Висмут — металл с широким спектром применения. Висмут элемент. Свойства висмута. Применение висмута




Висмут (лат. Bismuthum), Bi, химический элемент V группы периодической системы Менделеева; атомный номер 83, атомная масса 208,980; серебристо-серый металл с розоватым оттенком. Природный Висмут состоит из одного стабильного изотопа 209 Bi.

Висмут был известен в 15-16 веках, но долгое время его считали разновидностью олова, свинца или сурьмы. За самостоятельный металл Висмут был признан в середине 18 века. Французский химик А. Лавуазье включил его в список простых тел. Происхождение названия "Висмут" не установлено.

Содержание Висмута в земной коре 2·10 -5 % по массе. Висмут встречается в природе в виде многочисленных минералов, из которых главнейшие - висмутовый блеск Вi 2 S 3 , висмут самородный Bi, бисмит Bi 2 O 3 и другие. В большем количестве, но в малых концентрациях Висмут встречается как изоморфная примесь в свинцово-цинковых, медных, модибденово-кобальтовых и олово-вольфрамовых рудах. Около 90% мирового потребления покрывается попутной добычей Висмута при переработке полиметаллических руд.

Физические свойства Висмута. Висмут имеет ромбоэдрическую решетку с периодом а=4,7457 Å и углом а = 57°14"13". Плотность 9,80 г/см 3 ; t пл 271,3 °С; t кип 1560 °С. Удельная теплоемкость (20 °С) 123,5 Дж/(кг·К) ; термический коэффициент линейного расширения при комнатной температуре 13,3·10 -6 ; удельная теплопроводность (20 °С) 8,37 вт/(м·К) ; удельное электрическое сопротивление (20° С) 106,8·10 -8 ом·м (106,8·10 -6 ом·см). Висмут - самый диамагнитный металл. Удельная магнитная восприимчивость равна -1,35·10 -6 . Под влиянием магнитного поля электросопротивление Висмута увеличивается в большей степени, чем у других металлов, что используется для измерения индукции сильных магнитных полей. Сечение захвата тепловых нейтронов у Висмута мало (34·10 -31 м 2 или 0,034 барна). При комнатной температуре Висмут хрупок, легко раскалывается по плоскостям спайности, в фарфоровой ступке растирается в порошок. При температуре 120-150°С ковок; горячим прессованием (при 240-250°С) из него можно изготовить проволоку диаметром до 0,1 мм, а также пластинки толщиной 0,2-0,3 мм. Твердость по Бринеллю 93 Мн/м 2 (9,3 кгс/мм 2), по Моосу 2,5. При плавлении Висмут уменьшается в объеме на 3,27%.

Химические свойства Висмута. Висмут в сухом воздухе устойчив, во влажном наблюдается его поверхностное окисление. При нагревании выше 1000° С сгорает голубоватым пламенем с образованием оксида Bi 2 O 3 . В ряду напряжений Висмут стоит между водородом и медью, поэтому в разбавленной серной и соляной кислотах не растворяется; растворение в концентрированных серной и азотной кислотах идет с выделением SO 2 и соответствующих оксидов азота.

Висмут проявляет валентность 2, 3 и 5. Соединения Висмута низших валентностей имеют основной характер, высших - кислотный. Из кислородных соединений Висмута наибольшее значение имеет оксид Bi 2 O 3 , при нагревании меняющий свой желтый цвет на красно-коричневый. Bi 2 O 3 применяют для получения висмутовых солей. В разбавленных растворах висмутовые соли гидролизуются. Хлорид BiCl 3 гидролизуется с выпадением хлороксида BiOCl, нитрат Bi(NO 3) 3 - с выпадением основной соли BiONО 3 ·BiOOH. Способность солей Висмут гидролизоваться используется для его очистки. Соединения 5-валентного Висмута получаются с трудом; они являются сильными окислителями. Соль КВiO 3 (соответствующая ангидриду Bi 2 O 5) образуется в виде буро-красного осадка на платиновом аноде при электролизе кипящего раствора смеси КОН, КСl и взвеси Bi 2 O 3 . Висмут легко соединяется с галогенами и серой. При действии кислот на сплав Висмута с магнием образуется висмутин (висмутистый водород) BiH 3 ; в отличие от арсина AsH 3 , висмутин - соединение неустойчивое и в чистом виде (без избытка водорода) не получено. С некоторыми металлами (свинцом, кадмием, оловом) Висмут образует легкоплавкие эвтектики; с натрием, калием, магнием и кальцием - интерметаллические соединения с температурой плавления, значительно превышающей температуры плавления исходных компонентов. С расплавами алюминия, хрома и железа Висмут не взаимодействует.

