Ухо и механизм восприятия звука. Особенности восприятия звуков и звуковой информации человеком Особенности восприятия звука с возрастом




Звуковые колебания улавливаются ушной раковиной и по наружному слуховому проходу передаются барабанной перепонке, которая начинает колебаться в соответствии с частотой звуковых волн. Колебания барабанной перепонки передаются цепи косточек среднего уха и при их участии мембране овального окна. Колебания мембраны окна преддверия передаются перилимфе и эндолимфе, что вызывает колебания основной мембраны вместе с расположенным на ней кортиевым органом. При этом волосковые клетки своими волосками касаются текториальной мембраны и вследствие механического раздражения в них возникает возбуждение, которое передается далее на волокна преддверно-улиткового нерва.

Слуховой анализатор человека воспринимает звуковые волны с частотой их колебаний от 20 до 20 тыс. в секунду. Высота тона определяется частотой колебаний: чем она больше, тем выше по тону воспринимаемый звук. Анализ звуков но частоте осуществляется периферическим отделом слухового анализатора. Под влиянием звуковых колебаний прогибается мембрана окна преддверия, смещая при этом какой-то объем перилимфы.

При малой частоте колебаний частицы перилимфы перемещаются по вестибулярной лестнице вдоль спиральной мембраны по направлению к геликотреме и через нее по барабанной лестнице к мембране круглого окна, которая прогибается иа такую же величину, что и мембрана овального окна. Если же действует большая частота колебаний, возникает быстрое смещение мембраны овального окна и повышение давления в вестибулярной лестнице. В результате спиральная мембрана прогибается в сторону барабанной лестницы и реагирует участок мембраны вблизи окна преддверия. При повышении давления в барабанной лестнице изгибается мембрана круглого окна, основная мембрана благодаря своей упругости возвращается в исходное положение. В это время частицы перилимфы смещают следующий, более инерционный участок мембраны, и волна пробегает по всей мембране. Колебания окна преддверия вызывают бегущую волну, амплитуда которой возрастает и максимум ее соответствует какому-то определенному участку мембраны. По достижении максимума амплитуды волна затухает. Чем выше высота звуковых колебаний, тем ближе к окну преддверия находится максимум амплитуды колебаний спиральной мембраны. Чем меньше частота, тем ближе к геликотреме отмечаются наибольшие ее колебания.

Установлено, что при действии звуковых волн с частотой колебаний до 1000 в секунду в колебание приходит весь столб перилимфы вестибулярной лестницы и вся спиральная мембрана. При этом их колебания происходят в точном соответствии с частотой колебания звуковых волн и вызывают потенциалы действия такой же частоты в слуховом нерве. При частоте звуковых колебаний свыше 1000 колеблется не вся основная мембрана, а какой-то ее участок, начиная от окна преддверия. Чем выше частота колебаний, тем меньший по длине участок мембраны, начиная от окна преддверия, приходит в колебание и тем меньшее число волосковых клеток приходит в состояние возбуждения. В слуховом нерве в этом случае регистрируются потенциалы действия, частота которых меньше частоты звуковых волн, действующих на ухо, причем при высокочастотных звуковых колебаниях импульсы возникают в меньшем числе волокон, чем при низкочастотных колебаниях, что связано с возбуждением лишь части волосковых клеток.

При действии звуковых колебаний в кортиевом органе происходит пространственное кодирование звука. Ощущение той или иной высоты звука зависит от длины колеблющегося участка основной мембраны, а следовательно, от числа расположенных на ней волосковых клеток и от места их расположения. Чем меньше колеблющихся клеток и чем ближе они расположены к окну преддверия, тем более высоким воспринимается звук. Колеблющиеся волосковые клетки вызывают возбуждение в строго определенных волокнах слухового нерва, а значит, и в определенных нервных клетках головного мозга.

Сила звука определяется амплитудой звуковой волны. Ощущение интенсивности звука связано с различным соотношением числа возбужденных внутренних и внешних волосковых клеток. Поскольку внутренние клетки менее возбудимы, чем внешние, возбуждение большого их числа возникает при действии сильных звуков.

Возрастные особенности слухового анализатора

Формирование улитки происходит на 12-й неделе внутриутробного развития, а на 20-й неделе начинается миелинизация волокон улиткового нерва в нижнем (основном) завитке улитки. Миелинизация в среднем и верхнем завитках улитки начинается значительно позднее.

Дифференцировка отделов слухового анализатора, которые расположены в головном мозге, проявляется в формировании клеточных слоев, в увеличении пространства между клетками, в росте нейронов и изменении их структуры: в увеличении числа отростков, шипиков и синапсов.

Подкорковые структуры, относящиеся к слуховому анализатору, созревают раньше, чем его корковый отдел. Их качественное развитие заканчивается на 3-м месяце после рождения. Корковые ноля слухового анализатора приближаются к взрослому состоянию к окончанию дошкольного возраста.

Слуховой анализатор начинает функционировать сразу же после рождения. Уже у новорожденных возможно осуществление элементарного анализа звуков. Первые реакции на звук носят характер ориентировочных рефлексов, осуществляемых на уровне подкорковых образований. Они отмечаются даже у недоношенных детей и проявляются в закрывании глаз, открывании рта, вздрагивании, уменьшении частоты дыхания, пульса, в различных мимических движениях. Звуки, одинаковые по интенсивности, но разные по тембру и высоте, вызывают разные реакции, что свидетельствует о способности их различения новорожденным ребенком.

Ориентировочная реакция на звук появляется у младенцев на первом месяце жизни и с 2–3 месяцев принимает характер доминанты. Условные пищевые и оборонительные рефлексы на звуковые раздражения вырабатываются с 3-5 недель жизни ребенка, но их упрочнение возможно лишь с 2 месяцев. Дифференцирование разнородных звуков отчетливо совершенствуется с 2–3 месяцев. В 6–7 месяцев дети дифференцируют тоны, отличающиеся от исходного на 1–2 и даже на 3–4,5 музыкального тона.

Функциональное развитие слухового анализатора продолжается до 6–7 лет, что проявляется в образовании тонких дифференцировок на речевые раздражители и изменении порога слышимости. Порог слышимости уменьшается, острота слуха увеличивается к 14–19 годам, затем они постепенно изменяются в обратном направлении. Изменяется также чувствительность слухового анализатора к разным частотам. С рождения он "настроен" на восприятие звуков человеческого голоса, причем в первые месяцы – высокого, негромкого, с особыми ласкательными интонациями, получившего название "baby talk", именно таким голосом большинство мам инстинктивно разговаривают со своими младенцами. С 9-месячного возраста ребенок может различать голоса близких ему людей, частоты различных шумов и звуков повседневной жизни, просодические средства языка (высота тона, долгота, краткость, различная громкость, ритм и ударение), прислушивается, если с ним заговаривают. Дальнейшее повышение чувствительности к частотным характеристикам звуков происходит одновременно с дифференциацией фонематического и музыкального слуха, становится максимальной к 5–7 годам и в значительной степени зависит от тренировки. Во взрослом и пожилом возрасте частотные характеристики слухового восприятия также изменяются: до 40 лет наименьший порог слышимости падает на частоту 3000 Гц, в 40–49 лет – 2000 Гц, после 50 лет – 1000 Гц, с этого возраста понижается верхняя граница воспринимаемых звуковых колебаний.

Восприятие звука основано на двух процессах, происходящих в улитке:

разделении звуков различной частоты по месту их наибольшего воздействия на основную мембрану улитки;

преобразовании рецепторными клетками механических колеба­ний в нервное возбуждение.

Звуковые колебания, поступающие во внутреннее ухо через овальное окно, передаются перилимфе, а колебания этой жидкости приводят к сме­щениям основной мембраны, на которой расположены рецепторные во­лосковые клетки: внутренние и наружные, отделенные друг от друга кортиевыми дугами. Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной мембраной, которая по всему ходу перепонча­того канала расположена над волосковыми клетками. При действии звуков основная мембрана начинает колебаться, волоски рецепторных клеток ка­саются покровной мембраны и механически раздражаются. В результате в них возникает процесс возбуждения, который по афферентным волокнам направляется к нейронам спирального узла улитки и далее в ЦНС.

От высоты звука зависит высота столба колеблющейся жидкости и, соответственно, место наибольшего смещения основной мембраны: звуки высокой частоты дают наибольший эффект на начале основной мембраны, а низких частот доходят до вершины улитки. Таким образом, при различных по частоте звуках возбуждаются разные волосковые клетки и разные волокна. Увеличение силы звука приводит к увеличению числа возбужденных волосковых клеток и нервных волокон, что позволяет различать интенсивность звуковых колебаний.

Различают костную и воздушную проводимость звука. В обычных условиях у человека преобладает воздушная проводимость – проведение звуковых колебаний через наружное и среднее ухо к рецепторам внутреннего уха. В случае костной проводимости звуковые колебания передаются через кости черепа непосредственно улитке (например, при нырянии, подводном плавании).

Человек обычно воспринимает звуки с частотой от 15 до 20 000 Гц. У детей верхний предел достигает 22 000 Гц, с возрастом он понижается. Наиболее высокая чувствительность обнаружена в области частот от 1 000 до 3 000 Гц. Эта область соответствует наиболее часто встречающимся частотам человеческой речи и музыки.

4. Значение и общий план организации вестибулярной сенсорной системы

Вестибулярная сенсорная система служит для анализа положения и движения тела в пространстве. Это одна из древнейших сенсорных систем, развившаяся в условиях действия силы тяжести на Земле. Наряду со зрительной сенсорной системой и кинестетическим анализатором она играет ведущую роль в пространственной ориентировке человека. Импульсы от вестибулорецепторов используются в организме для поддержания равновесия тела, для регуляции и сохранения позы, для пространственной организации движений человека. При равномерном движении или в условиях покоя рецепторы вестибулярной сенсорной системы не возбуждаются.

Вестибулярная сенсорная система состоит из следующих отделов:

1. периферического, который включает два образования, содержащих механорецепторы вестибулярной системы, – преддверие (мешочек и маточка) и полукружные каналы;

2. проводникового, который начинается от рецепторов волокнами биполярной клетки (первого нейрона) вестибулярного узла, расположенного в височной кости, аксоны этих нейронов образуют вестибулярный нерв и вместе со слуховым нервом в составе 8-ой пары черепномозговых нервов входят в продолговатый мозг; в вестибулярных ядрах продолговатого мозга находятся вторые

3. нейроны, импульсы от которых поступают к третьим нейронам – в таламусе. Сигналы от вестибулярных ядер направляются не только к таламусу (это не единственный путь), они направляются во многие отделы ЦНС: спинной мозг, мозжечок, ретикулярную формацию и вегетативные ганглии. 3. коркового, представленного четвертыми нейронами, часть которых расположена в первичном поле вестибулярной системы в височной области коры, а другая – в непосредственной близости к пирамидным нейронам моторной области коры и в постцентральной извилине. Точная локализация вестибулярной зоны коры человека в настоящее время окончательно не выяснена.

5. Функционирование вестибулярного аппарата

Итак, периферическим отделом вестибулярной сенсорной системы является вестибулярный аппарат, находящийся во внутреннем ухе в лабиринте пирамиды височной кости. Он состоит из преддверия и трех полукружных каналов.

1. Каналы и полости в височной кости образуют костный лабиринт вестибулярного аппарата, который частично заполнен перепончатым лабиринтом. Между костным и перепончатым лабиринтами находится жидкость – перилимфа, а внутри перепончатого лабиринта – эндолимфа.

2. Аппарат преддверия предназначен для анализа действия силы тяжести при изменениях положения тела в пространстве и ускорений прямолинейного движения. Он разделен на 2 полости – мешочек и маточку, содержащих отолитовые приборы, механорецепторы которых представляют собой волосковые клетки. Выступающая в полость часть рецепторной клетки оканчивается одним более длинным подвижным волоском и 60 – 80 склеенными неподвижными волосками. Эти волоски пронизывают желеобразную отолитовую мембрану, в которой находятся кристаллы углекислого кальция – отолиты (рис. 33).

3. В маточке отолитовая мембрана расположена в горизонтальной плоскости, а в мешочке она согнута и находится во фронтальной и сагиттальной плоскостях.

4. При изменении положения головы и тела, а также при вертикальных или горизонтальных ускорениях отолитовые мембраны свободно перемещаются под действием силы тяжести во всех трех плоскостях (т.е. скользят по волоскам), деформируя при этом волоски механорецепторов. Чем больше деформация волосков, тем выше частота афферентных импульсов в волокнах вестибулярного нерва.

Рис. 33. Строение отолитового аппарата:

1 – отолиты; 2 – отолитовая мембрана; 3 – волоски рецепторных клеток;

4 – рецепторные клетки; 5 – опорные клетки; 6 – нервные волокна

Аппарат полукружных каналов служит для анализа действия центробежной силы при вращательных движениях. Адекватным его раздражителем является угловое ускорение. Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях (передняя во фронтальной плоскости, боковая в горизонтальной, задняя в сагиттальной) и заполнены, как и весь лабиринт, плотной эндолимфой (ее вязкость в 2 – 3 раза больше, чем у воды). Один из концов каждого канала расширен в «ампулу». Рецепторные волосковые клетки сконцентрированы только в ампулах в виде крист (складок, гребешков), т.е. склеены. При движении эндолимфы (во время угловых ускорений), когда волоски сгибаются в одну сторону, волосковые клетки возбуждаются, а при противоположно направленном движении – тормозятся. Рецепторный потенциал, генерируемый при раздражении волосковых клеток, передает импульс окончаниям волокон вестибулярного нерва.

