию серотонина кишечником, поскольку многие виды симбиотических бактерий обладают способностью декарбоксилировать триптофан. При дисбактериозе и ряде других заболеваний толстой кишки продукция серотонина кишечником значительно снижается.

Массивное высвобождение серотонина из погибающих клеток слизистой желудка и кишечника при воздействии цитотоксических химиопрепаратов является одной из причин возникновения тошноты и рвоты, диареи при химиотерапии злокачественных опухолей. Аналогичное состояние бывает при некоторых злокачественных опухолях, эктопически продуцирующих серотонин.

Большое содержание серотонина также отмечается в матке. Серотонин играет роль в паракринной регуляции сократимости матки и маточных труб и в координации родов. Продукция серотонина в миометрии возрастает за несколько часов или дней до родов и ещё больше увеличивается непосредственно в процессе родов. Также серотонин вовлечён в процесс овуляции - содержание серотонина (и ряда других биологически активных веществ) в фолликулярной жидкости увеличивается непосредственно перед разрывом фолликула, что, по-видимому, приводит к увеличению внутрифолликулярного давления.

Серотонин оказывает значительное влияние на процессы возбуждения и торможения в системе половых органов. Например, увеличение концентрации серотонина у мужчин задерживает наступление эякуляции.

Дефицит или ингибирование серотонинергической передачи, например, вызванные снижением уровня серотонина в мозге, является одним из факторов формирования депрессивных состояний и тяжелых форм мигрени.

Гиперактивация серотониновых рецепторов (например, при приёме некоторых наркотиков) может привести к галлюцинациям. C хронически повышенным уровнем их активности может быть связано развитие шизофрении.

Мелатонин

В 1958 году в Йельском университете Лернер с соавторами из 250000 бычьих эпифизов впервые выделили в чистом виде гормон эпифиза, который был идентифицирован как 5-метокси-N-ацетил-трипталин (мелатонин ).

Изменения концентрации мелатонина имеют заметный суточный ритм в шишковидном теле и в крови, как правило, с высоким уровнем гормона в течение ночи и низким уровнем в течение дня.

Синтез мелатонина заключается в том, что циркулирующая в крови аминокислота триптофан поглощается эпифизарными клетками, окисляются до 5-окситриптофана и затем декарбоксилируется до формы биогенного амина - серотонина (синтез серотонина). Ольшая часть серотонина метаболизируется в эпифизе при помощи моноаминоксидазы, которая разрушает серотонин в других органах. Меньшая часть серотонина ацетилируется в шишковидной железе до N-ацетил серотонина, и это вещество затем превращается в 5-метокси-N-ацетилтриптамин (мелатонин). Последний этап образования мелатонина осуществляется под влиянием особого фермента оксиндол-O-метилтрансферазы. Оказалось, что шишковидная железа является почти единственным образованием, где обнаружен этот уникальный фермент.

В отличие от серотонина, который образуется и в центральной нервной системе, и в разнообразных периферических органах и тканях, источником мелатонина является по существу один орган - эпифиз.

Мелатонин регулирует деятельность эндокринной системы, кровяное давление, периодичность сна, сезонную ритмику у многих животных, замедляет процессы старения, усиливает эффективность функционирования иммунной системы, обладает антиоксидантными свойствами, влияет на процессы адаптации при смене часовых поясов.

Кроме того, мелатонин участвует в регуляции кровяного давления, функций пищеварительного тракта и работы клеток головного мозга.

В настоящее время уже хорошо известно, что в шишковидной железе млекопитающих содержание серотонина и мелатонина варьируется определённым образом в течение 24-часового периода.

При нормальных условиях освещения уровень серотонина наибольший днём. С наступлением темноты содержание серотонина в эпифизе быстро понижается (максимальное - через 8 часов после начала светлого периода суток, минимальное - через 4 часа после наступления темноты).

Катехоламиновые гормоны

Адреналин - гормон, синтезируемый в мозговом веществе надпочечных желез. О его существовании известно более столетия. В 1901 г. адреналин был выделен из экстракта надпочечников в кристаллическом состоянии Такамине, Альдрихом и И. Фюртом. Двумя годами позже Ф. Штольц дал окончательное доказательство его структуры путем синтеза. Адреналин оказался 1- (3,4-диоксифенил) - 2-метиламиноэтанолом.