Получение Висмута. Основное количество Висмута добывается попутно при огневом рафинировании чернового свинца (веркблея). Пирометаллургический способ основан на способности Висмута образовывать тугоплавкие интерметаллические соединения с К, Na, Mg и Са. В расплавленный свинец добавляют указанные металлы и образовавшиеся твердые соединения их с Висмутом (дроссы) отделяют от расплава. Значительное количество Висмута извлекают из шламов электролитического рафинирования свинца в кремнефтористоводородном растворе, а также из пылей и шламов медного производства. Содержащие Висмут дроссы и шламы сплавляют под щелочными шлаками. Полученный черновой металл содержит примеси As, Sb, Cu, Pb, Zn, Se, Те, Ag и некоторых других элементов. Выплавка Висмута из собственных руд производится в небольшом масштабе. Сульфидные руды перерабатывают осадительной плавкой с железным скрапом. Из окисленных руд Висмут восстанавливают углем под слоем легкоплавкого флюса.

Для грубой очистки чернового Висмут применяются в зависимости от состава примесей различные методы: зейгерование, окислительное рафинирование под щелочными флюсами, сплавление с серой и другими. Наиболее трудноотделяемая примесь свинца удаляется (до 0,01%) продуванием через расплавленный металл хлора. Товарный Висмут содержит 99,9-99,98% основного металла. Висмут высокой чистоты получают зонной перекристаллизацией в кварцевых лодочках в атмосфере инертного газа.

Применение Висмута. Значительное количество Висмута идет для приготовления легкоплавких сплавов, содержащих свинец, олово, кадмий, которые применяют в зубоврачебном протезировании, для изготовления клише с деревянных матриц, в качестве выплавляемых пробок в автоматических противопожарных устройствах, при напайке колпаков на бронебойные снаряды и т. д. Расплавленный Висмут может служить теплоносителем в ядерных реакторах.

Быстро увеличивается потребление Висмута в соединениях с Те для термоэлектрогенераторов. Эти соединения из-за благоприятного сочетания величин теплопроводности, электропроводности и термоэлектродвижущей силы позволяют преобразовывать тепловую энергию в электрическую с большим кпд (~7%). Добавка Висмута к нержавеющим сталям улучшает их обрабатываемость резанием.

Соединения Висмут применяются в стекловарении (увеличивают коэффициент преломления) и керамике (дают легкоплавкие эмали). Растворимые соли Висмута ядовиты, по характеру воздействия аналогичны ртути.

Среди элементов периодической системы висмут – последний практически не радиоактивный элемент. И он же открывает шеренгу тяжелых элементов – естественных альфа-излучателей. Действительно, тот висмут, который мы знаем по химическим соединениям, минералам и сплавам, принято (и не без оснований) считать стабильным, а между тем, тонкими экспериментами установлено, что стабильность висмута – кажущаяся. В действительности же ядра его атомов иногда «гибнут», правда, очень нечасто: период полураспада основного природного изотопа висмута 209 Bi – более 2·10 18 лет. Это примерно в полмиллиарда раз больше возраста нашей планеты...

Кроме висмута-209, известны еще 19 изотопов элемента №83. Все они радиоактивны и короткоживущи: периоды полураспада не превышают нескольких суток.

Тринадцать изотопов висмута с массовыми числами от 197 до 208 и самый тяжелый 215 Bi получены искусственным путем, остальные – 210 Bi, 211 Bi, 212 Bi, 213 Bi и 214 Bi – образуются в природе в результате радиоактивного распада ядер урана, тория, актиния и нептуния.

Таким образом, несмотря на то что на практике мы встречаем лишь практически стабильный висмут-209, не следует забывать о важной роли элемента №83 во всех областях знания, так или иначе связанных с радиоактивностью. Не будем, однако, впадать в другую крайность. Практическую важность приобрел прежде всего стабильный (или правильнее – псевдостабильный) висмут. Поэтому именно ему быть главным «героем» дальнейшего повествования.

Почему «висмут»

Очень долго висмут не давался в руки. Впрочем, в руках-то его, несомненно, держали еще в древности, и неоднократно. Только тогда не понимали, что красивые белые самородки с чуть красноватым оттенком – это по сути дела элементарный висмут.

Долгое время этот металл считался разновидностью сурьмы, свинца или олова. Первые сведения о металлическом висмуте, его добыче и переработке встречаются в трудах крупнейшего металлурга и минералога средневековья Георгия Агриколы, датированных 1529 г. Представление же о висмуте как о самостоятельном химическом элементе сложилось только в XVIII в.