В настоящее время показано, что вращения или наклоны в одну сторону увеличивают афферентную импульсацию, а в другую сторону уменьшают ее. Это позволяет различать направление прямолинейного или вращательного движения.

6. Влияние вестибулярной системы на различные функции организма

Вестибулярная сенсорная система связана со многими центрами спинного и головного мозга и вызывает ряд вестибулосоматических и вестибуловегетативных рефлексов (рис. 34). Важнейшие из этих реакций – вестибулоспинальные.

Вестибулярные раздражения вызывают установочные рефлексы изменения тонуса мышц, лифтные рефлексы, а также особые движения глаз, направленные на сохранение изображения на сетчатке, – нистагм (движения глазных яблок со скоростью вращения, но в противоположном направлении, затем быстрое возвращение к исходной позиции и новое противоположное вращение).



Рис. 34. Афферентные связи вестибулярного аппарата:

Г – глаз; Тк – тонкая кишка; М – мышца; Пм – продолговатый мозг;

Ж – желудок; См – спинной мозг

В вестибуловегетативные реакции вовлекаются сердечнососудистая система, желудочно-кишечный тракт и другие органы. При сильных и длительных нагрузках на вестибулярный аппарат возникает «болезнь движения» (примером которой может служить морская болезнь), которая проявляется изменением частоты сердцебиения и артериального давления, ухудшением чувства времени, изменением психических функций – внимания, оперативного мышления, кратковременной памяти, эмоциональных проявлений. В тяжелых случаях возникают головокружение, тошнота, рвота. Повышенная склонность к «болезни движения» может быть уменьшена специальной тренировкой (вращение, качели) и применением ряда лекарственных средств.

В условиях невесомости (когда у человека выключены вестибулярные влияния) возникает утрата представления о пространственном положении тела. Теряются навыки ходьбы, бега. Ухудшается состояние нервной системы, возникает повышенная раздражительность, нестабильность настроения. Таким образом, помимо основной анализаторной функции, важной для управления позой и движениями человека, вестибулярная сенсорная система оказывает разнообразные побочные влияния на многие функции организма, которые возникают в результате иррадиации возбуждения на другие нервные центры.

Побуждение к действию

Замысел действия

Схемы целенаправленных движений

(приобретенные и врожденные)

Регуляция позы

Моно- и полисинаптические рефлексы

Длина мышц Напряжение мышц



Программа

Выполнение


Рис. 35. Общий план организации двигательной сенсорной системы


Лекция 22

ДВИГАТЕЛЬНАЯ СЕНСОРНАЯ СИСТЕМА.

СЕНСОРНЫЕ СИСТЕМЫ КОЖИ, ВКУСА И ОБОНЯНИЯ

1. Значение и общий план организации двигательной сенсорной системы

Двигательная сенсорная система служит для анализа состояния двигательного аппарата его движения и положения. Информация о степени сокращения скелетных мышц, натяжении сухожилий, изменении суставных углов необходима для регуляции двигательных актов и поз.

Двигательная сенсорная система состоит из следующих отделов:

1. периферического, представленного проприорецепторами, расположенными в мышцах, сухожилиях и суставных сумках;

2. проводникового, который начинается биполярными клетками (первыми нейронами), тела которых расположены вне ЦНС в спинномозговых узлах, один их отросток связан с рецепторами, другой входит в спинной мозг и передает импульсы ко вторым нейронам в продолговатый мозг (часть путей от проприорецепторов направляется в кору мозжечка), а далее к третьим нейронам – релейным ядрам таламуса;

3. коркового, находящегося в передней центральной извилине коры больших полушарий.

Общий план организации двигательной сенсорной системы представлен на рис. 35.

2. Функции проприорецепторов


В мышцах млекопитающих и человека содержатся 3 типа специали­зированных рецепторов: мышечные веретена, сухожильные рецепторы

Гольджи и суставные рецепторы (ре­цепторы суставной капсулы и сустав­ных связок). Все эти рецепторы реа­гируют на механические раздражения и участвуют в координации движений, являясь источником информации о состоянии двигательного аппарата. Специфическим раздражителем проприорецепторов является их растяжение.

Мышечные веретена представ­ляют собой небольшие продолговатые образования (длиной несколько мил­лиметров, шириной - десятые доли миллиметра), расположенные в толще мышцы. Каждое веретено покрыто капсулой, образованной несколькими слоями клеток, которая в центральной части расширяется и образует ядер­ную сумку (рис. 36).

Рис. 36. Мышечное веретено:

1 – проксимальный конец интрафузального мышечного волокна, прикрепленного к волокну скелетной мышцы; 2 – дистальный конец этого волокна, прикрепленного к фасции; 3 – ядерная сумка; 4 – афферентные волокна; 5 – волокна гамма-мотонейрона; 6 – волокно альфа-мотонейрона, идущее к скелетной мышце

Внутри капсулы находится пучок (от 2 до 14) тонких волокон (в 2 - 3 раза тоньше обычных волокон скелетных мышц), которые называ­ют интрафузальными в отличие от всех остальных волокон мышцы (экстрафузальных) .

Веретена расположены параллельно экстрафузальным волокнам -один конец прикреплен к сухожилию, а другой - к волокну. Различают ин-трафузальные волокна двух типов:

ядерносумчатые - более толстые и длинные с ядрами в средней, утолщенной, части волокна - ядерной сумке, которые связаны с наиболее толстыми и быстропроводящими афферентными нервными волокнами - они информируют о динамическом компонен­те движения (скорости изменения длины мышцы);

ядерноцепочечные - более короткие, тонкие, с ядрами, вытяну­тыми в цепочку, информирующие о статическом компоненте (удерживаемой в данный момент длине мышцы).

На интрафузальных волокнах спирально расположены (намотаны) чувствительные окончания афферентных нервных волокон.

При растяжении скелетной мышцы происходит растяжение и мы­шечных рецепторов, при этом деформируются окончания нервных воло­кон, что вызывает появление в них нервных импульсов, идущих, в первую очередь, к мотонейронам спинного мозга. Частота импульсации возрастает с увеличением растяжения мышцы, а также при увеличении скорости ее растяжения. Тем самым нервные центры информируются о скорости рас­тяжения мышцы и ее длине. Импульсация от мышечных веретен продол­жается в течение всего периода поддержания растянутого состояния, что обеспечивает постоянную осведомленность центров о длине мышцы. Чем более тонкие и координированные движения осуществляют мышцы, тем больше в них мышечных веретен: у человека в глубоких мышцах шеи, свя­зывающих позвоночник с головой, среднее их число составляет 63, а в мышцах бедра и таза - менее 5 веретен на 1 г веса мышцы.

ЦНС может тонко регулировать чувствительность проприорецепторов, т.е. веретена имеют и эфферентную иннервацию: интрафузальные мышечные волокна иннервируются аксонами, идущими к ним от гамма-мотонейронов. Возбуждение альфа-мотонейронов сопровождается возбу­ждением гамма-мотонейронов. Активация гамма-мотонейронов приводит к повышению чувствительности (возбудимости) афферентных нейронов: при той же длине скелетной мышцы в нервные центры при этом будет по­ступать большее число афферентных импульсов.

Разряды мелких гамма-мотонейронов спинного мозга вызывают со­кращение интрафузальных мышечных волокон по обе стороны от ядерной сумки веретена. В результате средняя несократимая часть мышечного веретена растягивается, и деформация отходящего отсюда нервного во­локна вызывает повышение его возбудимости. Это позволяет, во-первых, выделять проприоцептивную импульсацию на фоне другой афферентной информации и, во-вторых, увеличивать точность анализа состояния мышц. Повышение чувствительности веретен происходит во время движе­ния и даже в предстартовом состоянии. Это объясняется тем, что в силу низкой возбудимости гамма-мотонейронов их активность в состоянии по­коя выражена слабо, а при произвольных движениях и вестибулярных реакциях она активируется. Чувствительность проприорецепторов повышается также при умеренных раздражениях симпатических волокон и выделении небольших доз адреналина.

Сухожильные рецепторы Гольджи находятся в месте соединения мышечных волокон с сухожилием. Сухожильные рецепторы (окончания нервных волокон) оплетают тонкие сухожильные волокна, окруженные капсулой. В результате последовательного крепления сухожильных рецепторов к мышечным волокнам (а в ряде случаев – к мышечным веретенам) растяжение сухожильных механорецепторов происходит при напряжении мышц, т.е. они возбуждаются при сокращении мышцы. Таким образом, в отличие от мышечных веретен сухожильные рецепторы информируют нервные центры о силе, развиваемой мышцей (о степени напряжения мышц и скорости его развития). На спинальном уровне они через интернейроны вызывают торможение мотонейронов собственной мышцы и возбуждение мотонейронов антагониста.

Суставные рецепторы информируют о положении отдельных частей тела в пространстве и относительно друг друга. Они представляют собой свободные нервные окончания или окончания, заключенные в специальную капсулу. Одни суставные рецепторы посылают информацию о величине суставного угла, т.е. о положении сустава. Их импульсация продолжается в течение всего периода сохранения данного угла. Она тем большей частоты, чем больше сдвиг угла. Другие суставные рецепторы возбуждаются только в момент движения в суставе, т.е. посылают информацию о скорости движения. Частота их импульсации возрастает с увеличением скорости изменения суставного угла.

Сигналы, идущие от рецепторов мышечных веретен, сухожильных органов, суставных сумок и тактильных рецепторов кожи, называют кинестетическими, т.е. информирующими о движении тела. Их участие в произвольной регуляции движений различно. Сигналы от суставных рецепторов вызывают заметную реакцию в коре больших полушарий и хорошо осознаются. Благодаря им человек лучше воспринимает различия при движениях в суставах, чем различия в степени напряжения мышц при статических положениях или поддержании веса. Сигналы же от других проприорецепторов, поступающие преимущественно в мозжечок, обеспечивают бессознательную регуляцию, подсознательный контроль движений и поз.

3. Сенсорные системы кожи, внутренних органов, вкуса и обоняния

В коже и внутренних органах имеются разнообразные рецепторы, реагирующие на физические и химические раздражители.

Кожная рецепция

В коже представлена тактильная, температурная и болевая рецепция. На 1 см 2 кожи, в среднем, приходится 12 13 холодовых точек, 1 2 теп­ловых, 25 тактильных и около 100 болевых.

Тактильная сенсорная система предназначена для анализа давле­ния и прикосновения. Ее рецепторы представляют собой свободные нервные окончания и сложные образования (тельца Мейснера, тельца Пачини), в которых нервные окончания заключены в специальную капсулу. Они находятся в верхних и нижних слоях кожи, в кожных сосудах, в осно­ваниях волос. Особенно их много на пальцах рук и ног, ладонях, подош­вах, губах. Это механорецепторы, реагирующие на растяжение, давление и вибрацию. Наиболее чувствительным рецептором является тельце Пачини, которое вызывает ощущение прикосновения при смещении капсулы лишь на 0,0001 мм. Чем больше размеры тельца Пачини, тем более тол­стые и быстропроводящие афферентные нервы отходят от него. Они проводят кратковременные залпы (длительностью 0,005 с), информи­рующие о начале и окончании действия механического раздражителя.

Путь тактильной информации следующий : рецептор - 1-й ней­рон в спинномозговых узлах - 2-й нейрон в спинном или продолговатом мозге - 3-й нейрон в промежуточном мозге (в таламусе) - 4-й нейрон в задней центральной извилине коры больших полушарий (в первичной соматосенсорной зоне).

Температурная рецепция осуществляется холодовыми рецептора­ми (колбы Краузе) и тепловыми (тельца Руффини, Гольджи-Маццони). При температуре кожи 31 - 37 °С эти рецепторы почти неактивны. Ниже этой границы холодовые рецепторы активизируются пропорционально па­дению температуры, затем их активность падает и совсем прекращается при +12 °С. При температуре выше 37 °С активизируются тепловые рецеп­торы, достигая максимальной активности при +43 °С, затем резко прекра­щают ответы.

Болевая рецепция , как считает большинство специалистов, не име­ет специальных воспринимающих образований. Болевые раздражения вос­принимаются свободными нервными окончаниями, а также возникают при сильных температурных и механических раздражениях в соответствующих термо- и механорецепторах.

Температурные и болевые раздражения передаются в спинной мозг, оттуда в промежуточный мозг и в соматосенсорную область коры.

3.2. Висцероцептивная (интерорецептивная) сенсорная система

Во внутренних органах имеется множество рецепторов, воспринимающих давление, – барорецепторы сосудов, кишечного тракта и др., изменения химизма внутренней среды, – хеморецепторы, ее температуры, – терморецепторы, осмотического давления, болевые раздражения. С их помощью безусловнорефлекторным путем регулируется постоянство различ-ных констант внутренней среды (поддержание гомеостаза), ЦНС информируется об изменениях во внутренних органах.

Информация от интерорецепторов через блуждающий, чревный и тазовый нервы поступает в промежуточный мозг (и к таламусу, и к гипоталамусу), а также к подкорковым ядрам (хвостатому телу), мозжечку и далее – в лобные и другие области коры головного мозга. Деятельность этой системы практически не осознается, она мало локализована, однако при сильных раздражениях она хорошо ощущается. Она участвует в формировании сложных ощущений – жажды, голода и др.

