Что такое сварка? Как быстро научиться варить сварочным инвертором




Путем нагрева и расплавления кромок соединяемых деталей. Если раньше ей подвергали только металлы, то сегодня таким методом соединяют и другие материалы, например, пластмассу.

Можно говорить о том, что сварное соединение - это то, которое было получено путем плавления или сварки давлением. Безусловно, есть огромное количество методов получения необходимого результата. К примеру, существует такой элемент, как электрическая дуга, именно с ее помощью и осуществляется сварка. Способы сварки есть самые различные, мы постараемся все их рассмотреть.

Немного истории. Классификация

Ковка металла - первый сварочный процесс. Необходимость в ремонте металлических изделий, а также создание более совершенных деталей стало предпосылкой к освоению сварочных процессов. Так, в 1800-1802 годах была открыта электрическая дуга. С ней делали различные эксперименты. В конце концов люди научились делать сварные соединения посредством электрической дуги. На территории России активно ведется подготовка квалифицированных сварщиков, постоянно разрабатываются новые технологии, принципиально иные подходы и т.п. Ярким примером отличной теоретической и практической базы является учебный институт имени Баумана.

В настоящее время существует порядка 150 методов, по которым осуществляется сварка. Способы сварки разделяются по физическим, техническим, а также технологическим признакам. Так, по физическим показателям можно выделить три большие группы:

  • Термический - это вид сварки, осуществляемой при использовании тепловой энергии. Сюда можно отнести газовую, дуговую, лазерную и др. сварку.
  • Термомеханический - вид сварки, подразумевающей использование не только тепловой энергии, но и давления. Это может быть контактное, диффузионное, кузнечное соединение и т.п.
  • Механический вид сварки . В таких случаях используется механическая энергия. Наиболее широко распространена холодная трением и др.

Каждый отдельно взятый вид отличается затратами энергии, экологичностью, а также оборудованием, которое используется во время работы.

Газопламенная сварка

В данном случае основным источником тепла выступает пламя, которое выделяется в результате сгорания топлива в смеси с кислородом. На сегодняшний день известно более десятка газов, которые могут быть использованы. Самые популярные - это ацетилен, МАФ, пропан и бутан. Выделяемое тепло плавит поверхности вместе с присадочным материалом.

Оператор регулирует характер пламени. Оно может быть окислительным, нейтральным или восстановительным, что зависит от количества кислорода и газа в смеси. В последние годы активно используется МАФ, который обеспечивает не только высокую скорость сварки, но и отличное качество шва. Но в это же время необходимо использовать более дорогостоящую проволоку с большим содержанием марганца и кремния. На сегодняшний день это самая актуальная смесь для газовой сварки, что обусловлено безопасностью и высокой температурой сгорания в кислороде (2430 градусов по Цельсию).

Многое зависит от состава металла, который планируется сваривать. Так, в зависимости от этого параметра выбирается количество присадочных прутков, а при учете толщины металла - их диаметр. При тщательной предварительной подготовке получается идеальная сварка.

Все способы сварки (газовой) имеют общую черту, которая заключается в плавном нагреве поверхности. Вот почему они подходят для работы со стальными листами в 0,5-5 мм, цветными металлами, а также с инструментальной сталью и чугуном.

Давайте более подробно рассмотрим некоторые способы газовой сварки. Их довольно много.

Левая, правая и сквозная сварка

При толщине листа не более 5 мм чаще всего используют левый вид газовой сварки. Соответственно, горелка перемещается справа налево, а присадочный прут находится впереди. Пламя направляется от шва и хорошо прогревает обрабатываемое место и присадочную проволоку. Техника изменяется в зависимости от толщины металла. Если лист меньше 8 мм, то горелка продвигается только вдоль шва. Если же больше 8 мм, то необходимо попутно выполнять колебательные движения в поперечном направлении для улучшения качества шва. Преимущество левого способа заключается в том, что оператор хорошо видит обрабатываемое место, и он может обеспечить равномерность.

Принципиальное отличие правой сварки в том, что она более экономична. Обусловлено это тем, что пламя горелки направлено не от шва, а к нему. Такой подход позволяет сварить металлы максимальной толщины, при этом угол раскрытия кромок небольшой. Горелка двигается слева направо, а за ней идет присадочный прут.

Конечно, если рассматривать способы газовой сварки, то обязательно стоит упомянуть о сварке сквозным валиком. Применяется она тогда, когда нужно получить вертикальное стыковое соединение. Суть заключается в том, что в нижней части стыка делается небольшое сквозное отверстие. При перемещении горелки верхняя часть отверстия плавится, а когда вводится присадка, заваривается нижняя часть. Когда толщина листа слишком большая, работа ведется с обеих сторон и выполняется двумя операторами.

Ванный способ сварки арматуры

Многие из нас знакомы с арматурой, которая активно используется в монолитно-каркасном строительстве. Ее применяют в блоках перекрытия, сваях и т.п. Давайте детально рассмотрим особенности такой сварки. Чаще всего она используется для горизонтальных стержней. Суть метода заключается в том, что в месте стыка заваривается стальная форма. Затем в ней создается ванна расплавленного металла за счет теплоты дуги. Получается так, что торцы свариваемой арматуры плавятся и образуют общую ванну. Соответственно, при остывании образуется полноценное соединение.

Но перед началом ванной сварки необходимо подготовить стержни. Делается это следующим образом: поверхности, а также торцы зачищаются, при этом удаляется любой вид загрязнения, например, ржавчина, окалина и грязь. Для этого подойдет щетка по металлу. Кстати, важно зачищать арматуру на длину 30 мм в месте сварки. Стержни устанавливаются соосно. При этом зазор не должен превышать полтора диаметра электрода (в месте торца).

Процесс протекает под большими токами. К примеру, при электроде в 6 мм сварочный агрегат работает при токе в 450 Ампер. Если речь идет о низких температурах, то ток увеличивают на 10-12%. Кроме того, работа может быть выполнена сразу несколькими электродами. Стоит обратить внимание на то, что данный метод позволяет снизить трудоемкость процесса, себестоимость изделия, а также расход электроэнергии. На сегодняшний день ванный способ сварки арматуры является самым популярным и надежным. Это обусловлено низким потреблением электроэнергии и высоким качеством соединения.

Сварка давлением (пластическая)

Данный вид сварки еще называется холодным. Обусловлено это тем, что во время выполнения соединения не происходит дополнительный нагрев обрабатываемой поверхности. Данный метод основан на пластической деформации металлов при сжатии или скольжении. Работы выполняются при нормальных или отрицательных температурах без диффузии. Данный метод считается одним из самых старых.