Происхождение названия этого элемента трактуют по-разному. Одни исследователи склонны считать его производным от древнегерманского слова «Wismuth» (белый металл), другие – от немецких слов «Wiese» (луг) и «muten» (разрабатывать рудник), поскольку в Саксонии, висмут издревле добывали на лугах округа Шнееберг.

Есть еще одна версия, согласно которой название элемента произошло от арабского «би исмид», что означает «обладатель свойств сурьмы». Висмут действительно на нее очень похож.

Какая из этих точек зрения наиболее близка к истине, сказать трудно... Нынешний символ элемента №83, Bi, впервые введен в химическую номенклатуру в 1819 г. шведским химиком Берцелиусом.

Висмут – среди металлов

В отличие от сурьмы, в висмуте металлические свойства явно преобладают над неметаллическими. Висмут одновременно хрупок и довольно мягок, тяжел (плотность 9,8 г/см 3), легкоплавок (температура плавления 271°C). Ему свойствен сильный металлический блеск и белый розоватого оттенка цвет. Среди прочих металлов висмут выделяют малая теплопроводность (хуже него тепло проводит только ртуть) и, если можно так выразиться, предельная диамагнитность. Если между полюсами обычного магнита поместить стержень из висмута, то он, отталкиваясь от обоих полюсов, расположится как раз посередине. Для кристаллов висмута характерно сложное двойниковое строение, которое можно увидеть только под микроскопом.

У висмута есть еще одно редкое свойство: затвердевая, он значительно расширяется в объеме (на 3,32% при 271°C). Этим свойством пользуются, когда нужно получить очень точные и сложные по форме литые изделия.

Предполагают, что способность уплотняться при плавлении объясняется изменением типа связи между атомами. Для твердого висмута характерны связи ковалентно-металлические, при плавлении же ковалентные связи разрушаются, и атомы остаются связанными лишь металлическими связями. Гетерогенный (разнородный) характер связей в твердом висмуте препятствует плотнейшей упаковке атомов в кристаллической решетке.

Одна необычность влечет за собой другую. Давление влияет на висмут иначе, чем на «нормальные» металлы. С ростом давления температура плавления висмута понижается, а у большинства металлов растет. Это необычное свойство считают следствием способности висмута расширяться при твердении и уплотняться при расплавлении. И это не удивительно: для всех физических тел характерна определенная корреляция изменений, происходящих под действием температуры и давления.

Висмут – химическая индивидуальность

Основные химические свойства любого элемента определяются, как известно, его положением в периодической системе и, следовательно, строением его электронных оболочек, особенно внешней. Среди элементов V группы, точнее ее главной подгруппы (N, P, As, Sb, Bi), висмут – самый тяжелый и «самый металлический». Как и положено элементу V группы, он проявляет валентности 3+ и 5+ (а также 3–, 1+, 2+, 4+), но, поскольку висмут ближе к «полюсу металлических свойств», нежели любой из его аналогов, три электрона отрываются от его атома намного чаще и легче, чем пять. Практически важны лишь соединения трехвалентного висмута (3+), трехвалентны и все природные соединения этого элемента.

Внутреннее строение атома Bi роднит его не только с мышьяком и сурьмой, что естественно, но и со многими другими металлами. В атоме висмута есть предпоследний 18-электронный слой (слой типа «купро»), который характерен для свинца, а также меди и ее аналогов (Au, Ag). Интересно, что с этими же элементами висмут нередко бывает связан в рудных месторождениях.

Ионный радиус трехвалентного висмута (1,20 Å) мало отличается от ионных радиусов серебра (1,13 Å) и золота (1,37 Å).

В бескислородных кислотах висмут нерастворим, хорошо растворяют его лишь азотная и концентрированная серная кислоты. Атом висмута обладает довольно большим сродством к электрону (окислительно-восстановительный потенциал системы Bi 3+ /Bi равен всего +0,226 В), поэтому ион Bi 3+ сравнительно легко восстанавливается до нейтрального атома. Вот почему в природе висмут нередко можно встретить в самородном состоянии, иногда даже в концентрации, представляющей практический интерес.

При обычной температуре на воздухе висмут устойчив и лишь слегка покрывается характерной красноватой побежалостью, но при температуре красного каления он легко сгорает, превращаясь в Bi 2 O 3 . Это соединение, нерастворимое в воде, легко растворяется в кислотах, но очень трудно – в щелочах, даже концентрированных.

В природе Bi 2 O 3 можно наблюдать в виде землистых скоплений желтого и бурого цвета. Это минерал бисмит. Вместе с другим природным соединением – карбонатом висмута, получившим название бисмутита, он считается главным кислородсодержащим минералом висмута.

