Ванадий. Свойства ванадия. Применение ванадия. Ванадий (химический элемент): история названия, строение атома, валентность




ОПРЕДЕЛЕНИЕ

Ванадий - двадцать третий элемент Периодической таблицы. Обозначение - V от латинского «vanadium». Расположен в четвертом периоде, VB группе. Относится к металлам. Заряд ядра равен 23.

Соединения ванадия широко распространены в природе, но они очень распылены и не образуют сколько-нибудь значительных скоплений; общее содержание ванадия в земной коре оценивается в 0,0015% (масс.).

Чистый ванадий - серебристый металл (рис. 1) ковкий металл, плотностью 5,96 г/см 3 , плавящийся при температуре 1900 o С. Как и у титана, механические свойства ванадия резко ухудшаются при наличии в нем примесей кислорода, азота, водорода.

Рис. 1. Ванадий. Внешний вид.

Атомная и молекулярная масса ванадия

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии кальций существует в виде одноатомных молекул V, значения его атомной и молекулярной масс совпадают. Они равны 50,9962.

Изотопы ванадия

Известно, что в природе ванадий может находиться в виде единственного стабильного изотопа 51 V. Массовое число равно 51, ядро атома содержит двадцать три протона и двадцать восемь нейтронов.

Существуют искусственные изотопы ванадия с массовыми числами от 40-ка до 65-ти, среди которых наиболее стабильным является 50 V с периодом полураспада равным 1,5×10 17 лет, а также пять ядерных изотопов.

Ионы ванадия

На внешнем энергетическом уровне атома ванадия имеется пять электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 2 .

В результате химического взаимодействия ванадий отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

V o -2e → V 2+ ;

V o -3e → V 3+ ;

V o -4e → V 4+ ;

V o -5e → V 5+ .

Молекула и атом ванадия

В свободном состоянии ванадий существует в виде одноатомных молекул V. Приведем некоторые свойства, характеризующие атом и молекулу ванадия:

Сплавы ванадия

Ванадий в основном используют в качестве добавки к сталям. Сталь, содержащая всего 0,1 - 0,3% ванадия отличается большой прочностью, упругостью и нечувствительностью к толчкам и ударам, что особенно важно, например, для автомобильных осей, которые все время подвергаются сотрясению. Как правило, ванадий вводят в сталь в комбинации с другими легирующими элементами: хромом, никелем, вольфрамом, молибденом.

Примеры решения задач

ПРИМЕР 1

Ванадий (vanadium), v, химический элемент v группы периодической системы Менделеева; атомный номер 23, атомная масса 50,942; металл серо-стального цвета. Природный В. состоит из двух изотопов: 51 v (99,75%) и 50 v (0,25%); последний слабо радиоактивен (период полураспада Т 1/2 = 10 14 лет). В. был открыт в 1801 мексиканским минералогом А. М. дель Рио в мексиканской бурой свинцовой руде и назван по красивому красному цвету нагретых солей эритронием (от греч. erythr o s - красный). В 1830 шведский химик Н. Г. Сефстрём обнаружил новый элемент в железной руде из Таберга (Швеция) и назвал его В. в честь древнескандинавской богини красоты Ванадис. Английский химик Г. Роско в 1869 получил порошкообразный металлический В. восстановлением vcl 2 водородом. В промышленном масштабе В. добывается с начала 20 в.

Содержание В. в земной коре составляет 1,5-10 -2 % по массе, это довольно распространённый, но рассеянный в породах и минералах элемент. Из большого числа минералов В. промышленное значение имеют патронит, роскоэлит, деклуазит, карнотит, ванадинит и некоторые др. Важным источником В. служат титаномагнетитовые и осадочные (фосфористые) железные руды, а также окисленные медно-свинцово-цинковые руды. В. извлекают как побочный продукт при переработке уранового сырья, фосфоритов, бокситов и различных органических отложений (асфальтиты, горючие сланцы).