Для получения шва высокого качества используются специальные устройства, вызывающие деформацию обрабатываемых поверхностей, которые должны быть предварительно зачищены. В результате образуется монолитное и довольно прочное соединение. Существуют различные виды и способы сварки (пластической). В настоящее время их три: точечная, шовная и стыковая.

Холодной сваркой можно соединять такие материалы, как медь, свинец, алюминий, кадмий, железо и др. Наиболее предпочтительной пластическая сварка является тогда, когда необходимо выполнять работы с разнородными материалами, которые довольно чувствительны к нагреву.

Безусловно, нельзя не отметить, что основное и главное преимущество сварки давлением заключается в том, что не нужно подключать мощный источник электроэнергии для предварительного нагрева поверхности. Кроме того, шов, полученный таким образом, является не только прочным, но и однородным, а также устойчивым к коррозии. Тем не менее, есть и некоторые недостатки. Заключаются они в том, что работать можно только с металлами высокой пластичности. Если одни способы сварки труб могут быть применены, то другие - нет, и приходится использовать плавление. Это касается водопроводов и газовых магистралей.

Классификация способов сварки. Продолжение

Сам по себе процесс протекает следующим образом. Детали, которые необходимо соединить, устанавливают в непосредственной близости друг к другу. После этого подводится мощный источник тепла, который плавит соединяемые детали.

Расплавленный металл (без каких-либо дополнительных механических воздействий) добавляется в общую сварочную ванну. Когда источник тепла удаляют от места сварки, шов охлаждается, и наплавленный металл образует весьма прочное соединение. Основная проблема заключается в том, что источник тепла должен обладать высокой мощностью и температурой. К примеру, для работы со сталью, медью или чугуном необходимо устройство с температурой в 3 тысячи градусов по Цельсию. Если целенаправленно понизить этот показатель, то производительность сварки резко упадет, и процесс станет неэффективным.

Классификация способов сварки плавлением в зависимости от источника тепла существует следующая:

  • Дуговая сварка. В качестве источника тепла используется электрическая дуга, которая горит между электродом и свариваемой поверхностью.
  • Источник тепла - сжатая электрическая дуга. Через нее с большой скоростью (сверхзвуковой) продувается газ, который приобретает свойства плазмы.
  • Электрошлаковая - металл нагревается от расплавленного флюса, через который протекает электрический ток.
  • Электронно-лучевая сварка - нагрев осуществляется от кинематической энергии электронов. Они движутся в вакууме под воздействием электрического поля.
  • Лазерная сварка производится путем нагрева металла через оптический луч квантового генератора. При этом диапазон излучения может быть световым или инфракрасным.
  • Газовая сварка - плавление обрабатываемой поверхности за счет сгорания газово-кислородной смеси.

Дуговая сварка и ее виды

На сегодняшний день наиболее важной для многих отраслей промышленности является электрическая дуговая сварка. Если подсчитать количество действующих установок, занятость среди специалистов, а также число продукции, то такой способ получения высококачественных швов лидирует по всему миру. Давайте рассмотрим основные способы дуговой сварки. На сегодняшний день их несколько.

Наиболее распространенной является автоматическая сварка. Суть ее заключается в том, что некоторые движения оператора автоматизируются. Например, подача электрода и его перемещение вдоль шва осуществляются без участия человека (в отличие от полуавтоматического режима). Такой подход хорош тем, что качество шва и производительность несколько увеличиваются, а травмоопасность понижается. Зачастую используется защитный газ, который нужен для предотвращения азотирования и окисления сварного соединения во время выполнения работ.

Существует еще и ручная сварка, которая заключается в том, что плавящиеся кромки соприкасаются и возбуждают электрическую дугу (при неплавящемся электроде). После того как присадочный материал нагревается и плавится, получается ванна, которая впоследствии и создает шов. Стоит обратить ваше внимание на то, что способы сварки электродом при помощи электрической дуги классифицируются по нескольким техническим признакам. Например, по типу используемых газов (активные и инертные), по степени механизации (ручная, автоматическая и т.п.) и по другим признакам.

Более подробно о ручной дуговой сварке

Мы уже рассмотрели в общих чертах принцип получения сварного соединения в ручном режиме. Давайте разберемся в этом вопросе более подробно. На сегодняшний день существуют способы ручной дуговой сварки, каждый из которых уникален по-своему. Например, в процессе могут быть использованы различные электроды: плавящиеся и неплавящиеся. Если выбирается второй вид, то соединение шва осуществляется следующим образом: кромки прикладывают друг к другу, а графитовый или подносят к обрабатываемой поверхности и создают дугу. В результате образуется ванночка, которая через некоторое время затвердевает и образует сварной шов. Данный метод наиболее актуален для работы с цветными металлами и их сплавами, а также используется для наплавки.

Еще один способ заключается в использовании плавящегося электрода со специальной обмазкой. Такой метод можно назвать классическим, если вести речь о ручной сварке, так как он наиболее распространен и используется довольно давно. Единственное отличие от вышеописанного способа заключается в том, что электрод плавится вместе с поверхностью. В итоге получается общая ванночка, которая застывает после удаления дуги и образует высококачественный сварной шов. Выбор способа сварки зависит от конкретной ситуации, материала, его состава и много другого.

Несколько важных моментов

Мы рассмотрели основные способы сварки. Их условно разделяют на три большие группы: холодная, горячая и газовая. Однако стоит заметить, что иногда используются особые способы получения шва. Нужно это тогда, когда речь идет о химически активных металлах и их сплавах. Кстати, такие материалы все чаще используются в строительстве для возведения ответственных узлов. В таких случаях работы выполняются при низком содержании кислорода и азота в воздухе, а источник должен быть с высокой температурой. Ярким примером является плазменная, а также лучевая сварка. Во втором случае источник луча похож на кинескоп и имеет напряжение порядка 30-100 кВ.

Куда сложнее и интереснее с точки зрения получения качественного соединения плазменная сварка. С ее сутью мы уже немного разобрались. В процессе есть такие ключевые особенности, как проводимость электрического тока плазмой. Газ, образующий плазму, помимо основной своей задачи еще и защищает шов от окислительных процессов и азотирования. Можно с уверенностью говорить, что это достойный внимания метод, однако есть и некоторые ограничения. К примеру, источник питания должен иметь напряжение более 120 В, да и установка весьма дорогостоящая и сложная.