3.3. Обонятельная и вкусовая сенсорные системы

Обонятельная и вкусовая сенсорные системы относятся к древнейшим системам. Они предназначены для восприятия и анализа химических раздражений, поступающих из внешней среды.

X еморецепторы обоняния находятся в обонятельном эпителии верхних носовых ходов. Это – волосковые биполярные клетки, передающие информацию через решетчатую кость черепа к клеткам обонятельной луковицы мозга и далее через обонятельный тракт к обонятельным зонам коры (крючок морского коня, извилина гиппокампа и другие). Различные рецепторы избирательно реагируют на разные молекулы пахучих веществ, возбуждаясь лишь теми молекулами, которые являются зеркальной копией поверхности рецептора. Они воспринимают эфирный, камфарный, мятный, мускусный и другие запахи, причем к некоторым веществам чувствительность необычайно высока.

Хеморецепторы вкуса представляют собой вкусовые луковицы, расположенные в эпителии языка, задней стенке глотки и мягкого неба. У детей их количество больше, а с возрастом убывает. Микроворсинки рецепторных клеток выступают из луковицы на поверхность языка и реагируют на растворенные в воде вещества. Их сигналы поступают через волокна лицевого и языко-глоточного нервов в таламус и далее в соматосенсорную область коры. Рецепторы разных частей языка воспринимают четыре основных вкуса: горький (задняя часть языка), кислый (края языка), сладкий (передняя часть языка) и соленый (передняя часть и края языка). Между вкусовыми ощущениями и химическим строением вещества отсутствует строгое соответствие, т.к. вкусовые ощущения могут изменяться при заболевании, беременности и т.д. В формировании вкусовых ощущений участвуют обоняние, тактильная, болевая и температурная чувствительность. Информация вкусовой сенсорной системы используется для организации пищевого поведения, связанного с добыванием, выбором, предпочтением или отверганием пищи, формированием чувства голода, сытости.

4. Переработка, взаимодействие и значение сенсорной информации

Сенсорная информация передается от рецепторов в высшие отделы мозга по двум основным путям нервной системы – специфическим и неспецифическим. Специфические проводящие пути – это классические афферентные пути зрительной, слуховой, двигательной и других сенсорных систем, которые составляют один из трех основных функциональных блоков мозга – блок приема, переработки и хранения информации (А. Р. Лурия, 1962, 1973). В обработке этой информации участвует и неспецифическая система мозга, не имеющая прямых связей с периферическими рецепторами, но получающая импульсы по коллатералям от всех восходящих специфических систем и обеспечивающая их широкое взаимодействие.

4.1. Обработка сенсорной информации в проводниковых отделах

Анализ получаемых раздражений происходит во всех отделах сенсорных систем. Наиболее простая форма анализа осуществляется уже на уровне рецепторов: из всех падающих на организм воздействий они выделяют (выбирают) раздражители одного вида (свет, звук и пр.). При этом в одной сенсорной системе возможно уже более детальное выделение характеристик сигналов (цветоразличение фоторецепторами колбочек и др. ).

Дальнейшая обработка афферентной информации в проводниковом отделе заключается, с одной стороны, в продолжающемся анализе свойств раздражителя, а с другой – в процессах их синтеза, в обобщении поступившей информации. По мере передачи афферентных импульсов на более высокие уровни сенсорных систем возрастает сложность обработки информации: например, в подкорковых зрительных центрах среднего мозга есть нейроны, которые реагируют на различную степень освещенности и обнаруживают движение; в подкорковых слуховых центрах – нейроны, извлекающие информацию о высоте тона и локализации звука, что лежит в основе ориентировочного рефлекса на неожиданные раздражители, т.е. эти нейроны реагируют на афферентные сигналы более сложно, чем простые проводники.

Благодаря многим разветвлениям афферентных путей на уровне спинного мозга и подкорковых центров обеспечивается многократное взаимодействие афферентных импульсов в пределах одной сенсорной системы, а также взаимодействие между различными сенсорными системами (в частности, можно отметить чрезвычайно обширные взаимодействия вестибулярной сенсорной системы со многими восходящими и нисходящими путями). Особенно широкие возможности для взаимодействия различных сигналов создаются в неспецифической системе мозга, где к одному и тому же нейрону могут сходиться (конвергировать) импульсы различного происхождения (от 30 тысяч нейронов) и от разных рецепторов тела. Вследствие этого неспецифическая система играет большую роль в процессах интеграции функций в организме.

При поступлении в более высокие уровни ЦНС происходит либо сжатие, либо расширение информации, приходящей от одного рецептора, что связано с неодинаковым числом элементов в соседних слоях. Примером может служить зрительная сенсорная система, где слой фоторецепторов в каждой из двух сетчаток человека имеет около 130 млн элементов, а в слое выходных – ганглиозных клеток сетчатки – всего 1 млн 250 тысяч нейронов. Одна ганглиозная клетка сетчатки объединяет информацию от сотни биполярных клеток и десятков тысяч рецепторов, т.е. такая информация поступает в зрительные нервы уже после значительной обработки, в сокращенном виде. Это пример сужения (сжатия) информации.

С другой стороны, сигналы одного рецептора связаны с десятками ганглиозных клеток и могут, в принципе, передавать информацию любым корковым нейронам зрительной коры. На более высоких уровнях зрительной сенсорной системы происходит расширение информации: число нейронов в первичной зрительной зоне коры в тысячи раз больше, чем в подкорковом зрительном центре или на выходе из сетчатки. В слуховой и ряде других сенсорных систем представлена только расширяющаяся «воронка» – по направлению от рецепторов к коре. Физиологический смысл расширяющихся «воронок» – обеспечение более дробного и сложного анализа сигналов.

Большое количество параллельных каналов (в зрительном нерве 900 000, а слуховом – 30 000 волокон) обеспечивает передачу без искажений специфической информации от рецепторов к коре.

Одной из важнейших сторон обработки афферентной информации является отбор наиболее значимых сигналов, осуществляемый восходящими и нисходящими влияниями на различных уровнях сенсорных систем. В этом отборе важную роль играет также неспецифический отдел нервной системы (лимбическая система, ретикулярная формация). Активируя или затормаживая многие центральные нейроны, он способствует отбору наиболее значимой для организма информации. В отличие от обширных влияний среднемозговой части ретикулярной формации, импульсация из неспецифических ядер таламуса воздействует лишь на ограниченные участки коры больших полушарий. Такое избирательное повышение активности небольшой территории коры имеет значение в организации акта внимания, выделяя на общем афферентном фоне наиболее важные в данный момент сообщения.

4.2. Обработка информации на корковом уровне

В коре больших полушарий сложность обработки информации возрастает от первичных полей к вторичным и третичным ее полям.

Первичные поля коры осуществляют анализ раздражений определенного вида, поступающих от связанных с ними специфических рецепторов. Это так называемые ядерные зоны анализаторов (по И. П. Павлову) – зрительные, слуховые и др. Их деятельность лежит в основе возникновения ощущений.

Лежащие вокруг них вторичные поля (периферия анализаторов) получают от первичных полей результаты обработки информации и преобразуют их в более сложные формы. Во вторичных полях происходит осмысливание полученной информации, ее узнавание, обеспечиваются процессы восприятия раздражений данного вида. От вторичных полей отдельных сенсорных систем информация поступает в задние третичные поля – ассоциативные нижнетеменные зоны, где происходит интеграция сигналов различной модальности, позволяющая создать цельный образ внешнего мира со всеми его запахами, звуками, красками и т.п. Здесь на основе афферентных сообщений от разных частей правой и левой половины тела формируются сложные представления человека о схеме пространства и схеме тела, которые обеспечивают пространственную ориентацию движений и точную адресацию моторных команд к различным скелетным мышцам. Эти зоны также имеют особое значение в хранении полученной информации.

На основе анализа и синтеза информации, обработанной в заднем третичном поле коры, в ее передних третичных полях (передней лобной области) формируются цели, задачи и программы поведения человека.

Важной особенностью корковой организации сенсорных систем является экранное или соматотопическое (лат. соматикус – телесный, топикус – местный) представительство функций. Чувствительные корковые центры первичных полей коры образуют как бы экран, отражающий расположение рецепторов на периферии, т.е. здесь имеются проекции «точка в точку». Так, в задней центральной извилине (в соматосенсорной зоне) нейроны тактильной, температурной и кожной чувствительности представлены в том же порядке, что и рецепторы на поверхности тела, напоминая копию человечка (гомункулюса); в зрительной коре – как бы экран рецепторов сетчатки; в слуховой коре – в определенном порядке нейроны, реагирующие на определенную высоту звуков. Тот же принцип пространственного представительства информации наблюдается в переключательных ядрах таламуса, в коре мозжечка, что значительно облегчает взаимодействие различных отделов ЦНС.

Область коркового сенсорного представительства по своим размерам отражает функциональную значимость той или иной части афферентной информации. Так, в связи с особой значимостью анализа информации от кинестетических рецепторов пальцев руки и от речеобразующего аппарата у человека территория их коркового представительства значительно превосходит сенсорное представительство других участков тела. Аналогично этому, на единицу площади центральной ямки в сетчатке глаза приходится почти в 500 раз большая зона зрительной коры, чем на такую же единицу площади периферии сетчатки.

Высшие отделы ЦНС обеспечивают активный поиск сенсорной информации. Это наглядно проявляется в деятельности зрительной сенсорной системы. Специальные исследования движений глаз показали, что взор фиксирует не все точки пространства, а лишь наиболее информативные признаки, особо важные для решения какой- либо задачи в данный момент. Поисковая функция глаз является частью активного поведения человека во внешней среде, его сознательной деятельностью. Она управляется высшими анализирующими и интегрирующими областями коры – лобными долями, под контролем которых происходит активное восприятие внешнего мира.

Кора больших полушарий обеспечивает наиболее широкое взаимодействие различных сенсорных систем и их участие в организации двигательных действий человека, в т.ч. в процессе его спортивной деятельности.

4.3. Значение деятельности сенсорных систем в спорте

Эффективность выполнения спортивных упражнений зависит от процессов восприятия и переработки сенсорной информации.

Четкое восприятие пространства и пространственная ориентация движений обеспечиваются функционированием зрительной, слуховой, вестибулярной, кинестетической рецепции. Оценка временных интервалов и управление временными параметрами движений базируется на проприоцептивных и слуховых ощущениях. Вестибулярные раздражения при поворотах, вращениях, наклонах и т.п. заметно влияют на координацию движений и проявление физических качеств, особенно, при низкой устойчивости вестибулярного аппарата. Экспериментальное выключение отдельных сенсорных афферентаций у спортсменов (выполнение движений в специальном ошейнике, исключающем активацию шейных проприорецепторов; использование очков, закрывающих центральное или периферическое поле зрения) приводило к резкому снижению оценок за упражнение или к полной невозможности его исполнения. В противоположность этому, сообщение спортсмену дополнительной информации (особенно срочной – в процессе движения) помогало быстрому совершенствованию технических действий. На основе взаимодействия сенсорных систем у спортсменов вырабатываются комплексные представления, сопровождающие его деятельность в избранном виде спорта – «чувство» льда, снега, воды и т.п. При этом в каждом виде спорта имеются наиболее важные – ведущие сенсорные системы, от активности которых в наибольшей мере зависит успешность выступлений спортсмена.

1. Кем было создано учение об анализаторах?

2. Что называют анализатором?

3. Назовите общие принципы строения сенсорных систем.

4. В чем заключается принцип многослойности; многоканальности сенсорных систем?

5. На какие отделы делятся сенсорные системы?

6. Что такое рецепторы?


Материалы для самостоятельной подготовки Вопросы к коллоквиуму и для самоконтроля

1 Кем было создано учение об анализаторах?

2 Что называют анализатором?

3 Назовите общие принципы строения сенсорных систем.

4 В чем заключается принцип многослойности; многоканальности сенсорных систем?

5 На какие отделы делятся сенсорные системы?

6 Что такое рецепторы?

7. Назовите основные функции сенсорных систем.


О разделе

Этот раздел содержит статьи, посвященные феноменам или версиям, которые так или иначе могут быть интересны или полезны исследователям необъясненного.
Статьи разделены по категориям:
Информационные. Содержат полезную для исследователей информацию из различных областей знаний.
Аналитические. Включают аналитику накопленной информации о версиях или феноменах, а также описания результатов проведенных экспериментов.
Технические. Аккумулируют информацию о технических решениях, которые могут найти применение в сфере изучения необъясненных фактов.
Методики. Содержат описания методик, применяемых участниками группы при расследовании фактов и исследовании феноменов.
Медиа. Содержат информацию об отражении феноменов в индустрии развлечений: фильмах, мультфильмах, играх и т.п.
Известные заблуждения. Разоблачения известных необъясненных фактов, собранные в том числе из сторонних источников.