Физические и химические свойства. В. имеет объёмноцентрированную кубическую решётку с периодом a = 3,0282 å. В чистом состоянии В. ковок, легко поддаётся обработке давлением. Плотность 6,11 г / см 3 , t пл 1900 ± 25°С, t кип 3400°С; удельная теплоёмкость (при 20-100°С) 0,120 кал / гград ; термический коэффициент линейного расширения (при 20-1000°С) 10,6·10 -6 град -1 , удельное электрическое сопротивление при 20 °С 24,8·10 -8 ом · м (24,8·10 -6 ом · см ), ниже 4,5 К В. переходит в состояние сверхпроводимости. Механические свойства В. высокой чистоты после отжига: модуль упругости 135,25 н / м 2 (13520 кгс / мм 2), предел прочности 120 нм / м 2 (12 кгс / мм 2), относительное удлинение 17%, твердость по Бринеллю 700 мн / м 2 (70 кгс / мм 2). Примеси газов резко снижают пластичность В., повышают его твёрдость и хрупкость.

При обычной температуре В. не подвержен действию воздуха, морской воды и растворов щелочей; устойчив к неокисляющим кислотам, за исключением плавиковой. По коррозионной стойкости в соляной и серной кислотах В. значительно превосходит титан и нержавеющую сталь. При нагревании на воздухе выше 300°С В. поглощает кислород и становится хрупким. При 600-700°С В. интенсивно окисляется с образованием пятиокиси v 2 o 5 , а также и низших окислов. При нагревании В. выше 700°С в токе азота образуется нитрид vn (t пл 2050°С), устойчивый в воде и кислотах. С углеродом В. взаимодействует при высокой температуре, давая тугоплавкий карбид vc (t пл 2800°С), обладающий высокой твёрдостью.

В. даёт соединения, отвечающие валентностям 2, 3, 4 и 5; соответственно этому известны окислы: vo и v 2 o 3 (имеющие основной характер), vo 2 (амфотерный) и v 2 o 5 (кислотный). Соединения 2- и 3-валентного В. неустойчивы и являются сильными восстановителями. Практическое значение имеют соединения высших валентностей. Склонность В. к образованию соединений различной валентности используется в аналитической химии, а также обусловливает каталитические свойства v 2 o 5 . Пятиокись В. растворяется в щелочах с образованием ванадатов .

Получение и применение. Для извлечения В. применяют: непосредственное выщелачивание руды или рудного концентрата растворами кислот и щелочей; обжиг исходного сырья (часто с добавками nacl) с последующим выщелачиванием продукта обжига водой или разбавленными кислотами. Из растворов методом гидролиза (при рН = 1-3) выделяют гидратированную пятиокись В. При плавке ванадийсодержащих железных руд в домне В. переходит в чугун, при переработке которого в сталь получают шлаки, содержащие 10-16% v 2 o 5 . Ванадиевые шлаки подвергают обжигу с поваренной солью. Обожжённый материал выщелачивают водой, а затем разбавленной серной кислотой. Из растворов выделяют v 2 o 5 . Последняя служит для выплавки феррованадия (сплавы железа с 35-70% В.) и получения металлического В. и его соединений. Ковкий металлический В. получают кальциетермическим восстановлением чистой v 2 o 5 или v 2 o 3 ; восстановлением v 2 o 5 алюминием; вакуумным углетермическим восстановлением v 2 o 3 ; магниетермическим восстановлением vc1 3 ; термической диссоциацией йодида В. Плавят В. в вакуумных дуговых печах с расходуемым электродом и в электроннолучевых печах.

Чёрная металлургия - основной потребитель В. (до 95% всего производимого металла). В. входит в состав быстрорежущей стали, её заменителей, малолегированных инструментальных и некоторых конструкционных сталей. При введении 0,15-0,25% В. резко повышаются прочность, вязкость, сопротивление усталости и износоустойчивость стали. В., введённый в сталь, является одновременно раскисляющим и карбидообразующим элементом. Карбиды В., распределяясь в виде дисперсных включений, препятствуют росту зерна при нагреве стали. В. в сталь вводят в форме лигатурного сплава - феррованадия. Применяют В. и для легирования чугуна. Новым потребителем В. выступает быстро развивающаяся промышленность титановых сплавов; некоторые титановые сплавы содержат до 13% В. В авиационной, ракетной и др. областях техники нашли применение сплавы на основе ниобия, хрома и тантала, содержащие присадки В. Разрабатываются различные по составу жаропрочные и коррозионностойкие сплавы на основе В. с добавлением ti, nb, w, zr и al, применение которых ожидается в авиационной, ракетной и атомной технике. Интересны сверхпроводящие сплавы и соединения В. с ga, si и ti.