Заключение

Вот мы и разобрались с тем, что такое сварка. Способы сварки есть различные. В большинстве случаев перед оператором стоит задача получить не только качественный, но и прочный шов, который будет выдерживать механические воздействия в течение длительного времени. Для этого существуют различные способы сварки электродом, например, плавящимся или нет. Кроме того, технология может отличаться в зависимости от техники мастера. Кому-то удобно выполнять работу левой сваркой, кому-то - правой.

Даже элементарные способы сварки арматуры должны выполняться по инструкции. Согласитесь, будет не очень приятно, если перегородка завалится только потому, что сварщик схалтурил и решил немного сэкономить.

На сегодняшний день все большее распространение получают сложные и дорогостоящие виды получения соединения. Обусловлено это некоторыми факторами. Во-первых, технический прогресс приводит к тому, что далеко не всегда можно использовать кузнечную сварку из-за хрупкости конструкции. Во-вторых, стараются получить высокое качество шва, который не разрушался бы при длительных динамических и вибрационных нагрузках. Этого добиться несложно, особенно если учитывать, что удары и вибрация - самые главные враги сварного соединения. Но современная сварка (способы сварки) постоянно совершенствуется, разрабатываются всё новые подходы к укреплению и получению прочных и качественных стыков.

Дуговая сварка

Дуговая сварка - процесс, при котором теплота, необходимая для нагрева и плавления металла, получается за счёт электрической дуги , возникающей между свариваемым металлом и электродом. Под действием теплоты электрической дуги кромки свариваемых деталей и электродный металл расплавляются, образуя сварочную ванну , которая некоторое время находится в расплавленном состоянии. При затвердевании металла образуется сварное соединение . Энергия, необходимая для образования и поддержания электрической дуги , получается от специальных постоянного или переменного тока.

История электросварки

Классификация

Классификация дуговой сварки производится в зависимости от степени механизации процесса, рода тока и полярности, типа сварочной дуги, свойств сварочного электрода , вида защиты зоны сварки от атмосферного воздуха и др.

По степени механизации различают:

  • ручную дуговую сварку
  • полуавтоматическую дуговую сварку
  • автоматическую дуговую сварку

Отнесение процессов к тому или иному способу зависит от того, как выполняются зажигание и поддержание определённой длины дуги, манипуляция электродом для придания шву нужной формы, перемещение электрода по линии наложения шва и прекращения процесса сварки.

При ручной дуговой сварке указанные операции, необходимые для образования шва, выполняются человеком вручную без применения механизмов.

При полуавтоматической дуговой сварке плавящимся электродом механизируются операции по подаче электродной проволоки в сварочную зону, а остальные операции процесса сварки осуществляются вручную.

При автоматической дуговой сварке под флюсом механизируются операции по возбуждению дуги, поддержанию определённой длины дуги, перемещению дуги по линии наложения шва. Автоматическая сварка плавящимся электродом ведётся сварочной проволокой диаметром 1-6 мм; при этом режим сварки (ток, напряжение, скорость перемещения дуги и др.) более стабилен, что обеспечивает однородность качества шва по его длине, в то же время требуется большая точность в подготовке и сборке деталей под сварку.

По роду тока различают:

  • электрическая дуга , питаемые постоянным током прямой полярности (минус на электроде)
  • электрическая дуга , питаемая постоянным током обратной (плюс на электроде) полярности
  • электрическая дуга питаемая переменным током

По типу дуги различают

  • дугу прямого действия (зависимую дугу)
  • дугу косвенного действия (независимую дугу)

В первом случае дуга горит между электродом и основным металлом, который также является частью сварочной цепи, и для сварки используется теплота, выделяемая в столбе дуги и на электродах; во втором - дуга горит между двумя электродами.

Cм. также

Источники

  • Сайт, посвященный 150-летию Николая Гавриловича Славянова

Wikimedia Foundation . 2010 .

Смотреть что такое "Дуговая сварка" в других словарях:

    Современная энциклопедия

    дуговая сварка - Сварка плавлением, при которой нагрев осуществляется электрической дугой. [ГОСТ 2601 84] [ГОСТ Р ИСО 857 1 2009] [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики сварка, резка, пайка EN arc welding DE… … Справочник технического переводчика

    Дуговая сварка - (электродуговая сварка), сварка плавлением, при которой детали в месте соединения нагреваются электрической дугой. Дуговой разряд возбуждается в основном между свариваемым металлом и плавящимся или неплавящимся электродом (стержень, пластина или… … Иллюстрированный энциклопедический словарь

    - (электродуговая сварка) вид сварки, при которой кромки свариваемых металлических частей расплавляют дуговым разрядом между электродом и металлом в месте соединения … Большой Энциклопедический словарь

    ДУГОВАЯ СВАРКА - способ соединения металлических частей путём местного сплавления их кромок теплотой дугового разряда между электродом и металлом в месте соединения … Большая политехническая энциклопедия

    дуговая сварка - 2.6 дуговая сварка: Сварка плавлением, при которой необходимую температуру плавления получают посредством электрической дуги. Источник … Словарь-справочник терминов нормативно-технической документации

    дуговая сварка - сварка, при которой свариваемые поверхности нагреваются электрической дугой, которая плавит основной металл и стержень электрода (при металлическом электроде, образуя сварочную ванну, дающую при затвердевании сварной шов.… … Энциклопедический словарь по металлургии

    Электродуговая сварка, сварка плавлением, при к рой нагрев соединяемых деталей осуществляется электрической дугой. Дуговой разряд возбуждается между свариваемым (основным) металлом и электродом(дуга прямого действия); между двумя электродами без… … Большой энциклопедический политехнический словарь

    - (электродуговая сварка), вид сварки, при которой кромки свариваемых металлических частей расплавляют дуговым разрядом между электродом и металлом в месте соединения. * * * ДУГОВАЯ СВАРКА ДУГОВАЯ СВАРКА (электродуговая сварка), вид сварки, при… … Энциклопедический словарь

    Arc welding (AW) Дуговая сварка. Группа методов сварки, осуществляющих соединение металлов путем нагрева дугой с или без приложения давления и с или без использования присадочного металла. (

Ручная дуговая сварка (ММА) - это процесс дуговой сварки, при котором используется дуга, горящая между покрытым электродом и сварочной ванной. Покрытый электрод представляет собой металлический стержень, на который нанесено покрытие.