Тип статьи:

Информационные

Особенности восприятия человека. Слух

Звук – это колебания, т.е. периодическое механическое возмущение в упругих средах – газообразных, жидких и твердых. Такое возмущение, представляющее собой некоторое физическое изменение в среде (например, изменение плотности или давления, смещение частиц), распространяется в ней в виде звуковой волны. Звук может быть неслышимым, если его частота лежит за пределами чувствительности человеческого уха, или он распространяется в такой среде, как твердое тело, которая не может иметь прямого контакта с ухом, или же его энергия быстро рассеивается в среде. Таким образом, обычный для нас процесс восприятия звука – лишь одна сторона акустики.

Звуковые волны

Звуковая волна

Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение - звуковым давлением.

Рассмотрим длинную трубу, наполненную воздухом. С левого конца в нее вставлен плотно прилегающий к стенкам поршень. Если поршень резко двинуть вправо и остановить, то воздух, находящийся в непосредственной близости от него, на мгновение сожмется. Затем сжатый воздух расширится, толкнув воздух, прилегающий к нему справа, и область сжатия, первоначально возникшая вблизи поршня, будет перемещаться по трубе с постоянной скоростью. Эта волна сжатия и есть звуковая волна в газе.
То есть резкое смещение частиц упругой среды в одном месте, увеличит давление в этом месте. Благодаря упругим связям частиц, давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разряжения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

Звуковая волна в газе характеризуется избыточным давлением, избыточной плотностью, смещением частиц и их скоростью. Для звуковых волн эти отклонения от равновесных значений всегда малы. Так, избыточное давление, связанное с волной, намного меньше статического давления газа. В противном случае мы имеем дело с другим явлением – ударной волной. В звуковой волне, соответствующей обычной речи, избыточное давление составляет лишь около одной миллионной атмосферного давления.

Важно то обстоятельство, что вещество не уносится звуковой волной. Волна представляет собой лишь проходящее по воздуху временное возмущение, по прохождении которого воздух возвращается в равновесное состояние.
Волновое движение, конечно, не является характерным только для звука: в форме волн распространяются свет и радиосигналы, и каждому знакомы волны на поверхности воды.

Таким образом, звук, в широком смысле - упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания; в узком смысле - субъективное восприятие этих колебаний специальными органами чувств животных или человека.
Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычно человек слышит звуки, передаваемые по воздуху, в диапазоне частот от 16-20 Гц до 15-20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, - ультразвуком, от 1 ГГц - гиперзвуком. Среди слышимых звуков следует также особо выделить фонетические, речевые звуки и фонемы (из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка).

Различают продольные и поперечные звуковые волны в зависимости от соотношения направления распространения волны и направления механических колебаний частиц среды распространения.
В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.

Воздух не везде однороден для звука. Известно, что воздух постоянно находится в движении. Скорость его движения в различных слоях не одинакова. В слоях, близких к земле, воздух соприкасается с её поверхностью, зданиями, лесами и поэтому скорость его здесь меньше, чем вверху. Благодаря этому и звуковая волна идёт не одинаково быстро вверху и внизу. Если движение воздуха, т. е. ветер - попутчик звуку, то в верхних слоях воздуха ветер будет сильнее подгонять звуковую волну, чем в нижних. При встречном ветре звук вверху распространяется медленнее, чем внизу. Такое различие в скоростях сказывается на форме звуковой волны. В результате искажения волны звук распространяется не прямолинейно. При попутном ветре линия распространения звуковой волны изгибается вниз, при встречном - вверх.

Ещё одна причина неравномерного распространения звука в воздухе. Это - различная температура отдельных его слоёв.

Неодинаково нагретые слои воздуха, подобно ветру, изменяют направление звука. Днём звуковая волна изгибается вверх, потому что скорость звука в нижних более нагретых слоях больше, чем в верхних слоях. Вечером, когда земля, а с ней и близлежащие слои воздуха, быстро остывают, верхние слои становятся теплее нижних, скорость звука в них больше, и линия распространения звуковых волн изгибается вниз. Поэтому по вечерам на ровном месте бывает лучше слышно.

Наблюдая за облаками, часто можно заметить, как на разных высотах они движутся не только с различной скоростью, но иногда и в разных направлениях. Значит, ветер на различной высоте от земли может иметь неодинаковые скорость и направление. Форма звуковой волны в таких слоях будет также изменяться от слоя к слою. Пусть, например, звук идёт против ветра. В этом случае линия распространения звука должна изогнуться и направиться вверх. Но если на её пути встретится слой медленно движущегося воздуха, она вновь изменит своё направление и может снова вернуться на землю. Вот тогда-то на пространстве от места, где волна поднимается в высоту, до места, в котором она возвращается на землю, и возникает «зона молчания».

Органы восприятия звука

Слух - способность биологических организмов воспринимать звуки органами слуха; специальная функция слухового аппарата, возбуждаемая звуковыми колебаниями окружающей среды, например, воздуха или воды. Одно из биологических пяти чувств, называемое также акустическим восприятием.

Ухо человека воспринимает звуковые волны длиной примерно от 20 м до 1,6 см, что соответствует 16 - 20 000 Гц (колебаний в секунду) при передаче колебаний по воздуху, и до 220 кГц при передаче звука по костям черепа. Эти волны имеют важное биологическое значение, например, зву¬ковые волны в диапазоне 300-4000 Гц соответствуют человеческому голосу. Звуки выше 20 000 Гц имеют малое практическое значение, так как быстро тормозятся; колебания ниже 60 Гц воспринимаются благодаря вибрационному чувству. Диапазон частот, которые способен слышать человек, называется слуховым или звуковым диапазоном; более высокие частоты называются ультразвуком, а более низкие - инфразвуком.
Способность различать звуковые частоты сильно зависит от конкретного человека: его возраста, пола, подверженности слуховым болезням, тренированности и усталости слуха. Отдельные личности способны воспринимать звук до 22 кГц, а возможно - и выше.
Человек может различать несколько звуков одновременно благодаря тому, что в ушной улитке одновременно может быть несколько стоячих волн.

Ухо - сложный вестибулярно-слуховой орган, который выполняет две функции: воспринимает звуковые импульсы и отвечает за положение тела в пространстве и способность удерживать равновесие. Это парный орган, который размещается в височных костях черепа, ограничиваясь снаружи ушными раковинами.

Орган слуха и равновесия представлен тремя отделами: наружным, средним и внутренним ухом, каждый из которых выполняет свои конкретные функции.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина - сложной формы упругий хрящ, покрытый кожей, его нижняя часть, называемая мочкой,- кожная складка, которая состоит из кожи и жировой ткани.
Ушная раковина у живых организмов работает как приемник звуковых волн, которые затем передаются во внутреннюю часть слухового аппарата. Значение ушной раковины у человека намного меньше, чем у животных, поэтому у человека она практически неподвижна. Но вот многие звери, поводя ушами, способны гораздо точнее, чем человек, определить нахождение источника звука.

Складки человеческой ушной раковины вносят в поступающий в слуховой проход звук небольшие частотные искажения, зависящие от горизонтальной и вертикальной локализации звука. Таким образом мозг получает дополнительную информацию для уточнения местоположения источника звука. Этот эффект иногда используется в акустике, в том числе для создания ощущения объёмного звука при использовании наушников или слуховых аппаратов.
Функция ушной раковины - улавливать звуки; ее продолжением является хрящ наружного слухового прохода, длина которого в среднем составляет 25-30 мм. Хрящевая часть слухового прохода переходит в костную, а весь наружный слуховой проход выстлан кожей, содержащей сальные, а также серные железы, представляющие собой видоизмененные потовые. Этот проход заканчивается слепо: от среднего уха он отделен барабанной перепонкой. Уловленные ушной раковиной звуковые волны ударяются в барабанную перепонку и вызывают ее колебания.

В свою очередь, колебания барабанной перепонки передаются в среднее ухо.

Среднее ухо
Основной частью среднего уха является барабанная полость - небольшое пространство объемом около 1см³, находящееся в височной кости. Здесь находятся три слуховые косточки: молоточек, наковальня и стремечко - они передают звуковые колебания из наружного уха во внутреннее, одновременно усиливая их.

Слуховые косточки - как самые маленькие фрагменты скелета человека, представляют цепочку, передающую колебания. Рукоятка молоточка тесно срослась с барабанной перепонкой, головка молоточка соединена с наковальней, а та, в свою очередь, своим длинным отростком - со стремечком. Основание стремечка закрывает окно преддверия, соединяясь таким образом с внутренним ухом.
Полость среднего уха связана с носоглоткой посредством евстахиевой трубы, через которую выравнивается среднее давление воздуха внутри и снаружи от барабанной перепонки. При изменении внешнего давления иногда «закладывает» уши, что обычно решается тем, что рефлекторно вызывается зевота. Опыт показывает, что ещё более эффективно заложенность ушей решается глотательными движениями или если в этот момент дуть в зажатый нос.

Внутреннее ухо
Из трех отделов органа слуха и равновесия наиболее сложным является внутреннее ухо, которое из-за своей замысловатой формы называется лабиринтом. Костный лабиринт состоит из преддверия, улитки и полукружных каналов, но непосредственное отношение к слуху имеет только улитка, заполненная лимфатическими жидкостями. Внутри улитки находится перепончатый канал, также заполненный жидкостью, на нижней стенке которого расположен рецепторный аппарат слухового анализатора, покрытый волосковыми клетками. Волосковые клетки улавливают колебания жидкости, заполняющей канал. Каждая волосковая клетка настроена на определенную звуковую частоту, причем клетки, настроенные на низкие частоты, располагаются в верхней части улитки, а высокие частоты улавливаются клетками нижней части улитки. Когда волосковые клетки от возраста или по другим причинам гибнут, человек теряет способность воспринимать звуки соответствующих частот.

Пределы восприятия

Человеческое ухо номинально слышит звуки в диапазоне от 16 до 20 000 Гц. Верхний предел имеет тенденцию снижаться с возрастом. Большинство взрослых людей не могут слышать звук частотой выше 16 кГц. Ухо само по себе не реагирует на частоты ниже 20 Гц, но они могут ощущаться через органы осязания.

Диапазон громкости воспринимаемых звуков огромен. Но барабанная перепонка в ухе чувствительна только к изменению давления. Уровень давления звука принято измерять в децибелах (дБ). Нижний порог слышимости определён как 0 дБ (20 микропаскаль), а определение верхнего предела слышимости относится скорее к порогу дискомфорта и далее - к нарушение слуха, контузия и т. д. Этот предел зависит от того, как долго по времени мы слушаем звук. Ухо способно переносить кратковременное повышение громкости до 120 дБ без последствий, но долговременное восприятие звуков громкостью более 80 дБ может вызвать потерю слуха.

Более тщательные исследования нижней границы слуха показали, что минимальный порог, при котором звук остаётся слышен, зависит от частоты. Этот график получил название абсолютный порог слышимости. В среднем, он имеет участок наибольшей чувствительности в диапазоне от 1 кГц до 5 кГц, хотя с возрастом чувствительность понижается в диапазоне выше 2 кГц.
Существует также способ восприятия звука без участия барабанной перепонки - так называемый микроволновый слуховой эффект, когда модулированное излучение в микроволновом диапазоне (от 1 до 300 ГГц) воздействует на ткани вокруг улитки, заставляя человека воспринимать различные звуки.
Иногда человек может слышать звуки в низкочастотной области, хотя в реальности звуков такой частоты не было. Так происходит из-за того, что колебания базилярной мембраны в ухе не являются линейными и в ней могут возникать колебания с разностной частотой между двумя более высокочастотными.

Синестезия

Один из самых необычных психоневрологических феноменов, при котором не совпадают род раздражителя и тип ощущений, которые человек испытывает. Синестетическое восприятие выражается в том, что помимо обычных качеств могут возникать дополнительные, более простые ощущения или стойкие «элементарные» впечатления - например, цвета, запаха, звуков, вкусов, качеств фактурной поверхности, прозрачности, объемности и формы, расположения в пространстве и других качеств, не получаемых при помощи органов чувств, а существующих только в виде реакций. Такие дополнительные качества могут либо возникать как изолированные чувственные впечатления, либо даже проявляться физически.

Выделяют, например, слуховую синестезию. Это способность некоторых людей «слышать» звуки при наблюдении за движущимися предметами или за вспышками, даже если они не сопровождаются реальными звуковыми явлениями.
Следует учитывать, что синестезия, скорее психоневрологическая особенность человека и не является психическим расстройством. Такое восприятие окружающего мира может почувствовать обычный человек путем употребления некоторых наркотических веществ.

Общей теории синестезии (научно доказанного, универсального представления о ней) пока нет. На денный момент существует множество гипотез и проводится масса исследований в данной области. Уже появились оригинальные классификации и сопоставления, выяснились определенные строгие закономерности. Например, мы ученые уже выяснили, что у синестетов есть особый характер внимания - как бы «досознательный» - к тем явлениям, которые вызывают у них синестезию. У синестетов - немного иная анатомия мозга и кардинально иная его активация на синестетические «стимулы». А исследователи из Оксфордского университета (Великобритания) поставили серию экспериментов в ходе которых выяснили, что причиной синестезии могут быть сверхвозбудимые нейроны. Единственное, что можно сказать точно, что такое восприятие получается на уровне работы мозга, а не на уровне первичного восприятия информации.