Чистый металлический В. используют в атомной энергетике (оболочки для тепловыделяющих элементов, трубы) и в производстве электронных приборов.

Соединения В. применяют в химической промышленности как катализаторы, в сельском хозяйстве и медицине, в текстильной, лакокрасочной, резиновой, керамической, стекольной, фото и кинопромышленности.

Соединения В. ядовиты. Отравление возможно при вдыхании пыли, содержащей соединения В. Они вызывают раздражение дыхательных путей, лёгочные кровотечения, головокружения, нарушения деятельности сердца, почек и т.п.

В. в организме. В. - постоянная составная часть растительных и животных организмов. Источником В. служат изверженные породы и сланцы (содержат около 0,013% В.), а также песчаники и известняки (около 0,002% В.). В почвах В. около 0,01% (в основном в гумусе); в пресных и морских водах 1·10 7 -2·10 7 %. В наземных и водных растениях содержание В. значительно выше (0,16-0,2%), чем в наземных и морских животных (1,5·10 -5 -2·10 -4 %). Концентраторами В. являются: мшанка plumatella, моллюск pleurobranchus plumula, голотурия stichopus mobii, некоторые асцидии, из плесеней - чёрный аспергилл, из грибов - поганка (amanita muscaria). Биологическая роль В. изучена на асцидиях, в кровяных клетках которых В. находится в 3- и 4-валентном состоянии, то есть существует динамическое равновесие.

Физиологическая роль В. у асцидии связана не с дыхательным переносом кислорода и углекислого газа, а с окислительно-восстановительными процессами - переносом электронов при помощи так называемой ванадиевой системы, вероятно имеющей физиологическое значение и у др. организмов.

Лит.: Меерсон Г. А., Зеликман А. Н., Металлургия редких металлов, М., 1955; Поляков А. Ю., Основы металлургии ванадия, М., 1959; Ростокер У., Металлургия ванадия, пер. с англ., М., 1959; Киффер p., Браун Х., Ванадий, ниобий, тантал, пер. с нем., М., 1968; Справочник по редким металлам, [пер. с англ.], М., 1965, с. 98-121; Тугоплавкие материалы в машиностроении. Справочник, М., 1967, с. 47-55, 130-32; Ковальский В. В., Резаева Л. Т., Биологическая роль ванадия у асцидии, «Успехи современной биологии», 1965, т. 60, в. 1(4); Воwen Н. j. М., trace elements in biochemistry, l. - n. y., 1966.

И. Романьков. В. В. Ковальский.

Ванадий - элемент побочной подгруппы пятой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 23. Обозначается символом V (лат. Vanadium ).

История открытия ванадия

В начале XIX в. в Швеции были найдены новые богатые месторождения железной руды. Одна за другой сооружались доменные печи. Но что примечательно: при одинаковых условиях некоторые из них давали железо удивительной ковкости, в то время как из других получался более хрупкий металл. После многих безуспешных попыток наладить процесс выплавки высококачественного металла в «плохих» домнах металлурги обратились за помощью к химикам, и в 1830 г. Нильсу Сефстрему удалось выделить из шлака «лучших» домен неизвестный черный порошок. Сефстрем сделал вывод, что изумительную ковкость металлу придает присутствие в руде какого-то неизвестного элемента, содержащегося в черном порошке.

Этот новый элемент Сефстрем назвал ванадием в честь легендарной Ванадис – богини красоты древних скандинавов.

Открытие нового элемента всегда было большой честью для ученого. Поэтому можно представить себе огорчение мексиканского минералога Андреса Мануэля дель Рио, который еще в 1801 г. обнаружил в свинцовой руде никогда не встречавшийся прежде элемент и назвал его эритронием. Но, усомнившись в собственных выводах, дель Рио отказался от своего открытия, решив, что встретился с недавно открытым хромом.