Это бесцветный кристаллический порошок. Обладая асиметрическим атомом углерода, адреналин существует в виде двух оптических изомеров. Из них левовращающий по гормональному действию в 15 раз активнее правовращающего. Именно он синтезируется в надпочечниках.

В мозговом слое надпочечников человека, весящих 10г, содержится около 5 мг адреналина. Кроме того, в них же найдены гомологи адреналина: норадреналин (0,5 мг) и изопропиладреналин (следы).

Адреналин и норадреналин есть также в крови человека. Содержание их в венозной крови составляет 0,04 и 0,2 мкг% соответственно. Предполагают, что адреналин и норадреналин в виде соли с АТФ в небольших количествах откладываются в окончаниях нервных волокон, высвобождаясь в ответ на их раздражение. В результате этого устанавливается химический контакт между окончанием нервного волокна и клеткой или между двумя нейронами.

Все три вещества - адреналин, норадреналин и изопропиладреналин - оказывают мощное влияние на сосудистую систему организма. Кроме того, они повышают уровень обмена углеводов в организме, усиливая распад гликогена в мышцах. Это объясняется тем, что фосфорилаза мышц под опосредствованным аденилатциклазой действием адреналина переходит из неактивной формы (фосфорилаза b) в активную форму (фосфорилаза а).

Таким образом, адреналин в мышцах выполняет ту же функцию, что глюкагон в печени, обеспечивая запуск аденилатциклазной реакции после взаимодействия с поверхностным гормональным рецептором клетки-мишени.

Гормоны симпатоадреналовой системы хотя и не являются жизненно-необходимыми, их роль в организме чрезвычайно велика: именно они обеспечивают адаптацию к острым и хроническим стрессам. Адреналин, норадреналин и домафин - основные элементы реакции "борьбы или бегства" (возникающей, например, при неожиданной встрече с медведем в зарослях черники). Ответ на испытываемый при этом испуг включает в себя быструю интегрированную перестройку многих сложных процессов в органах, непосредственно участвующих в данной реакции (мозг, мышцы, сердечно-лёгочная система и печень). Адреналин в этом "ответе”:

) быстро поставляет жирные кислоты, выполняющие роль главного первичного топлива для мышечной активности;

) мобилизует глюкозу в качестве источника энергии для мозга - путём повышения гликогенолиза и глюконеогенеза в печени и понижения поглощения глюкозы в мышцах и других органах;

) понижает высвобождение инсулина, что также предотвращает поглощение глюкозы периферическими тканями, сберегая её, в результате для центральной нервной системы.

Нервная стимуляция мозгового слоя надпочечников приводит к слиянию хромаффинных гранул с плазматической мембраной, и таким образом обусловливает выброс норадреналина и адреналина путём экзоцитоза. Этот процесс зависит от кальция и подобно другим процессам экзоцитоза стимулируется холинергическими и β-адренергическими агентами и ингибируется α-адренергическими агентами. Катехоламины и АТР высвобождаются в том же соотношении, в каком они присутствуют в гранулах. Это относится и к другим компонентам, включая ДБГ, кальций и хромогранин А.

Обратный захват катехоламинов нейронами - важный механизм, обеспечивающий, с одной стороны, сохранение гормонов, а с другой - быстрое прекращение гормональной или нейромедиаторной активности. В отличие от симпатических нервов мозговой слой надпочечников лишен механизма обратного захвата и запасания выделившихся катехоламинов. Секретируемый надпочечниками адреналин попадает в печень и скелетные мышцы, но затем быстро метаболизируется. Лишь очень небольшая часть норадреналина достигает отдалённых тканей. Катехоламины циркулируют в плазме в слабоассоциированном с альбумином виде. Они очень недолговечны: период их биологической полужизни составляет 10 - 30 сек.

Механизм действия катехоламинов привлекает внимание исследователей почти целое столетие. Действительно, многие общие концепции рецепторной биологии и действия гормонов берут начало ещё в самых разных исследованиях.

Катехоламины действуют через два главных класса рецепторов: α-адренергические и β-адренергические. Каждый из них подразделяется на два подкласса: соответственно α 1 и α 2 , β 1 и β 2 . Данная классификация основана на относительном порядке связывания с различными агонистами и антагонистами. Адреналин связывается (и активирует) как с α-, так и с β-рецепторами, и поэтому его действие на ткань, содержащую рецепторы обоих классов, зависит от относительного сродства этих рецепторов к гормону. Норадреналин в физиологических концентрациях связывается главным образом с α-рецепторами.