Дуга при этом способе сварки зажигается быстрым касанием торцом электрода поверхности основного металла, которая под воздействием тепла дуги расплавляется, образуя сварочную ванну. Под действием дуги также происходит плавление электродного стержня, металл которого переходит в сварочную ванну, образуя наплавленный металл сварного шва (при этом часть металла теряется в виде брызг). При расплавлении покрытия электрода образуются газы и шлак, которые защищают зону дуги и сварочную ванну от вредного воздействия окружающего воздуха. Более того, шлак, покрывающий наплавленный металл, обеспечивает его правильное формирование при кристаллизации. После каждого прохода шлак необходимо удалять. Некоторые марки электродов обеспечивают самоотделение шлаковой корки.

Дуговая сварка покрытыми электродами это типично ручной способ сварки. Электрод имеет ограниченную длину (обычно в пределах 350 … 450 мм), а это означает, что процесс сварки постоянно прерывается для его смены. Рабочее время используется не эффективно, так как время горения дуги не превышает 25 … 60% его объема, а производительность, соответственно, оказывается низкой. Остановки и возобновления сварки также повышают вероятность зарождения дефектов в сварном шве.

Покрытые электроды определенного размера и типа позволяют производить сварку на разных токах, но только в пределах определенного указанного изготовителем диапазона в зависимости от диаметра стержня, толщины и состава покрытия, а также положения сварки.

В процессе плавления покрытия электрода на его торце образуется воронка, которая способствует направлению потока образующегося газа в сторону сварочной ванны, который благоприятствует переносу капель расплавленного электродного металла в нее. Поток газа настолько велик, что способен переносить капли снизу вверх, обеспечивая тем самым возможность сварки в потолочном положении.

Применение

Тип и толщина основного металла. Дуговая сварка покрытыми электродами используется, в основном, применительно к нелегированным, низколегированным и высоколегированным сталям толщиной от 2 до 50 мм и выше, например, для сварки стальных конструкций, сосудов, работающих под давлением, судов и других изделий при единичном или мелкосерийном производстве. При крупносерийном производстве целесообразнее применять механизированные процессы, например, сварку МИГ/МАГ.

При сварке деталей толщиной менее 1,5 мм основной металл будет быстро проплавляться на всю толщину и "проваливаться" еще до образования сварочной ванны, которая должна была бы соединять кромки деталей. В этих условиях сварка покрытыми электродами возможна только при использовании специальных приспособлений.

Хотя для сварки покрытыми электродами нет предела по применимым толщинам основного металла, все же для толщин более 20 мм экономически выгоднее использовать более высокопроизводительные процессы, такие как МИГ/МАГ, FCAW и SAW. Таким образом, сварка ММА чаще всего применяется для толщин от 3 до 20 мм, за исключением случаев единичных швов сложной конфигурации, для которых применение автоматических процессов сварки может оказаться экономически не выгодным. В этом случае сварка MMA может применяться для толщин до 250 мм.

Положение сварки. Возможность сварки во всех пространственных положениях является одним из главных достоинств сварки ММА, которое может быть ограничено только в случае, если применяемый электрод не позволяет выполнять сварку в том или ином положении. Таким образом, это недостаток не процесса сварки, а применяемого электрода. Несмотря на то, что сварка ММА может выполняться во всех пространственных положениях, необходимо, по возможности, стремиться выполнять ее в нижнем положении, так как при этом допускается использование менее квалифицированных сварщиков, применение электродов больших диаметров и на большем токе и, соответственно, достигаются более высокие скорости наплавки. Сварка в вертикальном и потолочном положениях требует от сварщиков более высоких навыков и выполняется электродами меньших диаметров. Форма соединений, подлежащих сварке в вертикальном и потолочном положениях, также может отличаться от таковых для сварки в нижнем положении.

Требования к условиям на рабочем месте. Простота оборудования, используемого при сварке ММА, делает этот процесс "малочувствительным" к условиям на месте применения. Сварка может выполняться как внутри помещений, так и вне их, в цеху, на корабле, на мосту, на каркасе здания, на конструкциях нефтеперерабатывающего завода, на отдаленных трубопроводах или на других подобных объектах. При этом нет надобности в шлангах для подачи газа или воды. Сварочные кабели могут быть довольно большой длины, чтобы позволить удаляться от источника питания на значительные расстояния без существенного ухудшения выходных характеристик системы "источник питания + сварочные кабели", так как внешняя вольтамперная характеристика будет только становиться более и более крутопадающей при увеличении длины кабелей, что, как раз, и необходимо для сварки ММА (см. ). Однако, при этом будут увеличиваться и потери энергии из-за нагрева кабелей. В местах, где нет электричества, могут использоваться сварочные генераторы с приводом от двигателей внутреннего сгорания. Несмотря на все эти достоинства, процесс сварки ММА должен выполняться в условиях защиты от ветра, дождя и снега.

Род и полярность тока сварки. Процесс сварки ММА может выполняться как на переменном, так и на постоянном токе, что определяется только характеристиками применяемого электрода. Некоторые из электродов предназначены только для сварки на постоянном токе, в то время как другие, как на постоянном, так и на переменном токе. Род тока сварки и его полярность влияют на скорость расплавления всех типов покрытых электродов.

Сварочная дуга постоянного тока всегда более стабильна, чем дуга переменного тока. Это обусловлено тем, что при горении дуги постоянного тока не происходит смены полярности, как это имеет место при сварке на переменном токе. Большинство универсальных электродов, предназначенных для сварки, как на постоянном, так и на переменном токе, все же лучше себя ведут на постоянном токе.

При сварке на постоянном токе электроды показывают лучшие оперативные свойства на обратной полярности. И лишь некоторые из них разработаны для сварки на прямой полярности. Имеются электроды, позволяющие сварку на обеих полярностях.

Влияние полярности на характер горения электродов обусловлено тем, что дуга оказывает разное давление на катод и анод. В связи с тем, что позитивные ионы имеют значительно более высокую массу чем электроны, они при столкновении с катодом оказывают больший отталкивающий эффект, чем электроны, достигающие анод. Это обеспечивает более глубокое проплавление в случае, когда катод размещается на изделии (обратная полярность), в то время как прямая полярность обеспечивает более быстрое плавление электрода (см. и рисунок ниже).

В случае, когда глубина проплавления не имеет большого значения (например, при наплавке) представляется довольно соблазнительным повысить скорость расплавления электрода переходом на прямую полярность. Однако, когда электрод становится катодом, давление дуги отталкивает каплю в противоположную сторону от сварочной ванны, что может приводить к чрезмерному разбрызгиванию.