Но для геохимиков особенно важны соединения висмута с серой, селеном и теллуром. Среди минералов висмута (а их насчитывается больше 70) больше всего сульфидов и теллуридов. Такие минералы имеют большое практическое значение. В последние годы все более уверенно начинают говорить о сульфидах висмута как о типично комплексных соединениях, а иногда и как о неорганических полимерах. В самом деле, один из самых распространенных минералов элемента №83, бисмутинит, Bi 2 S 3 , легко представить как сочетание ионов + и – . В природных условиях бисмутинит встречается в виде хорошо ограненных серебристых кристаллов.

Висмут – редкий элемент

Это утверждение может показаться странным, особенно после упоминания о 70 минералах элемента №83. Тем не менее содержание висмута в земной коре составляет лишь 2·10 –5 %; это значит, что на тонну вещества земной коры приходится лишь 0,2 г висмута. Его меньше, чем драгоценного серебра, меньше, чем многих элементов, прочно и давно зачисленных в разряд редких и рассеянных, – таллия, индия, кадмия.

Обратите внимание на двойственность поведения висмута в природе. С одной стороны, он может концентрироваться в минералах, а с другой – рассеиваться в рудах (особенно сульфидных) так, что содержание его в них можно определить лишь одним словом – «следы». Ярко выраженная способность висмута к образованию собственных минералов не позволяет отнести его к рассеянным элементам в общепринятом значении этого слова. В «чужие» кристаллические решетки он, как правило, не входит. Исключение – свинцовый минерал галенит PbS, в решетке которого при определенных условиях висмут может удерживаться без образования собственных минералов.

Тем не менее, скопления богатых висмутовых руд встречаются очень редко. Они крайне ограниченны в пространстве и отличаются неравномерностью распределения, что, конечно, доставляет огорчения геологам и горнякам, занимающимся разведкой и эксплуатацией висмутовых месторождений.

Минералы висмута как бы прячутся в рудах других элементов: вольфрама, олова, меди, никеля, молибдена, урана, кобальта, мышьяка, золота и других элементов – разных и непохожих.

Трудно назвать рудное месторождение, в котором не было бы висмута, но еще сложнее назвать такое месторождение, в котором концентрация его была бы столь высокой, что оно могло бы с выгодой разрабатываться только ради висмута. Как же быть? Поступают просто: висмут берут отовсюду, где извлечение его экономически (или технологически) оправдано. Вот перечень сырьевых источников висмута, обеспечивающих около 3 / 4 мирового (без СССР) спроса: медные, свинцовые и серебряные рудники Перу, свинцовые месторождения Мексики, медные и свинцово-цинковые руды Японии, медные, свинцовые и серебряно-кобальтовые месторождения Канады, вольфрамово-оловянные и оловянно-серебряные руды Боливии.

Может быть, все эти источники очень богаты висмутом? Нет, за исключением боливийских, все перечисленные руды висмутом бедны. Основной производитель висмута – свинцовая промышленность – извлекает его из концентратов, в которых не больше сотых, реже десятых процента висмута, а в исходных рудах полиметаллических месторождений от 0,0001 до 0,01% Bi. Та же примерно картина наблюдается и в медной промышленности. Обычно висмут здесь извлекают из анодных шламов, образующихся при электролитическом рафинировании меди. Источником висмута может быть и вторичное сырье. Например, в ФРГ значительное количество висмута извлекают при переработке пиритных огарков и из металлического лома. Сколько же висмута получают ежегодно во всем мире? Известно, что в 1968 г. мировое производство висмута (без СССР) составило 3800 т. Предполагают, что мировая потребность в висмуте в 2000 г. составит 5...6 тыс. т. На что идут эти тысячи тонн, ответит последняя глава нашего рассказа.

Применение висмута

Традиционные потребители висмута – металлургическая, фармацевтическая и химическая промышленность. В последние десятилетия к ним прибавились ядерная техника и электроника.

Чтобы спаять стекло с металлом, используют легкоплавкие сплавы на висмутовой основе. Подобные же сплавы (с кадмием, оловом, свинцом) применяют в автоматических огнетушителях. Как только температура окружающей среды достигает 70°C, плавится пробка из висмутового сплава (49,41% Bi, 27,67% Pb, 12,88% Sn и 10,02% Cd), и огнетушитель срабатывает автоматически.

Легкоплавкость висмута стала одной из причин прихода его в ядерную энергетику. Но были и другие. Только бериллию (из всех металлов) уступает висмут по способности рассеивать тепловые нейтроны, почти не поглощая их при этом. Висмут используют в качестве теплоносителя и охлаждающего агента в ядерных реакторах. Иногда в «горячей зоне» реактора помещают уран, растворенный в жидком висмуте.