Феохромоцитомы представляют собой опухоли мозгового слоя надпочечников, которые обычно не диагностируются до тех пор, пока не начнут продуцировать и секретировать адреналин и норадреналин в количествах, достаточных для появления тяжелого гипертонического синдрома. При феохромоцитоме часто бывает повышено отношение норадреналин/адреналин. Возможно, именно этим и объясняются различия в клинических проявлениях, поскольку норадреналину приписывают основную роль в патогенезе гипертонии, а адреналин считают ответственным за гиперметаболизм.

Пептидные и белковые гормоны

Сейчас известно несколько десятков природных пептидных гормонов, и список их постепенно пополняется.

Благодаря широкому использованию методов бурно развивающейся белковой химии в последние годы ряд пептидных гормонов получен в гомогенном состоянии, изучен их аминокислотный состав, выянена первичная (а в случае белковых гормонов - вторичная, третичная и четвертичная) структура и некоторые из них приготовлены синтетическим путём. Более того, большие успехи, достигнутые в области химического синтеза пептидов, позволили искусственно получить множество пептидов, являющихся изомерами или аналогами натуральных пептидов. Изучение гормональной активности последних принесло исключительно важную информацию о взаимосвязи структуры пептидных гормонов с их функцией.

Важнейшими пептидными гормонами являются тиреотропин, инсулин, глюкагон, гастрин, окситоцин, вазопрессин.

Тиреотропин

Тиреотропин - белок, выделяемый передней долей гипофиза. Он предствляет собой гликопротеин с М = 28300, составленный из двух неравных субъединиц (М = 13600 и 14 700), исключетельно богатых дисульфидными мостиками (5 и 6 соответственно). Первичная структура тиреотропина быка и свиньи выясненаю При недостатке тиреотропина (гипофункция гипофиза) ослабляется деятельность щитовидной железы, она уменьшается в размерах, а содержание в крови выделяемого ею гормона - тироксина - сокращается вдвое.

Таким образом, тиреотропин стимулирует деятельность щитовидной железы. В свою очередь, выделение тиреотропина регулируется по принципу обратной связи гормонами щитовидной железы. Следовательно, деятельность двух упомянутых желез внутренней секреции тонко координирована.

Введение тиреотропина вызывает множественные сдвиги в обмене веществ: через 15-20 минут повышается секреция гормонов щитовидной железы и усиливается поглощение ею йода, необходимого для синтеза этих гормонов; повышается поглощение кислорода щитовидной железой, возрастает окисление глюкозы, активируется обмен фосфолипидов и новообразование РНК. Сейчас выяснено, что механизм действия тиреотропина, как и многих других пептидных гормонов, сводится к активированию аденилатциклазы, расположенной в непосредственной близости от рецепторного белка, с которым связывается тиреотропин. Как следствие этого, в щитовидной железе ускоряется ряд процессов, в том числе и биосинтез тиреоидных гормонов.

Инсулин

Инсулин - белок, вырабатываемый в β-клетках поджелудочной железы. Его строение детально изучено. Инсулин был первым белком, у которого Ф. Сангером была выяснена первичная структура. Он же явился первым белком, полученным путем химического синтеза.


Впервые наличие в железе гормона, влияющего на углеводный обмен, было отмечено Мерингом и О. Миньковским (1889). Позднее Л.В. Соболев (1901) установил, что источником инсулина в поджелудочной железе служит её островковая часть, в связи с чем в 1909 году этот гормон, не будучи ещё индивидуализирован, получил наименование - инсулин (от лат. insula - остров). В 1992 году Ф. Бантинг и Г. Бест впервые приготовили активный препарат инсулина, а к 1926 году были разработаны способы его выделения в высокоочищенном состоянии, в том числе в виде кристаллических препаратов, содержащих 0,36% Zn.

Инсулин синтезируется в бета-клетках островков Лангерганса обычным механизмом синтеза белка. Трансляция инсулина начинается на рибосомах, связанных с эндоплазматическим ретикулумом, с образования препрогормона инсулина. Этот исходный препрогормон с молекулярной массой 11500 в эндоплазматическом ретикулуме расщепляется до проинсулина с молекулярной массой около 9000. Далее в аппарате Гольджи большая его часть дробится на инсулин, упаковывающийся в секреторные гранулы, и пептидный фрагмент. Однако почти 1/6 часть конечного секретируемого продукта остается в форме проинсулина. Проинсулин является неактивной формой гормона.