Еще большее разочарование постигло блестящего немецкого химика Фридриха Вёлера. В те же годы, что и Сефстрему, ему довелось исследовать железные руды, привезенные из Мексики Л. Гумбольдтом. Те самые, что исследовал дель Рио. Вёлер тоже нашел в них что-то необычное, но его исследования прервала болезнь. Когда он возобновил работу, было уже поздно – Сефстрем обнародовал свое открытие. Свойства нового элемента совпадали с теми, что были занесены в один из лабораторных журналов Вёлера.

И только в 1869 г., спустя 39 лет после открытия Сефстрем а, элемент №23 впервые был выделен в относительно чистом виде. Английский химик Г. Роско, действуя водородом на хлористый ванадий, получил элементарный ванадий чистотой около 96%.

Нахождение ванадия в природе

В природе ванадий в свободном виде не встречается, относится к рассеянным элементам. Содержание ванадия в земной коре 1,6·10 -2 % по массе, в воде океанов 3·10 -7 %.

Наиболее высокие средние содержания ванадия в магматических породах отмечаются в габбро и базальтах (230 – 290 г/т). В осадочных породах значительное накопление ванадия происходит в биолитах (асфальтитах, углях, битуминозных фосфатах), битуминозных сланцах, бокситах, а также в оолитовых и кремнистых железных рудах. Близость ионных радиусов ванадия и широко распространённых в магматических породах железа и титана приводит к тому, что ванадий в гипогенных процессах целиком находится в рассеянном состоянии и не образует собственных минералов. Его носителями являются многочисленные минералы титана (титаномагнетит, сфен, рутил, ильменит), слюды, пироксены и гранаты, обладающие повышенной изоморфной ёмкостью по отношению к ванадию. Важнейшие минералы: патронит V(S 2) 2 , ванадинит Pb 5 (VO 4) 3 Cl и некоторые другие. Основной источник получения ванадия - железные руды, содержащие ванадий как примесь.

В 1902 г. в Испании было открыто первое месторождение ванадинита Рb 5 (VO 4) 3 Сl. В 1925 г. ванадинит обнаружили в Южной Африке. Он встречается также в Чили, Аргентине, Мексике, Австралии, США. Исключительны по своему значению месторождения ванадия в Перу. Они находятся в горах, на высоте 4700 метров над уровнем моря. Главное богатство перуанских месторождений – минерал патронит – простое соединение ванадия с серой V 2 S 5 . При обжиге патронита получаются концентраты с очень высоким содержанием пятиокиси ванадия – до 20...30%.

Запасы ванадия в России

В России ванадий впервые был найден в Ферганской долине у перевала Тюя-Муюн (в переводе с киргизского – Верблюжий горб). Из этих руд «Ферганское общество по добыче редких металлов» извлекало в небольших количествах соединения ванадия и урана и продавало их за границу. Большую же часть ценных компонентов руды, в том числе радий, извлекать не умели. Только после установления Советской власти богатства Тюя-Муюна стали использоваться комплексно.

Позднее ванадий обнаружили в керченских железных рудах, и было налажено производство отечественного феррованадия. Богатейшими источниками ванадия оказались уральские титаномагнетиты. Вместе с керченской рудой они освободили нашу промышленность от необходимости ввоза ванадия из-за рубежа. В 1927 г. ванадий был обнаружен в Сулейман-Сае, около нынешнего г. Джамбула. В наши дни поставщиками ванадия стали также месторождения центрального Казахстана, Киргизии, Красноярского края, Оренбургской области. В горе Качканар на Урале заключено 8 млрд т железной руды, и разработка ее началась лишь в 60-е годы. Руда эта беднее, и... ценнее руд всемирно известных железных гор – Высокой и Благодати, потому что из недр Качканара добывается не только железо, но и ванадий

Получение ванадия

Из ванадийсодержащих руд (или их концентратов) ванадий извлекают либо непосредственным выщелачиванием растворами кислот и щелочей, либо выщелачиванием продукта окислительного обжига (в смеси с поваренной солью) водой или разбавленными кислотами. Из растворов путем гидролиза выделяют оксид ванадия (V) V 2 O 5 , который используют для выплавки феррованадия, а также производства металлического ванадия.