Самым первым способом извлечения плутония из облученного урана был метод осаждения плутония с фосфатом висмута. Совместно с фтористым литием LiF эта соль работала в первых промышленных установках по производству плутония. Облученный нейтронами уран растворяли в азотной кислоте, а затем в этот раствор добавляли H 2 SO 4 . С ураном она образовывала нерастворимый комплекс, а четырехвалентный плутоний оставался в растворе. Отсюда его осаждали с BiPO 4 , отделяя тем самым от массы урана. Сейчас этот метод уже не применяют, но о нем стоило упомянуть хотя бы потому, что опыт, полученный благодаря этому методу, помог создать более совершенные и современные способы выделения плутония осаждением его из кислых растворов.

С помощью висмута получают изотоп полоний-210, служащий источником энергии на космических кораблях.

Применение висмута в металлургии тоже довольно широко. Кроме упоминавшихся уже легкоплавких сплавов и припоев, висмут (примерно 0,01%) используют в сплавах на основе алюминия и железа. Эта добавка улучшает пластические свойства металла, упрощает его обработку.

Некоторые висмутовые сплавы обладают уникальными магнитными свойствами. Сильные постоянные магниты делают из сплава, состав которого определяется формулой MnBi. А сплав состава 88% Bi и 12% Sb в магнитном поле обнаруживает аномальный эффект магнитосопротивления; из этого сплава изготовляют быстродействующие усилители и выключатели.

Многие сплавы висмута при низкой температуре приобретают свойство сверхпроводимости.

Широкому применению висмута в металлургии и электронике способствовало и то обстоятельство, что висмут – наименее токсичный из всех тяжелых металлов.

Из соединений висмута шире всего используют его трехокись Bi 2 O 3 . В частности, ее применяют в фармацевтической промышленности для изготовления многих лекарств от желудочно-кишечных заболеваний, а также антисептических и заживляющих средств.

В производстве полимеров трехокись висмута служит катализатором; ее применяют, в частности, при получении акриловых полимеров. Bi 2 O 3 употребляют также в производстве эмалей, фарфора и стекла – главным образом в качестве флюса, понижающего температуру плавления смеси неорганических веществ, из которой образуются эмаль, фарфор или стекло.

Соли висмута находят применение в областях, весьма далеких друг от друга. Это, к примеру, производство перламутровой губной помады и производство красок для дорожных знаков, которые «загораются» в лучах автомобильных фар...

Далеко в прошлое ушло то время, когда висмут считался малоценным металлом с ограниченной сферой применения. Сейчас он нужен всем странам с высокоразвитой промышленностью. Поэтому и спрос на него продолжает расти. Не случайно за последние 40 лет цена висмута на мировом рынке выросла в шесть раз.

Первый висмут в России

«Захваченный трестом, главным образом германским, висмут является сейчас продуктом, для получения которого мы находимся всецело в зависимости от Германии. А между тем мы имеем указания на возможность нахождения его соединений, например, в Забайкалье». Так писал Владимир Иванович Вернадский в 1915 г. в своей «Записке в Комиссию по исследованию естественных производительных сил России». Он был прав и очень дальновиден. Пройдет всего три года, и в 1918 г. другой русский ученый – К.А. Ненадкевич – выплавит первые десятки килограммов отечественного висмута. Выплавит именно из забайкальских руд – из сульфидных концентратов вольфрамового месторождения Букука.

Красавицам эпохи возрождения

Азотнокислый висмут BiNO 3 · 5H 2 O обычно получают выпариванием раствора висмута в азотной кислоте. В водном растворе эта соль легко гидролизуется и при нагревании выделяет основной нитрат висмута (висмутил-нитрат) (BiO)NO 3 . Эта соль была известна еще в XVI в. и пользовалась большой популярностью у красавиц эпохи Возрождения, Ее применяли в качестве косметического средства, которое называли испанскими белилами.

На свету – темнеет, в темноте – светлеет

Среди соединений висмута с галогенами наибольший интерес представляет, пожалуй, треххлористый висмут. Это – белое кристаллическое вещество, которое можно получить разнообразными способами, в частности обработкой металлического висмута царской водкой. BiCl 3 имеет необычное свойство: на свету он интенсивно темнеет, но, если его поместить после этого в темноту, он снова обесцвечивается. В водном растворе BiCl 3 гидролизуется с образованием хлорида висмутила BiOCl. Треххлористый висмут используют для получения водостойких висмутовых смол и невысыхающих масел.