Вывод

Волны давления, проходя через внешнее ухо, барабанную перепонку и косточки среднего уха, достигают заполненного жидкостью внутреннего уха, имеющего форму улитки. Жидкость, колеблясь, ударяется о мембрану, покрытую крохотными волосками, ресничками. Синусоидальные составляющие сложного звука вызывают колебания различных участков мембраны. Колеблющиеся вместе с мембраной реснички возбуждают связанные с ними нервные волокна; в них возникают серии импульсов, в которых «закодированы» частота и амплитуда каждой составляющей сложной волны; эти данные электрохимическим способом передаются мозгу.

Из всего спектра звуков прежде всего выделяют слышимый диапазон: от 20 до 20000 герц, инфразвуки (до 20 герц) и ультразвуки – от 20000 герц и выше. Инфразвуки и ультразвуки человек не слышит, но это не значит, что они не оказывают на него воздействия. Известно, что инфразвуки, особенно ниже 10 герц, способны влиять на психику человека, вызывать депрессивные состояния. Ультразвуки могут вызывать астено-вегетативные синдромы и др.
Слышимую часть диапазона звуков разделяют на низкочастотные звуки – до 500 герц, среднечастотные – 500-10000 герц и высокочастотные – свыше 10000 герц.

Такое подразделение очень важно, так как ухо человека неодинаково чувствительно к разным звукам. Наиболее чувствительно ухо к сравнительно узкому диапазону среднечастотных звуков от 1000 до 5000 герц. К более низко- и высокочастотным звукам чувствительность резко падает. Это приводит к тому, что человек способен услышать в среднечастотном диапазоне звуки с энергией около 0 децибел и не слышать низкочастотные звуки в 20-40-60 децибел. То есть, звуки с одной и той же энергией в среднечастотном диапазоне могут восприниматься как громкие, а в низкочастотном как тихие или быть вовсе не слышны.

Такая особенность звука сформирована природой не случайно. Звуки, необходимые для его существования: речь, звуки природы, – находятся в основном в среднечастотном диапазоне.
Восприятие звуков значительно нарушается, если одновременно звучат другие звуки, шумы близкие по частоте или составу гармоник. Значит, с одной стороны, ухо человека плохо воспринимает низкочастотные звуки, а, с другой, если в помещении посторонние шумы, то восприятие таких звуков может еще более нарушаться и извращаться.

Рассмотрев теорию распространения и механизмы возникновения звуковых волн, целесообразно понять, каким образом звук "интерпретируется" или воспринимается человеком. За восприятие звуковых волн в человеческом организме отвечает парный орган - ухо. Человеческое ухо - весьма сложный орган, который отвечает за две функции: 1) воспринимает звуковые импульсы 2) выполняет роль вестибулярного аппарата всего человеческого организма, определяет положение тела в пространстве и даёт жизненно важную способность удерживать равновесие. Среднестатистическое человеческое ухо способно улавливать колебания 20 - 20000 Гц, однако бывают отклонения в большую или меньшую сторону. В идеале, слышимый частотный диапазон составляет 16 - 20000 Гц, что так же соответствует 16 м - 20 см длины волны. Ухо делится на три составляющие: внешнее, среднее и внутреннее ухо. Каждое из этих "отделов" выполняет свою собственную функцию, однако все три отдела тесно связаны друг с другом и фактически осуществляют передачу волны звуковых колебаний друг другу.

Внешнее (наружнее) ухо

Внешнее ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина - упругий хрящ сложной формы, покрытый кожей. В нижней части ушной раковины располагается мочка, которая состоит из жировой ткани и также покрыта кожей. Ушная раковина выполняет роль приёмника звуковых волн из окружающего пространства. Особая форма строения ушной раковины позволяет лучше улавливать звуки, в особенности звуки среднечастотного диапазона, отвечающего за передачу речевой информации. Этот факт во многом обусловлен эволюционной необходимостью, поскольку человек большую часть жизни проводит в устном общении с представителями своего вида. Ушная раковина человека практически неподвижна, в отличии от большого числа представителей животного вида, которые используют движения ушами для более точной настройки на источник звука.

Складки человеческой ушной раковины устроены таким образом, что вносят поправки (незначительные искажения) относительно вертикальной и горизонтальной локации источника звука в пространстве. Именно за счёт этой уникальной особенности человек способен достаточно чётко определять местоположение объекта в пространстве относительно него самого, ориентируясь только по звуку. Эта особенность так же хорошо известна под термином "локализация звука". Основная функция ушной раковины - уловить как можно больше звуков в слышимом диапазоне частот. Дальнейшая судьба "пойманых" звуковых волн решается в слуховом проходе, длина которого 25-30 мм. В нём хрящевая часть внешней ушной раковины переходит в костную, а кожная поверхность слухового прохода наделена сальными и серными железами. В конце слухового прохода располагается эластичная барабанная перепонка, до которой доходят колебания звуковых волн, вызывая тем самым её ответные колебания. Барабанная перепонка в свою очередь передаёт эти полученные вибрации в область среднего уха.

Среднее ухо

Колебания, переданные барабанной перепонкой, попадают в область среднего уха, называемой "барабанная область". Это область объёмом около одного кубического сантиметра, в которой расположены три слуховые косточки: молоточек, наковальня и стремечко. Именно эти "промежуточные" элементы выполняют важнейшую функцию: передача звуковых волн во внутреннее ухо и одновременное усиление. Слуховые косточки представляют собой чрезвычайно сложную цепочку передачи звучания. Все три косточки тесно соединены друг с другом, а так же с барабанной перепонкой, за счёт чего и происходит передача колебаний "по цепочке". На подходе к области внутреннего уха имеется окно преддверия, которое перекрывается основанием стремечка. Для выравнивания давления с двух сторон барабанной перепонки (например, в случае изменений внешнего давления), область среднего уха соединяется с носоглоткой посредством евстахиевой трубы. Всем нам хорошо знаком эффект закладывания ушей, который возникает именно по причине такой тонкой настройки. Из среднего уха звуковые колебания, уже усиленные, попадают в область внутреннего уха, наиболее сложную и чувствительную.

Внутреннее ухо

Наиболее сложную форму представляет внутреннее ухо, названное по этой причине лабиринтом. Костный лабиринт включает в себя: преддверие, улитку и полукружные каналы, а также вестибулярный аппарат , отвечающий за равновесие. Непосредственно к слуху в этой связке относится именно улитка. Улитка представляет собой спиралевидный перепончатый канал, заполненый лимфатической жидкостью. Внутри канал делится на две части ещё одной перепончатой перегородкой под названием "основная мембрана". Данная мембрана представляют собой волокна различной длины (общим количеством более 24000), натянутые как струны, каждая струна резонирует на свой определённый звук. Деление канала мембраной осуществляется на верхнюю и нижнюю лестницу, сообщающиеся у верхушки улитки. С противоположного конца канал соединяется с рецепторным аппаратом слухового анализатора, который покрыт мельчайшими волосковыми клетками. Этот аппарат слухового анализатора так же носит название "Кортиев орган". Когда колебания из среднего уха попадают в улитку, лимфатическая жидкость, заполняющая канал, также начинает вибрировать, передавая колебания основной мембране. В этот момент в действие вступает аппарат слухового анализатора, волосковые клетки которого, расположенные в несколько рядов, осуществляют превращение звуковых колебаний в электрические "нервные" импульсы, которые по слуховому нерву передаются в височную зону коры головного мозга. Таким сложным и витиеватым образом человек в конечном случае услышит искомый звук.

Особенности восприятия и формирования речи

Механизм речеобразования формировался у человека на протяжении всего эволюционного этапа. Смысл этой способности заключается в передачи вербальной и невербальной информации. Первая несёт в себе словесную и смысловую нагрузку, вторая отвечает за передачу эмоциональной составляющей. Процесс создания и восприятия речи включает в себя: формулировка сообщения; кодирование в элементы по правилам существующего языка; переходные нейромускульные действия; движения голосовых связок; излучение акустического сигнала; Далее в действие вступает слушатель, осуществляя: спектральный анализ полученного акустического сигнала и выделение акустических признаков в периферической слуховой системе, передача выделенных признаков по нейронным сетям, распознавание языкового кода (лингвистический анализ), понимание смысла сообщения.
Аппарат формирования речевых сигналов можно сравнить со сложным духовым инструментом, однако многогранность и гибкость настройки и возможности воспроизведения малейших тонкостей и деталей не имеет аналогов в природе. Голосообразующий механизм состоит из трёх неразрывных составляющих:

  1. Генератор - лёгкие в качестве резервуара воздушного объёма. В лёгких запасается энергия избыточного давления, далее через выводящий канал при помощи мускульной системы осуществляется вывод этой энергии через трахею, соединённой с гортанью. На этом этапе воздушная струя прерывается и видоизменяется;
  2. Вибратор - состоит из голосовых связок. Так же на поток воздействуют воздушные турбулентные струи (создают краевые тоны) и импульсные источники (взрывы);
  3. Резонатор - включает резонансные полости сложной геометрической формы (глотка, ротовая и носовая полости).

В совокупности индивидуального устройства данных элементов формируется неповторимый и индивидуальный тембр голоса каждого человека в отдельности.

Генерация энергии воздушного столба осуществляется в легких, которые создают определённый поток воздуха при вдохе и выдохе за счет разницы атмосферного и внутрилегочного давления. Процесс накопления энергии осуществляется посредством вдоха, процесс освобождения характеизуется выдохом. Происходит это за счет сжатия и расширения грудной клетки, которые осуществляются с помощью двух групп мышц: межреберных и диафрагмы, при глубоком усиленном дыхании и пении сокращаются также мышцы брюшного пресса, груди и шеи. При вдохе диафрагма сжимается и опускается вниз, сокращение наружных межреберных мышц поднимает ребра и отводит их в стороны, а грудину вперед. Увеличение грудной клетки приводит к падению давления внутри лёгких (по отношению к атмосферному), и это пространство стремительно заполняется воздухом. При выдохе соответственно происходит расслабление мускул и всё возвращается в прежнее состояние (грудная клетка возвращается в исходное состояние за счёт своей собственной тяжести, диафрагма поднимается, уменьшается объём ранее расширившихся легких, давление внутрилёгочное растет). Вдох можно описать как процесс, требующий затраты энергии (активный); выдох – процесс накопления энергии (пассивный). Управление процессом дыхания и формирования речи происходит бессознательно, но при пении постановка дыхания требует осознанного подхода и длительного дополнительного обучения.

Количество энергии, которое впоследствии расходуется на формирование речи и голоса, зависит от объема запасенного воздуха и от величины дополнительного давления в легких. Максимально развиваемое давление у тренированного оперного певца может достигать 100-112 дБ. Модуляция воздушного потока вибрацией голосовых связок и создание подглоточного избыточного давления, эти процессы совершаются в гортани, которая представляет собой своеобразный клапан, расположенный на конце трахеи. Клапан выполняет двойственную функцию: предохраняет лёгкие от попадания посторонних предметов и поддерживает высокое давление. Именно гортань выступает в качестве источника речи и пения. Гортань представляет собой совокупность хрящей, соединённых мышцами. Гортань имеет достаточно сложное строение, главным элементом которой являются пара голосовых связок. Именно голосовые связки - основной (но не единственный) источник голосообразования или "вибратор". Во время этого процесса голосовые связки приходят в движение, сопровождаемое трением. Для защиты от этого выделяется особая слизистая секреция, выполняющая роль смазки. Образование речевых звуков определяется колебаниями связок, что приводит к формированию потока воздуха, выдыхаемого из легких, к определённому виду амплитудной характеристики. Между голосовыми складками располагаются небольшие полости, выполняющие роль акустических фильтров и резонаторов тогда, когда это требуется.

Особенности слухового восприятия, безопасность прослушивания, слуховые пороги, адаптация, правильный уровень громкости

Как видно из описания строения человеческого уха, орган этот весьма нежный и достаточно сложный по строению. Принимая этот факт во внимание, нетрудно определить, что этот чрезвычайно тонкий и чувствительный аппарат имеет набор ограничений, порогов и т.д. Человеческая слуховая система приспособлена к восприятию тихих звуков, а так же звуков средней интенсивности. Длительное воздействие громких звуков влечёт за собой необратимые сдвиги слуховых порогов, а так же прочие проблемы со слухом, вплоть до полной глухоты. Степень повреждения прямопропорциональна времени воздействия в громкой среде. В этот момент так же вступает в силу механизм адаптации - т.е. под действием длительных громких звуков чувствительность постепенно снижается, ощущаемая громкость уменьшается, слух адаптируется.

Адаптация изначально стремится защитить органы слуха от слишком громких звуков, однако, именно влияние этого процесса чаще всего заставляет человека неконтролируемо прибавлять уровень громкости аудиосистемы. Защита реализуется благодаря работы механизма среднего и внутреннего уха: стремечко отводится от овального окна, тем самым предохраняя от излишне громких звуков. Но механизм защиты не идеален и имеет задержку по времени, срабатывая только через 30-40 мс после начала поступления звука, притом полная защита не достигается ещё при длительности 150 мс. Механизм защиты активизуруется, когда уровень громкости переходит уровень 85 Дб, притом сама защита до 20 Дб.
Наиболее опасным, в данном случае, можно считать явление "сдвига слухового порога", что обычно происходит на практике в результате длительного воздействия громких звуков выше 90 Дб. Процесс восстановления слуховой системы после такого вредного воздействия может длиться до 16 часов. Сдвиг порогов начинается уже с уровня интенсивности 75 Дб, и увеличивается пропорционально с повышением уровня сигнала.