Металлический ванадий получают либо непосредственным восстановлением оксида (V), либо в две стадии, т. е. сначала восстанавливают оксиды (V) до низшего оксида с использованием одного восстановителя, а затем низший оксид - до металла другим восстановителем.

Разработан ряд методов получения металлического ванадия: кальциетермический, при котором ковкий ванадий получают методом восстановления оксидов ванадия кальцием; алюминотермический, когда основным восстановителем металла является алюминий; метод вакуумного углетермического восстановления оксидов ванадия (использование углерода наиболее перспективно); хлоридный, при котором хлорид ванадия (VCl 3) восстанавливается жидким магнием.

Существует также йодидный метод, заключающийся в диссоциации йодида (VI 2) и обеспечивающий получение ванадия наиболее высокой чистоты, однако этот метод пока может быть использован лишь для получения небольших количеств высокочистого металла.

Каждый из рассмотренных методов имеет свои преимущества и недостатки, поэтому выбор того или иного метода определяется задачами в отношении качества конечного продукта, а также экономическими соображениями и возможностями осуществления самого процесса.

Черновой металл рафинируют электролизом в соляной ванне, переплавкой в индукционных, дуговых и электронно-лучевых печах, зонной плавкой в высоком вакууме (до чистоты 99,8-99,9%).

Ванадий металлический в кусках, получаемый алюминотермическим методом, по ТУ 48-4-520-90 должен содержать ≥95,0 + 0,5% V, ≤2,0% Al и ≤0,3% Fe.

Ванадий в слитках выпускают по ТУ 48-4-272-73 двух марок ВнМ-1 и ВнМ-2 в случаях цилиндрической формы длиной 200-800 мм и диаметром 80, 100, 120, 150 мм, массой от8 до 80 кг. Химический состав и твердость ванадия марок ВнМ-1 и ВнМ-2:

Твердость НВ, МПа (не более)

Порошкообразный ванадий, получаемый методом электролитического рафинирования алюминотермического ванадия, выпускается трех марок; их химический состав, %:

V, %, не менее

Примеси, %, не более

Физические свойства ванадия

Ванадий имеет объемноцентрированную кубическую решетку с периодом а=3,0282Å. В чистом состоянии Ванадий ковок, легко поддается обработке давлением. Плотность 6,11 г/см 3 ; t пл 1900°С, t кип 3400°С; удельная теплоемкость (при 20-100°С) 0,120 кал/г·град; термический коэффициент линейного расширения (при 20-1000°С) 10,6·10 -6 град -1 ; удельное электрическое сопротивление при 20°С 24,8·10 -8 ом·м (24,8·10 -6 ом·см); ниже 4,5 К Ванадий переходит в состояние сверхпроводимости. Механические свойства Ванадия высокой чистоты после отжига: модуль упругости 135,25 н/м 2 (13520 кгс/мм 2), предел прочности 120 мн/м 2 (12 кгс/мм 2), относительное удлинение 17%, твердость по Бринеллю 700 мн/м 2 (70 кгс/мм 2). Примеси газов резко снижают пластичность Ванадия, повышают его твердость и хрупкость.

Ванадий - пластичный металл серебристо-серого цвета, по внешнему виду похож на сталь. Кристаллическая решётка кубическая объёмноцентрированная, a=3,024 Å, z=2, пространственная группа Im3m . Температура плавления 1920 °C, температура кипения 3400 °C, плотность 6,11 г/см³. При нагревании на воздухе выше 300 °C ванадий становится хрупким. Примеси кислорода, водорода и азота резко снижают пластичность ванадия и повышают его твёрдость и хрупкость.

Химические свойства ванадия

Химически ванадий довольно инертен. Он стоек к действию морской воды, разбавленных растворов соляной, азотной и серной кислот, щелочей.