Самородный висмут - минерал класса самородных элементов, который имеет серую, розоватую или красноватую окраску. В Средневековье самородки висмута часто принимались за разновидности других минералов: самородного серебра, олова, свинца, сурьмы и др. При взаимодействии с водой на поверхности самородного висмута образуется так называемая пленка побежалости - оксид, придающий самородку радужную окраску. Самородный висмут образуется в виде кристаллов с тригональной сингонией. Кристаллы имеют яркий металлический блеск. Минерал является пластичным, тягучим и ковким.

Часто можно услышать, что висмут - это изоморфная примесь в ряде металлов. Отчасти это правдивое заявление, но данный минерал нередко встречается в качестве самостоятельного самородного металла. Он образовывается в природных процессах и имеет тригональную сингонию.

История

Свое название висмут получил еще в XVI веке и с того времени вошел в ряд известных химических составов. Еще в Средневековье минерал использовался для многих алхимических опытов, так как считалось, что он почти наполовину состоял из серебра. Спустя время этот миф был развеян. Племена инков применяли его в качестве материала для изготовления холодного оружия, в особенности мечей, которые имели оригинальный окрас из-за радужного окисления клинка. О висмуте как о металле впервые заговорили в 1546 году благодаря трудам минеролога Георгия Агриколы. Но только в 1739 году минерал выделили в качестве самостоятельного химического элемента.

Как выглядит?

Висмут является металлом серебристо-белого цвета, из-за чего ему и приписывали сходство с серебром. Частенько висмут имеет розоватый оттенок. Ученые знают о восьми формах и модификациях его кристаллизации, а чаще всего встречается полиморфная, моноклинная и тетрагональная решетка металла. Висмут имеет металлический отблеск и никогда не бывает прозрачным. Опознать его можно по светло-серой или серебряно-белой блестящей черте. Отличается самородок низким уровнем твердости, благодаря чему (не обработанный термически) его можно легко резать.

Основные месторождения

Найти залежи самородного висмута можно на всех континентах планеты. Наибольшие месторождения можно найти в России, Германии (так называемые Рудные горы и Саксагония Швеции, Боливии, Австралии и многих странах СНГ. Для промышленных целей висмут добывают в Перу, Корноуле (Великобритания), Дакоте и Калифорнии (США).

Месторождения самородного висмута известны в рудных жилах западных Рудных гор (Германия).
Совместно с висмутином в больших количествах самородный висмут встречается в Австралии и Боливии.
Известны находки самородного висмута на Шерловой горе в Забайкалье (Россия).

Особенности обработки и использования

Практическое значение: важная руда висмута. Висмут является незаменимым элементом во многих сферах производства, в особенности в косметологической и медицинской. Так, оксид и хлорид висмута используются для изготовления помад и лаков, что придает данным косметическим средствам блеск и цвет. Результат безвреден для человека, что способствует постоянному использованию висмута в косметологии. В медицине он применяется в качестве антисептического препарата. Концентрат металла добавляется в лекарства, которые выписываются при воспалительных заболеваниях кишечника. Отдельное внимание уделяется висмуту как экземпляру из коллекции самородных минералов.

Обычно в самородном висмуте присутствуют лишь незначительные следы железа, серы, мышьяка и сурьмы.

Кристаллы редки и имеют псевдо-кубический облик. Характерны скелетные кристаллы и дендриты, обычно в виде уплощённых сеток, решётчатые или стебельчатые. Агрегаты - плотные, зернистые, вкрапленность. Минерал шершавый на ощупь. Режется ножом. Легко растворяется в НNО3.

Происхождение

Пневматолитово-гидротермальное, часто генетически связан с олововольфрамовыми месторождениями, характерны ассоциации с арсенопиритом, висмутином, топазом, бериллом, турмалином; характерно нахождение самородного висмута в гидротермальных месторождениях уран-арсенидного типа, где он ассоциирует с минералами никеля, кобальта, урана.