При рассмотрении проблемы правильного уровня звуковой интенсивности хуже всего осознавать тот факт, что проблемы (приобретённые или врождённые), связанные со слухом, практически не поддаются лечению в наш век достаточно развитой медицины. Всё это должно наводить любого здравомыслящего человека на мысли о бережном отношении к своему слуху, если конечно планируется сохранить его первозданную целостность и способность слышать весь частотный диапазон как можно дольше. К счастью, всё не так страшно, как может показаться на первый взгляд, и соблюдая ряд мер предосторожности можно легко сохранить слух даже в старости. Прежде чем рассматривать эти меры, необходимо вспомнить про одну важную особенность слухового восприятия человека. Слуховой аппарат воспринимает звуки нелинейно. Заключается подобное явление в следующем: если представить какую-то одну частоту чистого тона, например 300 Гц, то нелинейность проявляется при возникновении в ушной раковине обертонов этой основной частоты по логарифмическому принципу (если основную частоту принять за f, то обертоны частоты будут 2f, 3f и т.д. по возрастающей). Эта нелинейность так же проще для восприятия и знакома многим под названием "нелинейные искажения" . Поскольку в первоначальном чистом тоне таких гармоник (обертонов) не возникает, получается, что ухо само по себе вносит свои поправки и призвуки в первоначальное звучание, но определить их можно только в качестве субъективных искажений. При уровне интенсивности ниже 40 дБ субъективные искажения не возникают. При увеличении интенсивности с 40 дБ уровень субъективных гармоник начинает нарастать, однако ещё на уровне 80-90 дБ их негативный вклад в звучание относительно невелик (поэтому данный уровень интенсивности условно можно считать своеобразной "золотой серединой" в музыкальной сфере).

Основываясь на этой информации, можно без труда вывести безопасный и приемлимый уровень громкости, который не навредит слуховым органам и при этом даст возможность услышать абсолютно все особенности и детали звучания, например в случае работы с "hi-fi" системой. Этот уровень "золотой середины" составляет примерно 85-90 дБ. Именно при такой интенсивности звука реально услышать всё то, что заложено в аудиотракте, при этом риск преждевременного повреждения и снижения слуха сводится к минимуму. Практически полностью безопасным можно считать уровень громкости 85 дБ. Чтобы разобраться, в чём заключается опасность громкого прослушивания и почему слишком низкий уровень громкости не позволяет услышать всех нюансов звучания, рассмотрим этот вопрос подробнее. Что касается низких уровней громкости, то отсутствие целесообразности (но чаще субъективного желания) прослушивания музыки на низких уровнях обуславливается следующими причинами:

  1. Нелинейность слухового восприятия человека;
  2. Особенности психоакустического восприятия, которые будут рассмотрены отдельно.

Нелинейность слухового восприятия, рассмотренная выше, оказывает существенное влияние на любой громкости ниже 80 дБ. На практике это выглядит следующим образом: если включить музыку на тихом уровне, например 40 дБ, то отчётливее всего будет слышно среднечастотный диапазон музыкальной композиции, будь то вокал исполнителя/исполнительницы или инструменты, играющие в этом диапазоне. В это же время будет ощущаться явная нехватка низких и высоких частот, обусловленная как раз нелинейностью восприятия а так же тем, что различные частоты звучат с разной громкостью. Таким образом очевидно, что для полноценного восприятия всей полноты картины, частотный уровень интенсивности необходимо максимально выровнять к единому значению. Несмотря на то, что даже на уровне громкости 85-90 дБ идеализированного выравнивания громкости разных частот не происходит, уровень становится приемлимым для нормального повседневного прослушивания. Чем ниже громкость в тоже время, тем отчётливей будет восприниматься на слух характерная нелинейность, а именно ощущение отсутствия должного количества высоких и низких частот. Вместе с этим получается, что при такой нелинейности нельзя говорить серьёзно о воспроизведении звучания "hi-fi" качества высокой точности, ибо точность передачи оригинальной звуковой картины будет крайне низкой в данной конкретной ситуации.

Если вникнуть в эти выводы, то становится понятно, почему на низком уровне громкости прослушивание музыки хоть и максимально безопасное с точки зрения здоровья, но крайне отрицательно ощущается на слух по причине создания явно неправдоподобных образов музыкальных инструментов и голоса, отсутствия масштабности звуковой сцены. В целом, тихое воспроизведение музыки можно использовать в качестве фонового сопровождения, но совершенно противопоказано проводить прослушивание высокого "hi-fi" качества на низкой громкости, по вышеуказанным причинам невозможности создания натуралистичных образов звуковой сцены, которая была сформирована звукорежиссёром в студии, на этапе звукозаписи. Но не только низкая громкость вводит определённые ограничения на восприятие конечного звучания, гораздо хуже ситуация обстоит с повышенной громкостью. Повредить слух и достаточно сильно понизить чувствительность можно и достаточно просто, если продолжительное время слушать музыку на уровнях выше 90 дБ. Эти данные основаны на большом количестве медицинских исследований, заключающие, что звук громкостью выше 90 дБ оказывает реальный и практически непоправимый вред здоровью. Механизм этого явления кроется в слуховом восприятии и особенностях строения уха. Когда звуковая волна интенсивностью выше 90 дБ попадает в слуховой канал, в дело вступают органы среднего уха, вызывая явление, называемое слуховой адаптацией.

Принцип происходящего в этом случае такой: стремечко отводится от овального окна и предохраняет внутреннее ухо от слишком громких звуков. Этот процесс носит название акустического рефлекса . На слух подобное воспринимается как кратковременное снижение чувствительности, что может быть знакомо каждому, кто хоть раз посещал рок-концерты в клубах, например. После такого концерта возникает кратковременное снижение чувствительности, которая по истечению некоторого периода времени восстанавливается на прежний уровень. Однако восстановление чувствительности будет далеко не всегда и напрямую зависит от возраста. За всем этим и кроется большая опасность громких прослушиваний музыки и других звуков, интенсивность которых превышает 90 дБ. Возникновение акустического рефлекса не единственная "видимая" опасность потери слуховой чувствительности. При длительном воздействии слишком громких звуков, волоски, расположенные в области внутреннего уха (которые реагируют на колебания), отклоняются очень сильно. В этом случае происходит эффект, что волосок, отвечающий за восприятие определённой частоты отклоняется под воздействием звуковых вибраций большой амплитуды. В определённый момент такой волосок может отклониться слишком сильно и обратно уже не вернуться. Это вызовет соответствующий эффект потери чувствительности на конкретной определённой частоте!

Самым страшным во всей этой ситуации является то, что болезни уха практически не поддаются лечению, даже самыми современными методами, известными медицине. Всё это наводит на определённые серьёзные выводы: звук выше 90 дБ опасен для здоровья и практически гарантированно вызовет преждевременную потерю слуха или существенное снижение чувствительности. Ещё неприятнее и то, что в игру со временем вступает ранее упомянутое свойство адаптации. Этот процесс у человеческих слуховых органов происходит практически незаметно, т.е. человек, медленно теряющий чувствительность, близко к 100% вероятности не заметит этого до момента, пока окружающие люди сами не обратят внимание на постоянные переспрашивания, вроде: "Что Вы только что сказали?". Вывод в итоге предельно простой: при прослушивании музыки жизненно важно не допускать уровней интенсивности звука выше 80-85 дБ! В этом же моменте кроется и положительная сторона: уровень громкости 80-85 дБ примерно соответствует уровню звукозаписи музыки в студийных условиях. Вот и возникает понятие "Золотой середины", выше которой лучше не подниматься, если вопросы здоровья имеют хоть какое-то значение.

Даже достаточно кратковременное прослушивание музыки на уровне 110-120 дБ может вызвать проблемы со слухом, например во время живого концерта. Очевидно, что избежать этого временами нельзя или очень трудно, но крайне важно стараться это делать для сохранения целостности слухового восприятия. Теоретически, кратковременное воздействие громких звуков (не превышающих 120 дБ), ещё до момента возникновения "слуховой утомляемости", не приводит к серьёзным негативным последствиям. Но на практике обычно встречаются случаи длительного воздействия звуком такой интенсивности. Люди оглушают сами себя, не осознавая всей степени опасности в автомобиле при прослушивании аудиосистемы, дома в аналогичных условиях, или в наушниках портативного плеера. Почему так происходит, и что вынуждает делать звук всё громче и громче? Ответов на этот вопрос два: 1) Влияние психоакустики, о которой будет рассказано отдельно; 2) Постоянная необходимость "перекричать" громкостью музыки какие-то внешние звуки. Первый аспект проблемы достаточно интересен, и будет детально рассмотрен далее, а вот вторая сторона проблемы больше наводит на негативные мысли и выводы об ошибочном понимании истинных основ правильного прослушивания звучания "hi-fi" класса.

Не вдаваясь в особенности, общий вывод о прослушивании музыки и правильной громкости звучит следующим образом: прослушивание музыки должно происходить при уровнях звуковой интенсивности не выше 90 дб, не ниже 80 дБ в помещении, в котором сильно заглушены или полностью отсутствуют посторонние звуки внешних источников (такие как: разговоры соседей и прочий шум, за стеной квартиры; шумы улицы и технические шумы в случае, если вы находитесь в салоне автомобиля, и т.д.). Хочется выделить раз и навсегда, что именно в случае соблюдения таких, вероятно жёстких требований, можно достичь долгожданного баланса громкости, которая не вызовет преждевременных нежелательных повреждений слуховых органов, а так же доставит истинное удовольствие от прослушивания любимых музыкальных произведений с мельчайшими деталями звучания на высоких и низких частотах и точностью, которую преследует само понятие "hi-fi" звучания.

Психоакустика и особенности восприятия

Чтобы наиболее полно ответить на некоторые важные вопросы, касающиеся конечного восприятия человеком звуковой информации, существует целый раздел науки, изучающий огромное многообразие подобных аспектов. Этот раздел именуется "психоакустикой". Дело в том, что слуховое восприятие не заканчивается только на работе слуховых органов. После непосредственного восприятия звука органом слуха (ухо), далее в действие вступает самый сложный и малоизученный механизм анализа полученной информации, за это всецело отвечает головной мозг человека, который устроен таким образом, что при работе генерирует волны определённой частоты, и они так же обозначаются в Герцах (Гц). Различные частоты мозговых волн соответствуют определённым состояниям человека. Таким образом получается, что прослушивание музыки способствует изменению настройки частоты мозга, и это важно учитывать при прослушивании музыкальных композиций. На основании этой теории существует так же метод звукотерапии путём прямого влияния на психическое состояние человека. Мозговые волны бывают пяти типов:

  1. Дельта-волны (волны ниже 4 Гц). Соответствует состоянию глубокого сна без сновидений, при этом полностью отсутствуют ощущения тела.
  2. Тета-волны (волны 4-7 Гц). Состояние сна или глубокой медитации.
  3. Альфа-волны (волны 7-13 Гц). Состояния расслабления и релаксации во время бодрствования, сонливость.
  4. Бета-волны (волны 13-40 Гц). Состояние активность, повседневного мышления и мыслительной деятельности, возбуждение и познание.
  5. Гамма-волны (волны выше 40 Гц). Состояние сильной умственной активности, страха, возбуждения и осознания.

Психоакустика, как раздел науки, ищет ответы на самые интересные вопросы, касающиеся конечного восприятия человеком звуковой информации. В процессе изучения этого процесса вскрывается огромное количество факторов, влияние которых неизменно происходит как в процессе прослушивания музыки, так и в любом другом случае обработки и анализа любой звуковой информации. Психоакуситка изучает практически всё многообразие возможных влияний, начиная с эмоционального и психического состояния человека в момент прослушивания, заканчивая особенностями строения голосовых связок (в случае, если речь идёт об особенностях восприятия всех тонкостей вокального исполнения) и механизма преобразования звука в электрические импульсы мозга. Наиболее интересные, а главное важные факторы (которые жизненно необходимо учитывать каждый раз при прослушивании любимых музыкальных композиций, а так же при построении профессиональной аудиосистемы) будут рассмотрены далее.

Понятие созвучности, музыкальной созвучности

Устройство человеческой слуховой системы уникально в первую очередь механизмом восприятия звука, нелинейностью слуховой системы, способностью группировать звуки по высоте с достаточно высокой степенью точности. Наиболее интересной особенностью восприятия можно отметить нелинейность слуховой системы, которая проявляется в виде возникновения дополнительных несуществующих (в основном тоне) гармоник, особенно часто проявляется у людей с музыкальным или абсолютным слухом. Если же подробнее остановится и проанализировать все тонкости восприятия музыкального звучания, то легко выделяется понятие "консонансности" и "диссонансности" различных аккордов и интервалов звучания. Понятие "консонанс" определяется как согласное (от французского слова "согласие") звучание, и соответственно наоборот, "диссонанс" - несогласное, нестройное звучание. Несмотря на многообразие различных трактовок этих понятий характеристики музыкальных интервалов, наиболее удобно использовать "музыкально-психологическую" расшифровку терминов: консонанс определяется и ощущается человеком как приятное и комфортное, мягкое звучание; диссонанс же можно охарактеризовать с другой стороны как звучание, вызывающее раздражение, беспокойство и напряжение. Подобная терминология носит слегка субьективный характер, а так же, за историю развития музыки совершенно различные интервалы принимались за "созвучные" и наоборот.