При обычной температуре Ванадия не подвержен действию воздуха, морской воды и растворов щелочей; устойчив к неокисляющим кислотам, за исключением плавиковой. По коррозионной стойкости в соляной и серной кислотах Ванадий значительно превосходит титан и нержавеющую сталь. При нагревании на воздухе выше 300°С Ванадий поглощает кислород и становится хрупким. При 600-700°С Ванадий интенсивно окисляется с образованием оксида V 2 O 5 , а также и низших окислов. При нагревании Ванадия выше 700°С в токе азота образуется нитрид VN (t кип 2050°С), устойчивый в воде и кислотах. С углеродом Ванадий взаимодействует при высокой температуре, давая тугоплавкий карбид VC (t пл 2800°С), обладающий высокой твердостью.

С кислородом ванадий образует несколько оксидов: VO, V 2 O 3 , VO 2 ,V 2 O 5 . Оранжевый V 2 O 5 - кислотный оксид, темно-синий VO 2 - амфотерный, остальные оксиды ванадия - основные. Галогениды ванадия гидролизуются. С галогенами ванадий образует довольно летучие галогениды составов VX 2 (X = F, Cl, Br, I), VX 3 , VX 4 (X = F, Cl, Br), VF 5 и несколько оксогалогенидов (VOCl, VOCl 2 , VOF 3 и др.). Известны следующие оксиды ванадия:

Соединения ванадия в степенях окисления +2 и +3 - сильные восстановители, в степени окисления +5 проявляют свойства окислителей. Известны тугоплавкий карбид ванадия VC (t пл =2800 °C), нитрид ванадия VN, сульфид ванадия V 2 S 5 , силицид ванадия V 3 Si и другие соединения ванадия.

Ванадий дает соединения, отвечающие валентностям 2, 3, 4 и 5; соответственно этому известны оксиды: VO и V 2 O 3 (имеющие основной характер), VO 2 (амфотерный) и V 2 O 5 (кислотный). Соединения 2- и 3-валентного Ванадия неустойчивы и являются сильными восстановителями. Практическое значение имеют соединения высших валентностей. Склонность Ванадий к образованию соединений различной валентности используется в аналитической химии, а также обусловливает каталитические свойства V 2 О 5 . Оксид Ванадия (V) растворяется в щелочах с образованием ванадатов.

Применение ванадия

В основную химическую промышленность ванадий пришел не сразу. Его служба человечеству началась в производстве цветного стекла, красок и керамики. Изделия из фарфора и продукцию гончарных мастеров с помощью соединений ванадия покрывали золотистой глазурью, а стекло окрашивали солями ванадия в голубой или зеленый цвет.

Биологическая роль и воздействие

Установлено, что ванадий может тормозить синтез жирных кислот, подавлять образование холестерина. Ванадий ингибирует ряд ферментных систем, тормозит фосфорилирование и синтез АТФ, снижает уровень коэнзимов А и Q, стимулирует активность моноаминоксидазы и окислительное фосфорилирование. Известно также, что при шизофрении содержание ванадия в крови значительно повышается.

Избыточное поступление ванадия в организм обычно связано с экологическими и производственными факторами. При остром воздействии токсических доз ванадия у рабочих отмечаются местные воспалительные реакции кожи и слизистых оболочек глаз, верхних дыхательных путей, скопление слизи в бронхах и альвеолах. Возникают и системные аллергические реакции типа астмы и экземы; а также лейкопения и анемия, которые сопровождаются нарушениями основных биохимических параметров организма.

При введении ванадия животным (в дозах 25-50 мкг/кг), отмечается замедление роста, диарея и увеличение смертности.

Всего в организме среднего человека (масса тела 70 кг) 0,11 мг ванадия. Ванадий и его соединения токсичны. Токсическая доза для человека 0,25 мг, летальная доза - 2-4 мг.

Повышенное содержание белков и хрома в рационе снижает токсическое действие ванадия. Нормы потребления для этого минерального вещества не установлены.