Молекулярная масса кристаллического инсулина равна 36 000. Его молекула представляет собой мультимер, составленный из шести протомеров и двух атомов Zn. Протомеры образуют димеры, которые взаимодействуют с имидазольными ядрами радикалов гис 10 цепи B и способствуют их агретации в гексамер. Распадаясь, мультимер дает три субчастицы с молекулярной массой 12 000 каждая. В свою очередь, каждая субчастица расщепляется на две равные части с М = 6000. Все перечисленные модификации инсулина - протомер, дамер и гексамер - обладают полной гормональной активностью. Поэтому часто молекулу инсулина отождествляют с протомером, обладающим полной биологической активностью (М = 6000), тем более, что в физиологических условиях инсулин существуют в мономерной форме. Дальнейшее фрагментирование молекулы инсулина (с М = 6000) на цепь А (из 21 аминокислотного остатка) и цепь В (из 30 аминокислотных остатков) ведет к утрате гормональных свойств.

Инсулины, выделенные из поджелудочной железы различных животных, почти идентичны по первичной структуре. При недостаточном уровне биосинтеза инсулина в поджелудочной железе человека (в норме ежесуточно синтезируется 2 мг инсулина) развивается характерное заболевание - диабет, или сахарное мочеизнурение. При этом повышается содержание глюкозы в крови (гипергликемия) и растет выведение глюкозы с мочой (глюкозурия). Одновременно развивается различные вторичные явления - падает содержание гликогена в мышцах, замедляется биосинтез пептидов, белков и жиров, нарушается минеральный обмен и т.п.

Введение инсулина путем инъекции или per os (в рот) в виде препарата, инкапсулированного в липосомы, вызывает противоположный эффект: понижение содержания глюкозы в крови, повышение запасов гликогена в мышцах, усиление анаболических процессов, нормализацию минерального обмена и т.д. Все перечисленные выше явления представляют результат изменения под воздействием инсулина проницаемости для глюкозы клеточных мембран, на поверхности которых выявлены высоко - и низкоаффинные Ca 2+ - зависимые инсулиновые рецепторы. Повышая уровень проникновения глюкозы внутрь клетки и субклеточных частиц, инсулин усиливает возможности её использования в тех или иных тканях, будь то биосинтез из неё гликогена или дихотомический или апотомический её распад.

При взаимодействии инсулина с рецептором клеточной мембраны возбуждается активность протеинкиназного домена инсулинового рецептора, что сказывается на внутриклеточном метаболизе углеводов, липидов и белков. Для инсулина не типичен аденилатциклазный механизм действия.

Глюкагон

В поджелудочной железе, помимо инсулина, вырабатывается другой гормон, влияющий на обмен углеводов - глюкагон .

Это 29 - членный пептид, синтезирующийся в α-клетках островской части поджелудочной железы. Первое упоминание об этом гормоне восходит к 1923 г., когда И. Мурлин с сотрудниками обнаружил его присутствие в препаратах инсулина. В 1953 г.Ф. Штрауб получил глюкагон в виде гомогенного кристаллического препарата, а несколько позже была выяснена его первичная структура. Полный синтез глюкагона осуществлён в 1968 году (Э. Вюнш и сотрудники). По данным рентгеноструктурного анализа (Т. Бландел), молекула глюкагона преимущественно находится в α-спиральной конформации и склонна к образованию олигомеров.


Первичная структура глюкагонов человека и животных оказалась идентичной; исключение составляет только глюкагон индюка, у которого вместо аспарагина в положении 28 содержится серин. Особенностью структуры глюкагона является отсутствие дисульфидных связей и цистеина. Глюкагон образуется из своего предшественника проглюкагона, содержащего на С-конце полипептида дополнительный октапептид (8 остатков), отщепляемый в процессе постсинтетического протеолиза. Имеются данные, что у проглюкагона, так же как и у проинсулина, существует предшественник - препроглюкагон (мол. масса 9000), структура которого пока не расшифрована.

По биологическому действию глюкагон, как и адреналин, относятся к гипергликемическим факторам, вызывает увеличение концентрации глюкозы в крови главным образом за счёт распада гликогена в печени. Органами-мишенями для глюкагона является печень, миокард, жировая ткань, но не скелетные мышци. Биосинтез и секреция глюкагона контролируется главынм образом концентрацией глюкозы по принципу обратной связи. Таким же свойством обладают аминокислоты и свободные жирные кислоты. На секрецию глюкагона оказывает влияние также инсулин и инсулиноподобные факторы роста.