Электроды для постоянного тока (обычно это электроды с основным видом покрытия), обеспечивают хороший смачивающий эффект расплавленным металлом, наплавленный металл более высокого качества и равномерное формирования шва даже при низких значениях тока сварки. Последнее объясняет, почему они предпочтительны для сварки изделий малой толщины.

При сварке на постоянном токе магнитных металлов (железо и никель) может возникать такая проблема, как магнитное дутье. Иногда единственным путем избавиться от нее является переход на сварку переменным током.

Другое преимущество сварки на переменном токе связано с источником питания, сварочным трансформатором, который значительно менее сложен по сравнению со сварочными выпрямителями и, соответственно, более надежный и менее дорогой.

Качество сварного шва. При сварке ММА могут иметь место следующие дефекты сварного шва:

Пористость;
- шлаковые включения;
- непровары;
- подрезы;
- трещины.

Покрытые электроды

Необходимые технологические свойства электродов достигаются подбором материалов металлического стержня и покрытия, в состав которого вводятся стабилизирующие, шлакообразующие, легирующие и связующие вещества.

Основные функции электродного покрытия:

Улучшать стабильность дуги с помощью элементов с низким потенциалом ионизации.

Производить шлак. Расплавленные минеральные составляющие покрытия образуют тонкий слой шлака, обволакивающего каждую каплю расплавленного металла, а также сварочную ванну, защищая их от кислорода, азота и паров воды.

Образовывать защитный газ, который является продуктом горения органических составляющих покрытия, например, целлюлозы, или разложения карбонатов.

Выполнять раскисление, а иногда и легирование металла шва для улучшения его свойств. Тонкий слой шлака, обволакивающего каплю расплавленного электродного металла, способен передавать легирующие элементы в каплю.

В соответствии с национальными стандартами электроды классифицируются :

По назначению;
- по типам и маркам;
- по толщине покрытия;
- по видам покрытия;
- по допустимым пространственным положениям;
- по роду и полярности сварочного тока;
- по качеству электродов.

По назначению электроды подразделяются :

Для сварки углеродистых и низколегированных конструкционных сталей с временным сопротивлением разрыву до 600 МПа, условное обозначение У;
- для сварки легированных конструкционных сталей с временным сопротивлением разрыву свыше 600 МПа, условное обозначение Л;
- для сварки высокопрочных сталей с особыми свойствами, обозначение Т;
- для наплавки поверхностных слоев с особыми свойствами, обозначение Н.

Тип электрода определяет механические характеристики (временное сопротивление разрыву, относительное удлинение) или особые свойства (теплоустойчивость, износоустойчивость и др.) наплавленного металла, которые обеспечиваются данными электродами. Для сварки углеродистых и низколегированных конструкционных сталей стандартом предусмотрено 9 типов электродов (Э38, Э42, Э42А, Э46, Э46А, Э50, Э50А, Э55, Э60). В обозначение типов электродов этой группы входит буква Э и цифра, указывающая минимальное, гарантируемое временное сопротивление наплавленного металла электродами данного типа (кг/мм 2). Например, электроды типа Э46 (марки ОЗС-4, АНО-3, МР-1) должны обеспечить временное сопротивление разрыву не менее 461 МПа. Буква А означает, что электрод данного типа обеспечивает более высокие пластические свойства наплавленного металла и более высокую ударную вязкость.

Для сварки легированных конструкционных сталей повышенной и высокой прочности предусмотрено 5 типов электродов (Э70, Э85, Э100, Э125, Э150).

Для сварки легированных теплоустойчивых сталей предусмотрено 9 типов электродов: Э-09М, Э-09МХ, Э-09ХIМФ и др.

Для сварки высоколегированных сталей с особыми свойствами стандартом предусмотрено 49 типов электродов. Например: Э-12Х13, Э-07Х2ОН9 и др.

Для наплавки поверхностных слоев с особыми свойствами предусмотрено 44 типов электродов: Э-10Г2, Э-30Г2ХМ и др.

Буквы и цифры входящие в обозначение типов электродов для сварки и наплавки легированных теплоустойчивых и высоколегированных сталей показывают примерный химический состав наплавленного металла. Например: электроды марки ЦЛ-20, типа Э-09Х1МФ дают в наплавленном металле 0,09 % углерода, и 1 % хрома и некоторое количество молибдена и ванадия.

Марка электрода – это промышленное обозначение, которое присваивается разработчиком или изготовителем электродов. Поэтому каждому конкретному типу электродов может соответствовать несколько марок электродов. Например: к типу Э46 относятся электроды марок: АНО-3, АНО-6, МР-1, ОЗС-4 и др.

По толщине покрытия в зависимости от отношения диаметра электрода (D) к диаметру стального стержня (d) электроды подразделяются:

С тонким покрытием (D/d1,20), обозначение М;
- со средним покрытие (1,2 D/d 1,45) - С;
- с толстым покрытием (1,45 D/d 1,85) - Д;
- с особо толстым покрытием (1,80 D/d) - Г.

По видам покрытия электроды подразделяются следующим образом:

С кислым покрытием, обозначение А;
- с основным покрытием (Б);
- с органическим (целлюлозным) покрытием (Ц);
- с рутиловым покрытием (Р);
- покрытие с повышенным содержанием железного порошка (Ж);
- с прочими видами покрытия (П);
- с покрытием смешанного вида (соответствующие двойное обозначение).

За рубежом принято следующее обозначение видов электродного покрытия :

Целлюлозное или органическое (буквенное обозначение: C);
- кислое (A);
- рутиловое (R);
- основное (B);
- покрытие с повышенным содержанием железного порошка (RR);
- смешанное (например, AR).

Кислое покрытие (электроды марок ВЭТ-26, ЦМ-7 и др.). Основные компоненты - руды в виде окислов железа и марганца, которые при плавлении выделяют кислород, способный окислить металл сварочной ванны и легирующие примеси. Для ослабления действия кислорода в покрытие вводят раскислители в виде ферросплавов. Металл, наплавленный электродами с кислым покрытием, имеет относительно малую вязкость и пластичность. Электроды с кислым покрытием имеют повышенную токсичность по сравнению с другими покрытиями. Электроды с кислым покрытием применяют для сварки конструкции из малоуглеродистых сталей, металла малых и средних толщин.

Основное покрытие (электроды марок УОНИ-13/45, АНО-ТМ, ДСК-50, ЦУ-5 и др.). Основные составляющие - плавиковый шпат (CaF 2) и мрамор (СаСО 3). Электроды с основным покрытием обеспечивают получение сварных швов заданного химического состава с хорошими механическими и пластическими свойствами, обеспечивают незначительную склонность металла шва к образованию трещин. Однако эти электроды не допускают удлинений дуги, так как при этом может возникать пористость металла шва. Электроды с основным покрытием целесообразно использовать при сварке металла большой толщины, ответственных изделий из низколегированных и легированных сталей.