Кроме того ванадий у некоторых организмов, например, у морских жителей дна голотурий и асцидий концентрируется в целомической жидкости/крови, причем его концентрации достигают 10%! То есть эти животные являются биологическим концентратором ванадия. Его функция в организме голотурий до конца не ясна, разные ученые считают его отвечающим либо за перенос кислорода в организме этих животных, либо за перенос питательных веществ. С точки зрения практического использования - возможна добыча ванадия из этих организмов, экономическая окупаемость таких "морских плантаций" на данный момент не ясна, но в Японии имеются пробные варианты.

Содержание ванадия в продуктах питания

Такие продукты, как творог, мясо, макароны, обработанные зерна, конфеты, шоколад, сливки, какао, ванадия не содержат.

Ванадий Хром

V

Nb Внешний вид простого вещества Свойства атома Название, символ, номер Вана́дий / Vanadium (V), 23 Атомная масса
(молярная масса) 50,9415(1) а. е. м. ( /моль) Электронная конфигурация 3d 3 4s 2 Радиус атома 134 пм Химические свойства Ковалентный радиус 122 пм Радиус иона (+5e)59 (+3e)74 пм Электроотрицательность 1,63 (шкала Полинга) Электродный потенциал 0 Степени окисления 5, 4, 3, 2, 0 Энергия ионизации
(первый электрон) 650,1 (6,74) кДж /моль (эВ) Термодинамические свойства простого вещества Плотность (при н. у.) 6,11 г/см³ Температура плавления 2160 К (1887 °C) Температура кипения 3650 К (3377 °C) Уд. теплота плавления 17,5 кДж/моль Уд. теплота испарения 460 кДж/моль Молярная теплоёмкость 24,95 Дж/(K·моль) Молярный объём 8,35 см ³/моль Кристаллическая решётка простого вещества Структура решётки кубическая
объёмноцентрированная Параметры решётки 3,024 Å Температура Дебая 390 Прочие характеристики Теплопроводность (300 K) 30,7 Вт/(м·К) Номер CAS 7440-62-2

История

Химические свойства

Химически ванадий довольно инертен. Он стоек к действию морской воды, разбавленных растворов соляной, азотной и серной кислот, щелочей.

С кислородом ванадий образует несколько оксидов : VO, V 2 O 3 , VO 2 ,V 2 O 5 . Оранжевый V 2 O 5 - кислотный оксид, темно-синий VO 2 - амфотерный, остальные оксиды ванадия - основные.

Известны следующие оксиды ванадия:

Название Формула Плотность Температура плавления Температура кипения Цвет
Оксид ванадия(II) VO 5,76 г/см³ ~1830 °C 3100 °C Черный
Оксид ванадия(III) V 2 O 3 4,87 г/см³ 1967 °C 3000 °C Черный
Оксид ванадия(IV) VO 2 4,65 г/см³ 1542 °C 2700 °C Темно-голубой
Оксид ванадия(V) V 2 O 5 3,357 г/см³ 670 °C 2030 °C Красно-желтый

Галогениды ванадия гидролизуются. С галогенами ванадий образует довольно летучие галогениды составов VX 2 (X = , , , ), VX 3 , VX 4 (X = , , ), VF 5 и несколько оксогалогенидов (VOCl, VOCl 2 , VOF 3 и др.).

Соединения ванадия в степенях окисления +2 и +3 - сильные восстановители, в степени окисления +5 проявляют свойства окислителей. Известны тугоплавкий карбид ванадия VC (t пл =2800 °C), нитрид ванадия VN, сульфид ванадия V 2 S 5 , силицид ванадия V 3 Si и другие соединения ванадия.

При взаимодействии V 2 O 5 с осно́вными оксидами образуются ванадаты - соли ванадиевой кислоты вероятного состава HVO 3 .

Применение

80 % [ ] всего производимого ванадия находит применение в сплавах, в основном для нержавеющих и инструментальных сталей.

Атомно-водородная энергетика

Хлорид ванадия применяется при термохимическом разложении воды в атомно-водородной энергетике (ванадий-хлоридный цикл «Дженерал Моторс», США). В металлургии ванадий обозначается буквой Ф.

В производстве серной кислоты Металлургия

Применяется (особенно эффективно совместно с молибденом и никелем) в качестве легирующей добавки при производстве стали, при производстве биметаллов.