В наше время данные понятия так же сложно воспринимать однозначно, поскольку наблюдаются различия у людей с отличными музыкальными предпочтениями и вкусами, а также нет общепризнанного и согласованного понятия гармонии. Психоакустическая основа восприятия различных музыкальных интервалов в качестве консонансных или диссонансных напрямую зависит от понятия "критической полосы". Кртическая полоса - это определённая ширина полосы, внутри которой слуховые ощущения резко изменяются. Ширина критических полос с повышением частоты пропорционально расширяется. Поэтому, ощущение консонансов и диссонансов напрямую связано с наличием критических полос. Слуховой орган человека (ухо), как уже было сказано ранее, выполняет роль полосового фильтра на определённом этапе анализа звуковых волн. Эта роль отводится базилярной мембране, на которой располагается 24 критических полосы с частотнозависимой шириной.

Таким образом, созвучность и несогласованность (консонансность и диссонансность) напрямую зависит от разрешающей способности слуховой системы. Получается, что если два разных тона звучат в унисон или разница частот равна нулю, то это совершенный консонанс. Такой же консонанс возникает в случае, если разница частот будет больше, чем критическая полоса. Диссонанс же возникает лишь тогда, когда разница частот составляет от 5% до 50% от критической полосы. Наивысшая степень диссонанса в данном отрезке прослушивается, если разница составляет одну четверть от ширины критической полосы. На основании этого легко проанализировать любую сведённую музыкальную запись и сочетание инструментов на предмет созвучности или диссонансности звучания. Нетрудно догадаться, какую большую роль в этом случае играет звукорежиссёр, студия звукозаписи и прочие составляющие конечного цифрового или аналогового оригинала звуковой дорожки, и всё это ещё даже до попытки воспроизведения на звуковоспроизводящем оборудовании.

Локализация звука

Воспринимать всю полноту пространственной звуковой картины человеку помогает система бинаурального слуха и пространственной локализации. Этот механизм восприятия реализуется за счёт двух приёмников слуха и двух слуховых каналов. Звуковая информация, которая поступает по этим каналам, в последствии обрабатывается в переферической части слуховой системы и подвергается спектрально временному анализу. Далее, эта информация передаётся в высшие отделы головного мозга, где сравнивается разница левого и правого звукового сигнала, а так же формируется единый звуковой образ. Этот описанный механизм именуется бинауральным слухом . Благодаря этому, у человека имеются такие уникальные возможности:

1) локализация звуковых сигналов от одного или нескольких источников, при этом формируется пространственная картина восприятия звукового поля
2) разделение сигналов, приходящих от различных источников
3) выделение одних сигналов, на фоне других (например, выделение речи и голоса из шума или звучания инструментов)

Пространственную локализацию легко наблюдать на простом примере. На концерте, со сценой и некоторым количеством музыкантов на ней в определённом отдалении друг от друга, можно легко (при желании даже закрыв глаза) определить направление прихода звукового сигнала каждого инструмента, оценить глубину и пространственность звукового поля. Таким же образом ценится хорошая hi-fi система, способная достоверно "воспроизвести" подобные эффекты пространственности и локализации, тем самым фактически "обманув" мозг, заставив почувствовать полноценное присутствие на живом выступлении любимого исполнителя. Локализацию звукового источника обычно обуславливают три основных фактора: временной, интенсивностный и спектральный. Независимо от этих факторов, имеется ряд закономерностей, с помощью которых можно понять основы, касающиеся локализации звука.

Наибольший эффект локализации, воспринимаемый человеческими органами слуха, находится в области средних частот. В то же время, практически невозможно определить направление звуков частот выше 8000 Гц и ниже 150 Гц. Последний факт особенно широко используется в системах hi-fi и домашнего театра при выборе местоположения сабвуфера (низкочастотного звена), расположение которого в помещении ввиду отсутствия локализации частот ниже 150 Гц практически не имеет значения, и у слушателя в любом случае возникает целостный образ звуковой сцены. Точность локализации зависит от расположения источника излучения звуковых волн в пространстве. Таким образом, наибольшая точность локализации звуков отмечается в горизонтальной плоскости, достигая значения 3°. В вертикальной плоскости человеческая слуховая система гораздо хуже определяет направление источника, точность в этом случае составляет 10-15° (из-за специфического строения ушных раковин и сложной геометрии). Точность локализации слегка варьируется в зависимости от угла расположения излучающих звук объектов в пространстве углами относительно слушателя, а так же, на конечный эффект оказывает влияние степень дифракции звуковых волн головы слушателя. Следует так же заметить, что широкополосные сигналы локализуются лучше, чем узкополосный шум.

Гораздо интереснее обстоит дело с определением глубины направленного звука. Например, человек по звуку может определить расстояние до объекта, однако, происходит это в большей степени за счёт изменения звукового давления в пространстве. Обычно, чем дальше объект от слушателя, тем больше происходит ослабление звуковых волн в свободном пространстве (в помещении добавляется влияние отражённых звуковых волн). Таким образом можно заключить, что точность локализации выше в закрытом помещении именно за счёт возникновения ревербации. Отражённые волны, возникающие в закрытых помещениях, дают возможность появлению таких интересных эффектов, как расширение звуковой сцены, обволакивание и пр. Данные явления возможны именно за счёт восприимчивости трёхмерной локализации звуков. Основные зависимости, которые и определяют горизонтальную локализацию звука: 1) разница по времени прихода звуковой волны в левое и правое ухо; 2) разница в интенсивности, возникающая из-за дифракции на голове слушателя. Для определения глубины звука важна разница уровня звукового давления и разница спектрального состава. Локализация в вертикальной плоскости так же сильно зависима от дифракции в ушной раковине.

Сложнее обстоит дело с современными системами пространственного звучания на основе технологии dolby surround и аналогов. Казалось бы, принцип построения систем домашнего кинотеатра чётко регламентируют способ воссоздания достаточно натуралистичной пространственной картины 3D звучания с присущим объёмом и локализацией виртуальных источников в пространстве. Однако, не всё так тривиально, поскольку обычно не принимаются во внимание сами механизмы восприятия и локализации большого количества источников звука. Преобразование звука органами слуха предполагает процесс сложения сигналов разных источников, пришедших в разные уши. Притом, если фазовая структура разных звуков более менее синхронна, такой процесс на слух воспринимается как звук, исходящий от одного источника. Имеется ещё и целый ряд трудностей, включая особенности механизма локализации, затрудняющий точность определения направления источника в пространстве.

Ввиду вышесказанного, наиболее трудной задачей становится разделение звуков от разных источников, особенно, если эти разные источники проигрывают схожий амплитудно-частотный сигнал. А именно это и происходит на практике в любой современной системе пространственного звучания, и даже в обычной стереосистеме. Когда человек прослушивает большое количество звуков, исходящих от разных источников, сначала происходит определение принадлежности каждого конкретного звука тому источнику, который его создаёт (группировка по частоте, высоте, тембру). И только вторым этапом слух пытается локализовать источник. После этого приходящие звуки разделяются по потокам, основываясь на пространственных признаках (разница во времени поступления сигналов, разница по амплитуде). На основе полученной информации формируется более менее статичный и фиксированный слуховой образ, из которого которого возможно определить, откуда идёт каждый конкретный звук.

Очень удобно отследить данные процессы на примере обычной сцены, с фиксированно расположенными на ней музыкантами. При этом, очень интересно то, что если вокалист/исполнитель, занимая изначально определённую позицию на сцене начнёт плавно перемещаться по сцене в любом направлении, ранее сформированный слуховой образ не изменится! Определение направления звука, исходящего от вокалиста, останется субъективно прежним, как-буд-то он стоит на том же месте, на котором стоял до перемещения. Только в случае резкого изменения местоположения исполнителя на сцене произойдёт расщипление сформированного звукового образа. Помимо рассмотренных проблем и сложности процессов локализации звуков в пространстве, в случае с многоканальными системами пространственного звучания достаточно большую роль оказывает процесс ревербации в конечном помещении для прослушивания. Наиболее ярко эта зависимость наблюдается, когда большое число отражённых звуков приходит со всех сторон - точность локализации существенно ухудшается. Если же энергетическая насыщенность отражённых волн больше (преобладает) чем прямых звуков, критерий локализации в таком помещении становится крайне размытым, говорить о точности определения таких источников крайне затруднительно (если вообще возможно).

Однако, в сильно ревербирующем помещении локализация теоретически происходит, в случае широкополосных сигналов слух ориентируется по параметру разницы интенсивности. В этом случае определение направления осуществляется по высокочастотной составляющей спектра. В любом помещении точность локализации будет зависеть от времени прихода отражённых звуков после прямых звуков. При слишком малом интервале разрыва между этими звуковыми сигналами в помощь слуховой системе начинает работать "закон прямой волны". Суть этого явления: если звуки с коротким интервалом задержки по времени приходят с разных направлений, то локализация всего звука происходит по первому пришедшему звуку, т.е. слух игнорирует в какой-то степени отраженный звук, если он приходит через слишком короткий отрезок времени после прямого. Подобный эффект проявляется и тогда, когда происходит определение направления прихода звука в вертикальной плоскости, но в этом случае гораздо слабее (по причине того, что восприимчивость слуховой системы к локализации в вертикальной плоскости заметно хуже).

Суть эффекта предшествования гораздо глубже и имеет психологическую, нежели физиологическую природу. Было проведено большое количество экспериментов, на основании которых установлена зависимость. Возникает этот эффект преимущественно тогда, когда время появления эха, его амплитуда и направление совпадают с некоторым "ожиданием" слушателя от того, как акустика данного конкретного помещения формирует звуковой образ. Возможно, человек уже имел опыт прослушивания в данном помещении или аналогичных, что и формирует предрасположенность слуховой системы к возникновению "ожидаемого" эффекта предшествования. Чтобы обойти данные ограничения, присущие человеческому слуху, в случае с несколькими источниками звука используются различные уловки и хитрости, с помощью которых и формируется в конечном счёте более менее правдоподобная локализация музыкальных инструментов/других источников звука в пространстве. По большому счёту, воспроизведение стерео и многоканальных звуковых образов строится на большом обмане и создании слуховой иллюзии.

Когда две или большее число акустических систем (например, 5.1 или 7.1, или даже 9.1) воспроизводят звук из разных точек помещения, слушатель при этом слышит звуки, исходящие из несуществующих или мнимых источников, воспринимая определенную звуковую панораму. Возможность этого обмана заключается в биологических особенностях устройства организма человека. Скорее всего, человек не успел адаптироваться к распознаванию подобного обмана по причине того, что принципы "искусственного" звуковоспроизведения появились сравнительно недавно. Но, хоть и процесс создания мнимой локализации оказался возможным, реализация по сей день далека от совершенства. Дело в том, что слух действительно воспринимает источник звука там, где его на самом деле нет, но правильность и точность передачи звуковой информации (в частности тембра) оказывается под большим вопросом. Методом многочисленных опытов в реальных ревербационных помещениях и в заглушенных камерах было установлено, что тембр звуковых волн от реальных и мнимых источников отличается. В основном это сказывается на субъективном восприятии спектральной громкости, тембр в этом случае видоизменяется существенным и заметным образом (при сравнении с аналогичным звуком, воспроизведённом реальным источником).

В случае с многоканальными системами домашнего кинотеатра уровень искажений заметно выше, по нескольким причинам: 1) Много схожих по амплитудно-частотной и фазофой характеристике звуковых сигналов одновременно приходит с разных источников и направлений (включая переотражённые волны) на каждый ушной канал. Это приводит к увеличению искажений и появлению гребенчатой фильтрации. 2) Сильное разнесение громкоговорителей в пространстве (относительно друг друга, в многоканальных системах это расстояние может быть несколько метров и более) способствует росту тембровых искажений и окраске звука в области мнимого источника. В качестве итога можно сказать, что окрашивание тембра в системах многоканального и объёмного звучания на практике происходят по двум причинам: явление гребенчатой фильтрации и влияние ревербационных процессов конкретного помещения. В случае, если за воспроизведение звуковой информации отвечает более одного источника (это касается и стереосистемы с 2-умя источниками), неизбежно появление эффекта "гребенчатой фильтрации", вызванной разным временем прибытия звуковых волн на каждый слуховой канал. Особая неравномерность наблюдается в области верхней середины 1-4 кГц.

Психоакустика - область науки, которая изучает слуховые ощущения человека при воздействии звука на уши.

Люди, обладающие абсолютным (аналитическим) музыкальным слухом, с высокой точностью определяют высоту, громкость и тембр звука, способны запоминать звучание инструментов и распознавать их через некоторое время. Они могут правильно проанализировать прослушанное, правильно выделить отдельные инструменты.

Люди, не обладающие абсолютным слухом, могут определить ритм, тембр, тональность, но правильно произвести анализ прослушанного материала для них затруднительно.

При прослушивании высококачественной аудиоаппаратуры, как правило, мнения экспертов расходятся. Одни предпочитают высокую прозрачность и верность передачи каждого обертона, их раздражает отсутствие детализованности звучания. Другие предпочитают звучание размытого, нечеткого характера, быстро устают от изобилия подробностей в музыкальном образе. Кто-то заостряет внимание на гармонии в звучании, кто-то на спектральном балансе, а кто-то - на динамическом диапазоне. Оказывается, все зависит от типохарактера индивида Типохарактеры людей подразделяются на следующие дихотомии (парные классы): сенсорную и интуитивную, думающую и чувствующую, экстравертную и интровертную, решающую и воспринимающую .