В механизме действия глюкагона первичным является связывание со специфическими рецепторами мембраны клеток, образовавшийся глюкагонрецепторный комплекс активирует аденилатциклазу и соответственно образование цАМФ. Последний, являясь универсальным эффектором внутриклеточных ферментов, активирует протеинкиназу, которая в свою очередь фосфорилирует киназу фосфорилазы и гликогенсинтазу. Фосфорилирование первого фермента способствует формированию активной гликогенфосфорилазы и соответственно распаду гликогена с образованием глюкозо-1-фосфата, в то время как фосфорилирование гликогенсинтазы сопровождается переходом её в неактивную форму и соответственно блокированием синтеза гликогена. Общим итогом действия глюкагона является ускорение распада гликогена и торможение его синтеза в печени, что приводит к увеличению концентрации глюкозы в крови.

Гипергликемический эффект глюкагона обусловлен, однако, не только распадом гликогена. Имеются бесспорные доказательства существования глюконеогенетического механизма гипергликемии, вызванной глюкагоном. Установлено, что глюкагон способствует образованию глюкозы из промежуточных продуктов обмена белков и жиров. Глюкагон стимулирует образование глюкозы из аминокислот путём индукции синтеза ферментов глюконеогенеза при участии цАМФ, в частности фосфоенолпируваткарбоксиназы - ключевого фермента этого процесса. Глюкагон в отличие от адреналина тормозит гликолитический распад глюкозы до молочной кислоты, способствуя тем самым гипергликемии. Он активирует опосредственно через цАМФ липазу тканей, оказывая мощный липолитический эффект. Существует и различия в физиологическом действии: в отличие от адреналина глюкагон не повышает кровяного давления и не увеличивает частоту сердечных сокращений. Следует отметить, что, помимо панкреатического глюкагона, в последнее время доказано существование кишечного глюкагона, синтезирующегося по всему пищеварительному тракту и поступающего в кровь. Первичная структура кишечного глюкагона пока точно не расшифрована, однако в его молекуле открыты идентичные N-концевому и среднему участкам панкреатического глюкагона аминокислотные последовательности, но разная С-концевая последовательность аминокислот.

Таким образом, панкреатические островки, синтезирующие два противоположного действия гормона - инсулин и глюкагон, выполняют ключевую роль в регуляции веществ на молекулярном уровне.

Гастрин

Гастрин продуцируется G-клетками, локализованными в слизистой антральной части желудка и в меньшем количестве - в слизистой двенадцатипёрстной кишке.

Существует три основных естественных формы гастрина: "большой гастрин", или гастрин-34 - полипептид из 34 аминокислот, "малый гастрин", или гастрин-17, состоящий из 17 аминокислот, и "минигастрин", или гастрин-14, состоящий из 14 аминокислот.

Он более гетерогенен по размерам молекул, чем какой-либо другой желудочно-кишечный гормон. Кроме того, каждая из форм гастрина существует в сульфированном и несульфированном виде (по единственному остатку тирозина). С-концовые 14 аминокислот в гастрине 34, гастрине 17 и гастрине 14 идентичны. Гастрин 34 присутствует в крови в большем количестве, чем гастрин 17. Вероятно, это объясняется тем, что период его полужизни в плазме (15 мин) в 5-7 раз превышает таковой для гастрина 17. Последний, по-видимому, выступает в роли главного стимулятора секреции кислоты желудком, которая регулируется по механизму отрицательной обратной связи, так как закисление содержимого антральной области желудка снижает секрецию гастрина. Гастрин также стимулирует секрецию желудка. За биологическую активность ответствен С-конец гормона, С-концевой пентапептид вызывает полный спектр физиологических эффектов гастрина 17, но в расчёте на единицу массы обладаю лишь 1/10 его биологической активности.

Вазопрессин и окцитоцин.