Свойства минерала

  • Происхождение названия: по-видимому, от арабского BI ismid - обладатель свойств сурьмы
  • Место открытия: Schneeberg District, Erzgebirge, Saxony
  • Год открытия: 1546
  • Термические свойства: Под п. тр. плавится с невероятной лёгкостью, испаряясь, и образует налёт на угле, - сначала белый, а после остывания - лимонно-жёлтый
  • IMA статус: действителен
  • Типичные примеси: Fe,Te,As,S,Sb
  • Strunz (8-ое издание): 1/B.01-40
  • Hey"s CIM Ref.: 1.49
  • Dana (7-ое издание): 1.3.1.5
  • Dana (8-ое издание): 1.3.1.4
  • Молекулярный вес: 208.98
  • Параметры ячейки: a = 4.55Å, c = 11.85Å
  • Отношение: a:c = 1: 2.604
  • Число формульных единиц (Z): 6
  • Объем элементарной ячейки: V 212.46 ų
  • Двойникование: Полисинтетическое двойникование обычно
  • Точечная группа: 3m (3 2/m) - Гексагонально-скаленоэдрический
  • Пространственная группа: R3m (R3 2/m)
  • Плотность (расчетная): 9.753
  • Плотность (измеренная): 9.7 - 9.83
  • Плеохроизм: слабый
  • Тип: анизотропный
  • Оптическая анизотропия: различимая
  • Цвет в отраженном свете: блестящий кремово-белый, в побежалости переходящий в жёлтый
  • Форма выделения: Кубические кристаллы, дендриты (скелетные кристаллы)
  • Классы по систематике СССР: Металлы
  • Классы по IMA: Самородные элементы
  • Химическая формула: Bi
  • Сингония: тригональная
  • Цвет: Красноватый, серебряно-белый, обычно с пестрой, зеленой или красной побежалостью
  • Цвет черты: Светло-серый, серебряно-белый, блестящий
  • Блеск: металлический
  • Прозрачность: непрозрачный
  • Спайность: совершенная по {0001} совершенная по {1011}
  • Излом: неровный
  • Твердость: 2
  • Микротвердость: VHN100=16 - 18
  • Ковкость: Да
  • Литература: Дымков Ю.М. Скелетные формы и дендритные текстуры. // В кн.: Парагенезис минералов ураноносных жил. М., Недра, 1985, стр. 62-70. Веб Малинко С.В., Дубинчук В.Т., Носенко Н.А. Самородный висмут в датолитовых рудах Дальнегорского борного месторождения. Минерал. ж., 1990, 14, №1, с. 42-52 (реферат -РЖ Геология, 1992, 6В213)

Фото минерала

Статьи по теме

  • Происхождение названия висмута неясно.
    История висмута (англ. Bismuth, франц. Bismuth, нем. Wismut) сложна, так как вплоть до XVIII в. этот металл путали со свинцом, оловом и сурьмой.

Месторождения минерала Висмут

  • Кейвы
  • Кара-Оба
  • Казахстан
  • Россия

самородный висмут

Висмут (Bi) — не только изоморфная примесь в различных самородных металлах и минералах, но и самостоятельный минерал. Этот химический элемент получил свое название в 16 веке.

Элементарный висмут, образованный в природных процессах, называют самородным .

На чистом срезе этот самородный металл имеет серую, светло-серую, слегка розоватую или красноватую окраску. Рудокопы Средневековья принимали висмут за разновидности других металлов — свинца, олова, сурьмы и серебра. Считалось, что самородный висмут почти на 50% состоит из серебра. В действительности этот минерал содержит серебро в гораздо меньшем количестве.

Самородный висмут при воздействии воды покрывается красивой радужной пленкой побежалости — это из-за соединения с кислородом образуется оксид висмута .

Эта пленка окислов наблюдается как на природных, так и на искусственно выращенных кристаллах. Искусственно выращенные кристаллы висмута имеют строгие геометрические формы и просто нереально, фантастически красивы. Их строение напоминает технические детали и схемы современной компьютерной техники, с трудом верится, что эти формы образовались из-за внутреннего строения атомов висмута.

Нереальная геометрия искусственно выращенных кристаллов висмута

Самородный висмут содержит до 99 процентов этого химического элемента. Существует также несколько минералов, содержащих его в химической формуле. Это в основном сульфиды, составляющие полиметаллические руды .

Самородный висмут имеет тригональную сингонию . Кристаллы обычно очень мелкие, они слагают массивные, скрытокристаллические агрегаты. Четко ограненные кристаллы встречаются не так часто и представлены кубическими формами, дендритовидными формами, своеобразными решетками и сетками.

искусственно выращенный висмут из Германии

Кристаллы и агрегаты самородного висмута имеют ярко выраженный металлический блеск и черную пылевидную черту. Твердость этого минерала невелика и составляет 2 единицы по десятибальной шкале Мооса. Поэтому самородный висмут даже можно разрезать стальным ножом, твердость которого равна 6 — 6.5. К тому же этот минерал очень пластичный, ковкий и тягучий.

Как и все самородные металлы, висмут тяжел. Его плотность составляет 9.7 — 9.8 грамм на кубический сантиметр.

В самородном висмуте есть примеси других элементов, это, прежде всего, железо, сера, сурьма. В небольших количествах присутствуют теллур и астат.

Месторождения полиметаллических руд, в которых добывается самородный висмут, встречаются на всех континентах мира. В настоящее время наиболее крупные месторождения, в которых ведется этого минерала, находятся в Германии (Рудные горы), а также в Австралии и Боливии.

В косметологии используют оксид и хлорид висмута. Именно они обеспечивают текучесть и блеск лакам и помадам.