Автомобильная промышленность

Ванадий используется в деталях, требующих очень высокой прочности, таких как поршни автомобильных двигателей. Американский промышленник Генри Форд отмечал важную роль ванадия в автомобильной промышленности. «Если бы не было ванадия - не было бы автомобиля». - Говорил Форд .

Электроника

Материал на основе диоксидов ванадия и титана используют при создании компьютеров и другой электроники .

Нефтедобыча

Ванадиевая сталь используется при создании погружных буровых платформ для бурения нефтяных скважин .

Сувенирная продукция

Производство

Биологическая роль и воздействие

Ванадий и все его соединения токсичны . Наиболее токсичны соединения пятивалентного ванадия. Чрезвычайно ядовит его оксид(V) (ядовит при попадании внутрь организма и при вдыхании, поражает дыхательную систему). Смертельная доза ЛД50 оксида ванадия(V) для крыс орально составляет 10 мг/кг.

Ванадий и его соединения очень токсичны для водных организмов (окружающей среды).

Установлено, что ванадий может тормозить синтез жирных кислот , подавлять образование холестерина . Ванадий ингибирует ряд ферментных систем [ ] , тормозит фосфорилирование и синтез АТФ , снижает уровень коферментов А и , стимулирует активность моноаминоксидазы и окислительное фосфорилирование. Известно также, что при шизофрении содержание ванадия в крови значительно повышается [ ] .

Избыточное поступление ванадия в организм обычно связано с экологическими и производственными факторами. При остром воздействии токсических доз ванадия у рабочих отмечаются местные воспалительные реакции кожи и слизистых оболочек глаз, верхних дыхательных путей, скопление слизи в бронхах и альвеолах. Возникают и системные аллергические реакции типа астмы и экземы ; а также лейкопения и анемия , которые сопровождаются нарушениями основных биохимических параметров организма.

При введении ванадия животным (в дозах 25-50 мкг/кг), отмечается замедление роста, диарея и увеличение смертности.

Всего в организме среднего человека (масса тела 70 кг) 0,11 мг ванадия. Токсическая доза для человека 0,25 мг, летальная доза - 2-4 мг.

ОПРЕДЕЛЕНИЕ

В виде простого вещества ванадий серый тугоплавкий металл с объемно-центрированной кубической решеткой. Расположен в четвертом периоде V группы побочной (B) подгруппы Периодической таблицы.

Плотность - 6,11 г/см 3 . Температуры плавления и кипения равны 1920 o С и 3400 o С, соответственно. Физико-химические свойства ванадия сильно зависят от чистоты метала. Так, чистый металл отличается ковкостью, тогда как наличие примесей в нем сильно ухудшает его пластичность и повышают твердость. В обычных условиях - химически стойкий металл.

Валентность ванадия в соединениях

Ванадий находится в четвертом периоде в VB группе Периодической таблицы Д.И. Менделеева. Порядковый номер равен 23. В ядре атома ванадия содержится 23 протона и 27 нейтронов (массовое число равно 50). В атоме ванадия есть четыре энергетических уровня, на которых находятся 23 электрона (рис. 1).

Рис. 1. Строения атома ванадия.

Электронная формула атома ванадия в основном состоянии имеет следующий вид:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 3 4s 2 .

А энергетическая диаграмма (строится только для электронов внешнего энергетического уровня, которые по-другому называют валентными):

Наличие трех неспаренных электронов свидетельствует о том, что ванадий в своих соединениях может проявлять валентность III (V III 2 O 3 , V III F 3 , V III Cl 3).

Атом ванадия способен переходить в возбужденное состояние: электроны 4s-подуровня распариваются и один из них занимает вакантную орбиталь 3d-подуровня:

Наличие пяти неспаренных электронов свидетельствует о том, что ванадий также проявляет валентность V в своих соединениях (V V 2 O 5 , V V F 5).

Известно, что у ванадия есть валентности II(V II O) и IV (V IV O 2 , V IV Cl 4).

Примеры решения задач

ПРИМЕР 1