Оба гормона образуются в гипоталамусе, затем с аксоплазматическим током переносятся в нервные окончания задней доли гипофиза, из которых секретируются в кровоток при соответствующей стимуляции. Смысл такого механизма состоит, вероятно, в том, что он позволяет миновать гематоэнцефалический барьер. АДГ синтезируется преимущественно в супраоптическом ядре, окситоцин - в паравентрикулярном ядре. Каждый из них перемещается по аксону в связанной со специфическим белком-переносчиком (нейрофизином) форме. Нейрофизины I и II синтезируются вместе с окситоцином и АДГ соответственно как части одного белка (его иногда называют пропрессофизином), кодируемого единственным геном. Нейрофизины I и II представляют собой своеобразные белки с молекулярными массами соответственно 19 000 и 21 000. АДГ и окситоцин секретируются в кровоток по отдельности, каждый вместе со своим нейрофизином. В крови они не связаны с белком и имеют короткий период полужизни в плазме (2-4 мин).

Каждый нонапептид содержит молекулы цистеина в положениях 1 и 6, связанные дисульфидным мостиком. У большинства животных обнаруживается аргинин-вазопрессин, однако у свиней и родственных видов в положении 8 находится лизин. Поскольку АДГ и окситоцин очень близки по структуре, не удивительно, что они обладают некоторыми общими биологическими эффектами. Оба пептида метаболизируются в основном в печени, но и почетная эксрекция АДГ вносит существенный вклад в его исчезновение из крови.

Главными стимулами высвобождения окситоцина являются нервные импульсы, возникающие при раздражении грудных сосков. Растяжение влагалища и матки играет второстепенную роль. При многих воздействиях, вызывающих секрецию окситоцина, происходит высвобождение пролактина; предполагают, что фрагмент окситоцина может играть роль пролактин-рилизинг-фактора. Эстрогены стимулируют, а прогестерое ингибирует продукцию окситоцина и нейрофизина I.

Механизм действия окситоцина неизвестен. Он вызывает сокращение гладких мышц матки и поэтому используется в фармакологических дозах для стимуляции родовой деятельности у женщин. Интересно, что у беременных животных с повреждённой гипоталамо-гипофизарной системой вовсе не обязательно возникают нарушения родовой деятельности. Наиболее вероятная физиологическая функция окситоцина заключается в стимуляции сокращений миоэпителиальных клеток, окружающих альвеолы молочной железы. Это вызывает перемещение молока в систему альвеолярных протоков и приводит к его выбросу. Мембранные рецепторы для окситоцина найдены в тканях матки и молочной железы. Их количество возрастает под действием эстрогенов и снижается под влиянием прогестерона. Наступление лактации до родов можно, очевидно, объяснить одновременным повышением количества эстрогенов и падением уровня прогестерона непосредственно перед родами. Производные прогестерона часто используются для подавления послеродовой лактации у женщин. Окситоцин и нейрофизин I, по-видимому, образуются и в яичниках, где окситоцин может ингибировать стероидогенез.

Химические группы, существенные для действия окситоцина, включают первичную аминогруппу N-концевого цистеина, фенольную группу тирозина, 3 карбоксамидные группы аспарагина, глутамина и глицинамида, дисульфидную связь (S-S) связь. Путём удаления или замещения этих групп получены многочисленные аналоги окситоцина. Например, удаление свободной первичной аминогруппы концевого остатка полуцистеина (положение 1) приводит к образованию дезаминоокситоцина, антидиуретическая активность которого в 4-5 раз превышает активность природного окситоцина.

Нервные импульсы, вызывающие секрецию АДГ, являются результатом действия ряда различных стимулирующих факторов. Главный физиологический стимул - это повышение осмоляльности плазмы. Его эффект опосредуется осморецепторами, локализованными в гипоталамусе, и барорецепторами, находящимися в сердце и других отделах сосудистой системы. Гемодилюция (снижение осмоляльности) оказывает противоположное действие. К другим стимулам относятся эмоциональный и физический стресс и воздействие фармакологических агентов, в том числе ацетилхолина, никотина и морфина. В большинстве случаев усиление секреции сочетается с повышением синтеза АДГ и нейрофизина II, поскольку при этом не происходит истощения резервов гормона. Адреналин и агенты, вызывающие увеличение плазмы, подавляют секрецию АДГ; аналогичным эффектом обладает этанол.