Рутиловое покрытие (электроды марок АНО-3, АНО-4, ОЗС-23, ОЗС-6С, АНТ-1к и др.). Такое покрытие имеет в своем составе преобладающее количество рутила (ТiО 2 – двуокись титана). Электроды с рутиловым покрытием обеспечивают получение плотного шва при наличии ржавчины на свариваемых кромках, отличаются незначительным разбрызгиванием, обеспечивают устойчивое горение дуги, как на постоянном, так и на переменном токе. Допускают существенные удлинения дуги без образования пористости сварного шва. Электроды с рутиловым покрытием пригодны для сварки во всех пространственных положениях. Рекомендуются для сварки в монтажных условиях.

Целлюлозное (органическое) покрытие (электроды марок ВСП-1, ВСЦ-1, ВСП-3 и др.). Такое покрытие содержит органические компоненты в качестве газообразующих и связывающих веществ (целлюлоза, органические смолы). Электроды с органическим покрытием удобны для сварки в любом пространственном положении, включая вертикальные швы способом сверху - вниз, но дают наплавленный металл пониженной пластичности из-за повышенного содержания водорода в наплавленном металле. Электроды с целлюлозным покрытием рекомендуется применять для сварки низкоуглеродистой стали малой толщины а также для сварки сверху - вниз.

Электроды с покрытием смешанного вида, такие как АНО-6(РА), АНО-29(РЦ), МР-6(РБ) и др., сочетают в себе свойства характерные для соответствующих покрытий.

По допустимым пространственным положениям сварки или наплавки электроды подразделяются на 4 вида:

Все положения, обозначение 1;
- все положения, кроме вертикального сверху - вниз, обозначение 2;
- нижнее, горизонтальное на вертикальной плоскости и вертикального снизу - вверх, обозначение 3;
- нижнее и нижнее в лодочку, обозначение 4.

По роду и полярности сварочного тока , а также по номинальному напряжению холостого хода источника питания, электроды подразделяются на 10 категорий:

Сварка только на постоянном токе обратной полярности, обозначение 0;
- сварка на переменном и постоянном токе любой полярности; напряжение холостого хода не менее 50, 70 и 80 В, обозначение соответственно 1;4;7;
- сварка на переменном токе или постоянной прямой полярности, при напряжении холостого хода не менее 50, 70 и 90 В, обозначение соответственно 2;5;8;
- сварка на переменном токе или постоянном токе обратной полярности, при напряжении холостого хода не менее 50,70 и 90 В обозначение соответственно 3;6;9.

По качеству , т.е. по состоянию поверхности покрытия электрода, механических свойств металла шва, выполненного данными электродами и по содержанию серы и фосфора в наплавленном металле, электроды делятся на группы 1, 2 и 3. Электроды 1-й группы обеспечивают более высокие свойства шва.

Диаметры электродов выпускаемых промышленностью: 1,6; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0; 8,0; 10,0; 12,0 мм. В основном применяются электроды диаметром от 3,0 до 5,0 мм. диаметр электрода определяется диаметром металлического стержня.

Длина электродов зависит от их диаметра и степени легирования металлического стержня.

Для того чтобы использовать электроды в соответствии с их назначением, необходимо знать предусмотренную Стандартом структурную схему обозначений. В технической документации (чертежах, технологических картах и др.) условное обозначение электродов состоит из обозначения марки, диаметра, группы качества.

Например: электроды УОНИ - 13/45-3.0-2.

Условное обозначение электродов, которое указывается на этикетке упаковочной тары, представляет собой группу индексов, разделенных горизонтальной линией и включающих следующие данные:

Над линией: тип электрода, марка, диаметр, назначение, толщина покрытия, группа по качеству изготовления;
- под линией: характеристика металла шва, вид покрытия, допускаемое пространственное положение сварки, индекс рода тока и полярности;
- справа номера ГОСТов, регламентирующих требования к рассматриваемому типу электродов.

Классификация электродов для сварки углеродистых и низколегированных конструкционных сталей

Пример условного обозначения электродов, которое указывается на этикетке упаковочной тары (электроды марки электродов УОНИ-13/45):

Как правильно выбирать покрытые электроды

В первую очередь, при выборе покрытых электродов необходимо проверить будет ли металл шва соответствовать требованиям по механическим свойствам: прочности на растяжение, относительному удлинению и ударной прочности. Применительно к электродами для нелегированных сталей механические свойства могут быть определены по маркировке.

Сварочно-технологические свойства. Сварочно-технологические свойства электродов определяются, в первую очередь, видом его покрытия. Две последние цифры в обозначении электрода дают информацию о стабильности процесса в различных положениях сварки, а также о роде и полярности тока. Электродами рутилового типа выполнять сварку, как правило, легче и поэтому они применяются чаще других типов. Однако этот электродов, также как и электроды с кислым видом покрытия характеризуются достаточно высоким содержанием водорода в металле шва. Электродами с основным видом покрытия выполнять сварку значительно сложнее, так как ими трудно зажигать дугу и, к тому же, ее необходимо поддерживать очень короткой. Однако эти электроды обеспечивают прекрасные механические свойства металла шва.

Легирование металла шва. При сварке легированных сталей выбор электрода, как правило, зависит от требуемого химического состава металла шва. Обычно стремятся, чтобы металл шва имел тот же химический состав, что и основной металл. При сварке разнородных металлов легирование электрода обычно должно соответствовать менее легированному металлу. Однако, при сварке нелегированной и нержавеющей стали предпочтение должно отдаваться высоколегированным электродам с тем, чтобы снизить склонность к закаливанию металла шва, представляющего собой смесь обоих указанных сталей.

Экономические факторы. При выборе покрытых электродов немаловажным фактором является его скорость наплавки, измеряемая в кг/час. Высокопроизводительные электроды, как правило, более предпочтительные в этом отношении, однако их применение ограничено сваркой в нижнем и, иногда, в горизонтальном положениях. Оценить указанное свойство электродов можно по каталогам, которые предоставляются предприятиями изготовителями. При этом, естественно, необходимо обращать внимание на стоимость электродов от разных производителей.

При сварке покрытыми электродами сварщик должен стремиться использовать электрод полностью, оставляя огарок длиной не более 50 мм. К сожалению, плохой привычкой некоторых сварщиков является выбрасывание всего лишь наполовину использованного электрода, что приводит к неоправданно высокому их потреблению и частым остановкам при выполнении сварки.