Если химическим путем получить соединение висмута и ванадия, то получится ярко-желтый, красящий пигмент. Эта краска абсолютно безвредна для человека.

В магазинах охоты и рыбалки сейчас можно встретить грузила не только из свинца, но и из висмута. По виду они отличаются, свинец имеет синеватый отттенок.

В медицине трехокись висмута используется как антисептик и заживляющий препарат. Это соединение также входит в состав лекарств для лечения воспалительных заболеваний желудка и кишечника. Некоторые соединения висмута применяются для лечения язвы желудка. Недавно появились новые противоопухолевые лекарства, в состав которых входит этот химический элемент.

И, конечно, образцы самородного и искусственно выращенного висмута украсят любую коллекцию минералов.

Искусственно выращенные кристаллы висмута

Висмут - это серебристый металл с розоватым оттенком. Название металла происходит от немецкого слова weisse Masse, которое переводится как «белая масса». Висмут входит в группу редких металлов. Его добыча в годовом соотношении составляет всего 6000 тонн. Известные месторождения висмута находятся в Монголии, Германии, России, Перу, Австралии, Боливии. При увеличении плотности висмут переходит из твердого агрегатного состояния в жидкое. Таким же свойством обладает и вода. Висмут обладает низкой теплопроводностью, как и ртуть. При нормальной температуре висмут представляет собой хрупкий металл. На изломе имеет грубозернистое строение. Если температура повышается до 150 о С, то висмут начинает проявлять пластичные свойства. Висмут активно применяют в металлургии для создания нержавеющих автоматных сталей, в медицине, электронике. Висмут используют при изготовлении катализаторов, термоэлектрических материалов.

Легенды о висмуте

В Средние века висмут использовали алхимики во время своих опытов. Инки использовали этот металл при изготовлении холодного оружия. Их мечи отличались изящной красотой. Но ученые полагали, что висмут не является основным металлом. Они считали, что висмут является разновидностью свинца , олова или же сурьмы. Только в 1739 немецкий химик И.Г. Потт установил, что висмут является все-таки отдельным элементов химии - металлом.

Магические свойства висмута

Висмут - это эталон гармонии любви, жизни, мира, созидания и красоты. Этот необыкновенный металл может преобразить окружение до неузнаваемости. Все вредно преобразовывается в полезное под действием висмута. Он способен воплощать в жизнь все добрые, позитивные и хорошие желания. Висмут улучшает психофизическое состояние человека, выводит из депрессивного состояния, приободряет, вселяет надежду. К тому же висмут обладает способностью очищать ауру человека, создавать защитный барьер.

Висмут помогает во всех трудных делах. Его можно брать на работу, в суд, на серьезные мероприятия. Металл может корректировать мутации, происходящие в ДНК.

В магии висмут занимает почетное место. Его используют в различных магических обрядах. Висмут обновляет человека, способствует изменению его внутреннего настроя, направляет на мирные действия. Если человек сам хочет измениться к лучшему, ему необходимо носить с собой висмут. Через некоторое время человек сам начнет замечать в себе положительные изменения.

Висмут широко используют в медицине. Этот металл добавляют во многие лекарственные препараты: таблетки, мази, присыпки, гели, эмульсии. На основе висмута созданы эффективные противоопухолевые средства.

Препараты на основе висмута обладают вяжущими и антисептическими свойствами. Соли этого металла применяют для купирования воспалительных процессов в пищеварительной системе. Лечит язвы, гастриты, обезболивает. Мази и порошки на основе висмута являются отличными ранозаживляющими и противоожоговыми препаратами.

Висмут дает слабительный эффект. Его назначают для лечения заболеваний кишечника.

Вероятность отравления висмутом невелика, но этот металл относится к категории тяжелых и токсичных металлов. Его соли в большом количестве напоминают ядовитую соль ртути. Она не растворяются в воде, и имеют свойство накапливаться в организме. Именно поэтому препараты на основе висмута назначаются на короткий срок.

Избыток в организме висмута проявляется в виде бессонницы, снижения памяти, аритмии, фарингитах, ларингитах, потемнения зубной эмали. При отравлении металлом назначают промывание желудка и прекращают прием лекарственных препаратов на основе висмута.

Висмут относят к стихии Земля. Поэтому этот металл благоприятно влияет на знаки зодиакального круга стихии Земли, к которым относятся Дева , Козерог и Телец . Остальным знакам зодиака висмут тоже полезен. Этот удивительный благородный металл можно использовать всем представителям знаков зодиакального круга, ведь висмут - это металл всевышнего добра и справедливости. Он не наказывает злых людей, а лишь обновляет их, делает их добрее.