Наиболее важные в физиологическом плане клетки-мишени для АДГ у млекопитающих - клетки дистальных извитых канальцев и собирательных трубочек почки. Эти протоки пересекают мозговое вещество почек, где градиент осмоляльности внеклеточных растворённых веществ в 4 раза выше, чем в плазме. Клетки этих протоков относительно непроницаемы для воды, так что в отсутствие АДГ моча не концентрируется и может выделяться в количествах, превышающих 20 л в сутки. АДГ увеличивает проницаемость клеток для воды и способствует поддержанию осмотического равновесия между мочой собирательных трубочек и гипертоническим содержимым интерстициального пространства, благодаря чему объём мочи сохраняется в пределах 0,5 - 1 л в сутки. На слизистых (мочевых) мембранах эпителиальных клеток этих структур присутствуют рецепторы АДГ, которые связаны с аденилатциклазой; считают, что действие АДГ на почечные канальцы опосредуется сАМР. Описанное физиологическое действие послужило осонованием для того, чтобы назвать гормон "антидиуретическим”. сАМР и ингибиторы фосфодиэстеразы имитируют эффекты АДГ. В условиях in vivo повышение уровня кальция в среде, омывающей слизистую поверхность канальцев, тормозит действие АДГ на перемещение воды (очевидно, путём ингибирования аденилатциклазы, поскольку эффект самого сАМР при этом не уменьшается). Описанный механизм может отчасти обусловливать повышенный диурез, характерный для больных с гиперкальциемией.

Нарушения секреции или действия АДГ приводят к несахарному диабету, который характеризуется выделением больших объёмов разбавленной мочи. Первичный несахарный диабет, связанный с дефицитом АДГ, обычно развивается при повреждении гипотоламо-гипофизарного тракта вследствие перелома основания черепа, опухоли или инфекции; однако он может иметь и наследственную природу. При наследственном нефрогенном несахарном диабете секреция АДГ остаётся нормальной, но клетки-мишени утрачивают способность реагировать на гормон, вероятно, из-за нарушения его рецепции. Этот наследственный дефект отличается от приобретенного нефрогенного несахарного диабета, который чаще всего возникает при терапевтическом введении лития больным с маниакально-депрессивным психозом. Синдром неадекватной секреции АДГ связан обычно с эктопическим образованием гормона различными опухолями (обычно опухолями лёгких), но может также наблюдаться и при болезнях мозга, легочных инфекций или гипотиреозе. Неадекватной такая секреция считается потому, что продукция АДГ происходит с нормальной или повышенной скоростью в условиях гипоосмоляльности, и это вызывает устойчивую и прогрессивную гипонатриемию с выделением гипертонической мочи.

Заключение

Гидрофильные гормоны и гормоноподобные вещества построены из аминокислот. как, например, белки и пептиды, или являются производными аминокислот. Они депонируются в больших количествах в клетках желез внутренней секреции и поступают в кровь по мере необходимости. Большинство этих веществ переносятся в кровотоке без участия переносчиков. Гидрофильные гормоны действуют на клетки-мишени за счет связывания с рецептором на плазматической мембране.

Гидрофильные гормоны играют большую роль в организме человека. Основной их функцией, как и всех гормонов, является поддержание баланса в организме (гомеостаза). Они играют ключевую роль в регуляции функций роста, развития, обмена веществ, реакций на изменение условий среды и многое другое.

Всё, на что мы реагируем - аллергии, воспаления, страх и прочее - является следствием работы гормонов.

Также любое действие, выполняемое внутренними органами человека, вызвано гормонами, которые являются своеобразными сигнальными веществами в организме.

Список литературы

1) Кольман Я., Рем К. - Г., Наглядная биохимия // Гормоны. Гормональная система. - 2000. - с.358-359, 368-375.

) Березов Т.Т., Коровкин Б.Ф., Биологическая химия // Номенклатура и классификация гормонов. - 1998. - с.250-251, 271-272.

) Филиппович Ю.Б., Основы биохимии // Гормоны и их роль в обмене веществ. - 1999. - с.451-453,455-456, 461-462.

) Овчинников Ю.А., Биоорганическая химия // Пептидные гормоны. - 1987. - с.274.

) Марри Р., Греннер Д., Биохимия человека // Биохимия внутри - и межклеточных коммуникаций человека. - 1993. - с.181-183, 219-224, 270.

) Науменко Е.В., Попова.П.К., Серотонин и мелатонин в регуляции эндокринной системы. - 1975. - с.4-5, 8-9, 32, 34, 36-37, 44, 46.

) Гребенщиков Ю.Б., Мошковский Ю.Ш., Биоорганическая химия // Физико-химические свойства, структура и функциональная активность инсулина. - 1986. - с.296.