Достоинства и недостатки процесса сварки ММА

Сварка ММА, без сомнения, наиболее распространенный процесс сварки, особенно, когда требуется выполнять короткие швы, обслуживание или ремонт, а также при выполнении монтажных работ. По сравнению с другими способами сварки (сварка в защитных газах плавящимся электродом – МИГ/МАГ, сварка ТИГ, сварка под флюсом) сварка ММА характеризуется следующими преимуществами:

Оборудование для ММА простое, недорогое и может быть переносным;не требуется
- дополнительной газовой или флюсовой защиты, так как и то и другое получается из покрытия;
- обеспечивается более надежная защита области сварки от воздействия ветра и сквозняков, по сравнению со сваркой МИГ/МАГ;
- этот способ сварки можно использовать в местах с ограниченным доступом;
- сварка ММА пригодна для сварки большинства черных и цветных металлов и сплавов (углеродистых, легированных и нержавеющих сталей, чугуна, химически разнородных металлов, а также меди, никеля, алюминия и их сплавов) практически любой толщины;
- сварка может выполняться в любом пространственном положении, что благоприятствует применению этого процесса сварки для соединений, которые не могут быть размещены в нижнем положении.

К недостаткам этого способа сварки можно отнести:

Перерывы в работе, связанные с заменой электрода. Как только остаточная длина электрода достигает длины примерно 50 мм, сварщик должен остановить процесс сварки и вставить в держатель вместо огарка новый электрод;
- необходимость удалять шлак после выполнения шва, а также в местах замков шва или перед следующим проходом;
- первые два фактора не позволяют повысить коэффициент использования рабочего времени выше 25%, что значительно ниже по сравнению с процессами сварки, использующими электродную проволоку (например, МИГ/МАГ или сварка порошковой проволокой FCAW);
- из-за наличия огарков и вследствие возможного разрушения покрытия имеет место большие потери электродов. В целом использует не более 65% электрода;
- этот способ не может быть применен для сварки металлов с низкой температурой плавления, таким как свинец, олово и цинк, а также их сплавам, так как не обеспечивает низкого тепловложения, требуемого в данном случае;
- этот способ не подходит для сварки таких химически активных металлов, как титан, цирконий и тантал, так не обеспечивается требуемой защиты металла шва и околошовной зоны от окисления кислородом;
- в связи с тем, что сварочный ток проходит постоянно по всей длине электрода это ограничивает максимально допустимый ток из-за опасности перегрева электрода и разрушения покрытия с последующим ухудшением стабильности процесса сварки и газовой защиты. В связи с этим, скорость наплавки при сварке ММА, как правило, ниже, чем при сварке МИГ/МАГ или FCAW.

После разработки этого процесса сварки его применение постоянно росло и достигло максимума в 1960 – 1970 годах. Затем сварка ММА начала терять свою популярность в пользу более высокопроизводительных процессов, таких как МИГ/МАГ или FCAW. Тенденции развития сварочной техники свидетельствуют о том, что объем использования ручной дуговой сварки покрытыми электродами будет сокращаться и в дальнейшем, однако она еще долгое время не потеряет своего значения.

В наше время, когда очень часто необходимо получить неразъемные соединения, применяется сварка. Что такое сварка? Однозначно ответить на этот вопрос достаточно сложно.

Сварка используется для ремонта сложного промышленного оборудования, теплотрасс, а также нередко применяется для бытовых нужд.

Неразъемные соединения самых разных конструкций, когда применяется общий нагрев, называются сваркой. Деталь получает пластическую деформацию благодаря возникновению межатомных связей. Варить можно:

  • металлические детали;
  • керамику;
  • стекло;
  • пластмассу.

Сегодня известно несколько видов сварки, когда происходит плавление металла:

  • дуговая;
  • электрошлаковая;
  • электронно-лучевая;
  • плазменная;
  • лазерная;
  • газовая.

Сварка плавлением, когда происходит нагрев заготовок и их деформация, подразделяются на контактную, высокочастотную и газопрессовую. Кроме того, сварка плавлением имеет качественные результаты работы.

При деформации без нагрева применяется:

  • холодная сварка;
  • взрыв;
  • диффузионное соединение с использованием вакуума.

Источник питания влияет на сварочный процесс. Он может быть:

  • дуговым;
  • газовым;
  • электронно-лучевым.

Применение защитных материалов требует использования других методов сварки:

  • с использованием флюса;
  • в зоне защитного газа;
  • в вакууме.

В зависимости от примененной механизации сварка бывает:

  • ручной;
  • полуавтоматической;
  • автоматической.

Рассмотрим основные виды сварки плавлением.

Ручная технология

В настоящее время ЭДС стала основой при выполнении . Теория сварки в первую очередь изучает ЭДС. Источником тепла становится электрическая дуга, образованная двумя электродами, причем один из них — свариваемая деталь. Электрической дуге можно дать определение как сильнейшему разряду, произошедшему в газовой зоне.

Для того чтобы произошло зажигание дуги, необходимо наличие нескольких критериев:

  • короткое замыкание, когда электрод касается заготовки;
  • быстрый отвод электрода;
  • появление устойчивого горения.

Короткое замыкание требуется для разогрева электрода. Он должен достичь температуры, когда возникает эмиссия электронов.

Образовавшиеся электроны получают сильнейшее ускорение, появляется ионизация газового зазора между анодом и катодом. В результате дуговой разряд получает устойчивое горение.

Электрическая дуга — это мощный источник тепла, достигающий температуры 6000°. В это время максимальное значение сварочного тока равно 3 кА. Напряжение дуги во время работы может достигать 50 В.

Чаще всего используется ЭДС с покрытыми электродами. Ручная сварка, когда применяются такие электроды, предназначена для:

  • газовой защиты жидкого металла от попадания окружающего воздуха;
  • легирования.

Вернуться к оглавлению

Сварка с использованием флюса

Широкое применение нашла , когда используется плавящийся электрод, а операция происходит под слоем специального флюса.

Его насыпают на деталь, толщина слоя при этом достигает 50 мм. Таким образом предотвращается горение дуги в воздушном пространстве. Образуется газовый пузырь, который находится под жидким флюсом, где происходит горение дуги, полностью изолированной от прямого контакта с кислородом.

Когда выполняется автоматическая сварка, не происходит разбрызгивания раскаленного металла, не нарушается форма шва, причем даже при подаче большого тока. Когда варятся детали с применением флюса, регулируется сила тока, устанавливается максимальный ток 1200 А. Когда варятся детали открытой дугой, достичь такого значения невозможно.