Люди с сенсорной доминантой обладают четкой дикцией, великолепно воспринимают все нюансы речевого или музыкального образа. Для них чрезвычайно важна прозрачность звучания, когда четко выделяются все звучащие инструменты

Слушатели с интуитивной доминантой предпочитают размытый музыкальный образ, придают исключительно важное значение сбалансированности звучания всех музыкальных инструментов.

Слушатели с думающей доминантой предпочитают музыкальные произведения с высоким динамическим диапазоном, с четко обозначенной мажорной и минорной доминантой, с выраженным смыслом и структурой произведения

Люди с чувствующей доминантой придают большое значение гармоничности в музыкальных произведениях, предпочитают произведения с небольшими отклонениями мажорности и минорности от нейтрального значения, т.е. «музыку для души».



Слушатель с экстравертной доминантой успешно выделяет сигнал из шума, предпочитает слушать музыку с высоким уровнем громкости, мажорность или минорность музыкального произведения определяет по частотному положению музыкального образа в данный момент.

Люди с интровертной доминантой значительное внимание уделяют внутренней структуре музыкального образа, мажорность-минорность оценивают, в том числе, и по смещению частоты одной из гармоник в возникающих резонансах, посторонние шумы затрудняют восприятие аудиоинформации.

Люди с решающей доминантой предпочитают в музыке закономерность, наличие внутренней периодичности.

Слушатели с воспринимающей доминантой предпочитают в музыке импровизацию.

Каждый по себе знает, что одна и та же музыка на одной и той же аппаратуре и в одном и том же помещении не всегда воспринимается одинаково. Вероятно, в зависимости от психоэмоционального состояния наши чувства то притупляются, то обостряются.

С другой стороны, излишняя детализованность и натуральность звучания может раздражать усталого и обремененного заботами слушателя с сенсорной доминантой, что в таком состоянии он предпочтет музыку размытую и мягкую, грубо говоря, предпочтет слушать живые инструменты в шапке-ушанке.

В какой-то степени на качество звука оказывает влияние «качество» напряжения сети, которое в свою очередь зависит как от дня недели, так и от времени суток (в часы пиковой нагрузки напряжение сети наиболее «загрязнено»). От времени суток зависит и уровень шума в помещении, а значит и реальный динамический диапазон.

О влиянии окружающего шума хорошо запомнился случай 20-летней давности. Поздно вечером после деревенской свадьбы молодежь осталась помочь убрать со столов и перемыть посуду. Музыка была организована во дворе: электробаян с двухканальным усилителем и двумя колонками, четырехканальный усилитель мощности по схеме Шушурина, на вход которого был подключен электробаян, а на выходы - две 3-полосные и две 2-полосные акустические системы. Магнитофон с записями, выполненными на 19 скорости со встречно-параллельным подмагничиванием. Около 2-х часов ночи, когда все освободились, молодежь собралась во дворе и попросила включить что-нибудь для души. Каково же было удивление музыкантов и присутствующих меломанов, когда зазвучало попурри на темы Битлс в исполнении группы STARS on 45. Для слуха, адаптированного к восприятию музыки в атмосфере повышенной зашумленности, звучание в ночной тишине стало удивительно чистым и нюансированным.

Восприятие по частоте

Человеческое ухо воспринимает колебательный процесс как звук только в том случае, если частота его колебаний находится в пределах от 16...20 Гц до 16...20 кГц. При частоте ниже 20 Гц колебания называют инфразвуковыми, выше 20 кГц - ультразвуковыми. Звуки с частотой ниже 40 Гц в музыке встречаются редко, а в разговорной речи и вовсе отсутствуют. Восприятие высоких звуковых частот сильно зависит как от индивидуальных особенностей органов слуха, так и от возраста слушателя. Так, например, в возрасте до 18 лет звуки частотой 14 кГц слышат около 100%, в то время как в возрасте 50...60 лет - только 20% слушателей. Звуки частотой 18 кГц к 18 годам слышит около 60%, а к 40...50 годам - всего 10% слушателей. Но это вовсе не означает, что для людей пожилого возраста снижаются требования к качеству тракта звуковоспроизведения. Экспериментально установлено, что люди, едва воспринимающие сигналы частотой 12 кГц, очень легко распознают недостаток верхних частот в фонограмме.

Разрешающая способность слуха к изменению частоты около 0,3%. Например два тона 1000 и 1003 Гц, следующих один за другим, можно различить без приборов. А по биениям частот двух тонов человек может обнаружить разность частот до десятых долей герца. В то же время трудно различить на слух отклонение скорости воспроизведения музыкальной фонограммы в пределах ±2%.

Субъективный масштаб восприятия звука по частоте близок к логарифмическому закону. Исходя из этого, все частотные характеристики устройств передачи звука строят в логарифмическом масштабе. Степень точности, с которой человек определяет высоту звука на слух, зависит от остроты, музыкальности и тренированности его слуха, а также от интенсивности звука. При больших уровнях громкости звуки большей интенсивности кажутся ниже, чем слабые.

При длительном воздействии интенсивного звука чувствительность слуха постепенно снижается и тем больше, чем выше громкость звука, что связано с реакцией слуха на перегрузку, т.е. с естественной его адаптацией. По истечении определенного времени чувствительность восстанавливается. Систематическое и длительное прослушивание музыки с высоким уровнем громкости вызывает необратимые изменения в органах слуха, особенно страдает молодежь, пользующаяся наушниками (головными телефонами).

Важной характеристикой звука является тембр. Способность слуха различать его оттенки позволяет различать многообразие музыкальных инструментов и голосов. Благодаря тембральной окраске их звучание становится многокрасочным и легко узнаваемым. Условием правильной передачи тембра является неискаженная передача спектра сигнала - совокупности синусоидальных составляющих сложного сигнала (обертонов). Обертоны кратны частоте основного тона и меньше его по амплитуде. От состава обертонов и их интенсивности зависит тембр звука.

Тембр звука живых инструментов в значительной степени зависит от интенсивности звукоизвлечения. Например, одна и та же нота, сыгранная на фортепьяно легким нажатием пальца, и резким, имеет разные атаки и спектры сигнала. Даже не тренированный человек легко улавливает эмоциональное различие двух таких звуков по их атаке, даже если они переданы слушателю с помощью микрофона и уравновешены по громкости. Атака звука - это начальная стадия, специфический переходной процесс, в течение которого устанавливаются стабильные характеристики: громкость, тембр, высота звука. Длительность атаки звука разных инструментов колеблется в пределах 0...60 мс. Например, у ударных инструментов она находится в пределах 0...20 мс, у фагота - 20...60 мс. Характеристики атаки инструмента сильно зависят от манеры и техники игры музыканта. Именно эти особенности инструментов позволяют передать эмоциональное содержание музыкального произведения.

Тембр звука источника сигнала, находящегося на расстоянии от слушателя менее 3 м, воспринимается более «тяжелым». Удаление источника сигнала от 3 до 10 м сопровождается пропорциональным уменьшением громкости, при этом тембр становится более ярким. С дальнейшим удалением источника сигнала потери энергии в воздухе растут пропорционально квадрату частоты и имеют сложную зависимость от относительной влажности воздуха. Потери энергии ВЧ-составляющих максимальны при относительной влажности в пределах от 8 до 30...40% и минимальны при 80% (рис. 1.1) . Увеличение потерь обертонов приводит к снижению тембральной яркости.

Восприятие по амплитуде

Кривые равной громкости от порога слышимости до порога болевого ощущения для бинаурального и моноурального слушания приведены на рис. 1.2.а,б, соответственно . Восприятие по амплитуде зависит от частоты и имеет значительный разброс, связанный с возрастными изменениями.

Чувствительность слуха к интенсивности звука носит дискретный характер. Порог ощущения изменения интенсивности звука зависит как от частоты, так и от громкости звука (на высоких и средних уровнях составляет 0,2...0,6 дБ, на низких уровнях доходит до нескольких децибел) и в среднем меньше 1 дБ.

Эффект Хааса (Haas)

Слуховому аппарату, как и любой другой колебательной системе, свойственна инерционность. Благодаря этому свойству короткие звуки длительностью до 20 мс воспринимаются более тихими, чем звуки длительностью более 150 мс. Одно из проявлений инерционности -

неспособность человека выявлять искажения в импульсах длительностью менее 20 мс. В случае прихода к ушам 2-х одинаковых сигналов, с временным интервалом между ними 5...40 мс, слух воспринимает их как один сигнал, при интервале более 40...50 мс - раздельно.

Эффект маскировки

Ночью, в условиях тишины, слышны писк комара, тиканье часов и другие тихие звуки, а в условиях шума трудно разобрать громкую речь собеседника. В реальных условиях акустический сигнал не существует в абсолютной тишине. Посторонние шумы, неизбежно присутствующие в месте прослушивания, маскируют в определенной мере основной сигнал и затрудняют его восприятие. Повышение порога слышимости одного тона (или сигнала) при одновременном воздействии другого тона (шума или сигнала) называют маскировкой.

Экспериментально установлено, что тон любой частоты маскируется более низкими тонами значительно эффективнее, чем более высокими, иными словами, низкочастотные тоны сильнее маскируют высокочастотные, чем наоборот. Например, при одновременном воспроизведении звуков 440 и 1200 Гц с одинаковой интенсивностью, мы будем слышать только тон частотой 440 Гц и только выключив его, услышим тон частотой 1200 Гц. Степень маскировки зависит от соотношения частот и носит сложный характер, связанный с кривыми равной громкости (рис. 1.3.α и 1.3.6) .

Чем больше соотношение частот, тем меньше эффект маскировки. Это в значительной степени объясняет феномен «транзисторного» звучания. Спектр нелинейных искажений транзисторных усилителей простирается вплоть до 11 гармоники, в то время как спектр ламповых усилителей ограничивается 3...5 гармоникой. Кривые маскировки узкополосным шумом для тонов разных частот и уровней их интенсивности имеют разный характер. Четкое восприятие звука возможно в том случае, если его интенсивность превышает определенный порог слышимости. На частотах 500 Гц и ниже превышение интенсивности сигнала должно быть около 20 дБ, на частоте 5 кГц - около 30 дБ, а

на частоте 10 кГц - 35 дБ. Эту особенность слухового восприятия учитывают при записи на носители звука. Так, если отношение сигнал/шум аналоговой грампластинки около 60...65 дБ, то динамический диапазон записанной программы может быть не более 45...48 дБ.

Эффект маскировки оказывает влияние на субъективно воспринимаемую громкость звука. Если составляющие сложного звука расположены по частоте близко друг к другу и наблюдается их взаимная маскировка, то громкость такого сложного звука будет меньше громкостей его составляющих.

Если несколько тонов расположены по частоте настолько далеко, что их взаимной маскировкой можно пренебречь, то их суммарная, громкость будет равна сумме громкостей каждой из составляющих.

Достижение «прозрачности» звучания всех инструментов оркестра или эстрадного ансамбля является сложной задачей, которая решается звукорежиссером - умышленным выделением наиболее важных в данном месте произведения инструментов и другими специальными приемами.

Бинауральный эффект

Способность человека определять направление источника звука (благодаря наличию двух ушей) называется бинауральным эффектом . К уху, расположенному ближе к источнику звука, звук приходит раньше, чем ко второму уху, а значит, различается по фазе и амплитуде. При слушании реального источника сигнала бинауральные сигналы (т.е. сигналы, приходящие к правому и левому уху) статистически связаны между собой (коррелированны). Точность локализации источника звука зависит как от частоты, так и от его местонахождения (спереди или сзади слушателя). Дополнительную информацию о расположении источника звука (спереди, сзади, сверху) орган слуха получает, анализируя особенности спектра бинауральных сигналов.

До 150...300 Гц человеческий слух обладает очень малой направленностью. На частотах 300...2000 Гц, для которых длина полуволны сигнала соизмерима с «межушным» расстоянием, равным 20...25 см, существенны фазовые различия. Начиная с частоты 2 кГц направленность слуха резко убывает. На высших частотах большее значение приобретает разность амплитуд сигналов. Когда разница в амплитудах превышает пороговое значение, равное 1 дБ, то кажется, что источник звука находится на той стороне, где амплитуда больше.

При асимметричном расположении слушателя относительно громкоговорителей возникают дополнительные интенсивностные и временные разносы, которые приводят к пространственным искажениям. Причем, чем дальше КИЗ (кажущийся источник звука) от центра базы (ΔL > 7 дБ или Δτ > 0,8 мс), тем меньше они подвержены искажениям. При ΔL > 20 дБ, Δτ > 3...5 мс КИЗ превращаются в действительные (громкоговорители) и не подвержены пространственным искажениям.

Экспериментально установлено, что пространственные искажения отсутствуют (незаметны), если полоса частот каждого канала сверху ограничена частотой не менее 10 кГц, а высокочастотная (выше 10 кГц) и низкочастотная (ниже 300 Гц) часть спектра этих сигналов воспроизводится монофонически.

Погрешность оценки азимута источника звука в горизонтальной плоскости спереди составляет 3...4°, сзади и в вертикальной плоскости - примерно 10... 15°, что объясняется экранирующим действием ушных раковин.