Сварка с флюсом позволяет увеличить сварочный ток. Причем сохраняется отличное качество шва, наблюдается высокая производительность. Для такой сварки необходимо иметь чистую электродную проволоку, подачу которой производит сварочная головка. Она медленно вращается, а проволока в это время двигается вдоль шва.

В сварочную головку по специальной трубке непосредственно в район шва подается зернистый флюс. Он плавится и равномерно закрывает шов. Получается твердая шлаковая корочка.

Основные отличия автоматической сварки, использующей флюс, от дуговой ручной:

  • отличное качество шва;
  • повышенная производительность;
  • величина слоя флюса;
  • мощность тока;
  • автоматическая выдержка нужной длины дуги.

Вернуться к оглавлению

Сварка с применением шлака

Этот вид электрошлаковой методики считается абсолютно новой технологией соединения металлов. Он был изобретен и полностью разработан учеными института имени Патона.

При работе все заготовки закрываются шлаком, температура нагрева которого выше температуры плавления заготовки, а также электродной проволоки.

Сначала процесс повторяет операции аналогично использованию флюса. Когда образуется жидкий шлак, полностью гасится дуга. Края изделия начинают оплавляться благодаря теплу, которое выделяется, когда ток пропускается через расплав. Этим видом можно сваривать заготовки большой толщины, причем вполне достаточно одного прохода.

Вариант отличается высокой производительностью и отличным качеством шва.

Вернуться к оглавлению

Индукционная сварка

Этот вид сварки считается новым способом, который стал применяться несколько лет назад. Обычно таким методом варятся продольные швы, когда изготавливаются трубы при непрерывной подаче. Этот метод применяется для:

  • наплавки твердых сплавов;
  • изготовления режущего инструмента.

Металл в этом случае начинает нагреваться за счет использования тока высокой частоты и сильного сдавливания. Индукционная сварка совершается бесконтактно. Локализация токов высокой частоты происходит рядом с поверхностью нагреваемых деталей.

Работа этих установок совершается в следующем порядке. Ток от высокочастотного генератора передается индуктору. В заготовке начинают появляться вихревые токи, происходит сильный нагрев трубы.

Такие станы предназначены для сварки труб, максимальный диаметр которых достигает 60 мм. Скорость обработки равна 50 м/мин. Ламповый генератор мощностью 260 кВт обеспечивает питание. Используется частота 880 кГц.

Можно варить трубы и очень больших диаметров, толщина стенки которых превышает 7 мм. Максимальный диаметр трубы 426 мм, скорость сварки — 30 м/мин.

Сварка, проще говоря – соединение материалов путем их сплавления . Этот процесс происходит под действием высокой температуры. При этом происходит расплавление краев свариваемых деталей и вдобавок – дополнительно вводимого в зону сварки такого же материала. В результате получается аккуратный, практически монолитный сварочный шов, который надежно скрепляет эти детали. В основном сварку применяют для соединения металлов, хотя иногда используют и при работе с пластмассами. Мы будем рассматривать сварку металлов, как наиболее распространенную – этой технологией многие пользуются дома.

Чтобы расплавить края деталей, нужна очень высокая температура. Она получается при помощи так называемой сварочной дуги. Это тот самый огненно – яркий поток плазмы, который все видели, когда сварщик «чиркает» сварочным электродом по металлу, а потом отводит его на некоторое расстояние. Дело в том, что к самой детали подведен один из электродов сварочного аппарата, а в руке сварщик держит другой. При касании под действием тока большой силы и возбуждается сварочная дуга. Ток имеет такую большую силу – сотни Ампер, что даже отведя электрод на несколько сантиметров, сварочная дуга не гаснет. Этот процесс называется «возбуждением сварочной дуги». Здесь важную роль имеет мастерство сварщика.

Дальше идет сам процесс сварки. Медленно ведя электродом над краями деталей, сварщик вызывает их расплавление высокой температурой – несколько тысяч градусов. При этом расплавляется и кончик электрода в руке сварщика. Расплавленный металл, смешиваясь, образует так называемую «сварочную ванну», которая, застывая, и образует сварочный шов. После этого на правильно выполненном шве образуется шлаковая корка и не должно быть прожогов металла и так называемых «кратеров». «Кратеры» - это дефект сварки. Они образуются при резком прерывании сварки и представляют собой углубление в металле – напоминает лунный кратер. Это слабое место и опытный сварщик никогда не оставляет таких дефектов.

Сварочный электрод – не просто проволока. Внутри это проволока, которая может быть из разных металлов и сплавов. Она покрыта специальным покрытием. Расплавляясь, оно образует газовую защиту «сварочной ванны» от кислорода, специальные легирующие добавки улучшают свойства металла, кроме того образуется шлаковая корка на шве. Эта корка – не дефект. Она защищает быстро остывающий металл от действия кислорода, не давая ему окисляться, и атмосферного азота, который ухудшает свойства металла. Кроме того, охлаждение происходит не так быстро. Как видим – каждая мелочь имеет свое большое значение.

Основное устройство в процессе сварки – сварочный аппарат. Его назначение – из обычного напряжения в 220 вольт получить ток низкого напряжения, но очень большой силы. Сейчас это уже не примитивные трансформаторы. Современный сварочный аппарат называется «сварочный инвертор». Именно такие устройства можно увидеть в магазине, а кое у кого они есть и дома.

Это устройство имеет довольно скромные размеры, благодаря особой схеме преобразования тока. На входе обычное сетевое напряжение с частотой 50 Гц превращается в высокочастотное, с частотой в сотни килогерц. Затем при помощи трансформатора происходит преобразование тока и напряжения. Секрет здесь в том, что высокочастотные трансформаторы гораздо компактнее, чем низкочастотные. Затем ток переменный превращается в постоянный и подается на электроды. Это очень упрощенная схема, конечно. На самом деле все гораздо сложнее.

Все преобразования тока в сварочном инверторе контролируются процессором. Это позволяет не только точно соблюдать техпроцесс, но и легко менять режимы для разных металлов и сплавов. Даже можно запрограммировать нужный режим! Кроме того, имеются некоторые автоматические режимы, которые позволяют даже новичку выполнять сварку легко и качественно.

Конечно, это не единственный вид сварки, просто самый распространенный. Есть еще плазменная и лазерная сварка, аргонно – дуговая и газовая и много других разновидностей. Но в основном они применяются в промышленности.