Строение, физические, химические свойства жиров. Физические свойства жиров Химические реакции триглицеридов




Состав и строение молекул жиров.

Сложные эфиры могут образовываться разнообразными карбоновыми кислотами и спиртами. Наибольшее значение имеют те, которые образованы трёхатомным спиртом глицерином и высшими карбоновыми кислотами. К последним относятся, например, стеариновая кислота состава С 17 Н 35 СООН и олеиновая кислота состава С 17 Н 33 СООН.

Первая – предельная кислота, вторая – непредельная. В её углеводородном радикале имеется двойная связь между углеродными атомами, поэтому в молекуле олеиновой кислоты на два водородных атома меньше:

Стеариновая кислота Олеиновая кислота

Сложные эфиры карбоновых кислот и глицерина называются жирами. Если формулу

карбоновой кислоты записать в общем виде , то образование жира

можно представить уравнением реакции этерификации:

Глицерин Карбоновая кислота Жир

Химическую природу жиров начали изучать в первой половине XIX в. Синтез жира тристеарина впервые осуществил французский химик М. Бертло в 1854 г.

Физические свойства жиров. Состав и строение углеводородных радикалов влияют на свойства жиров. Вот как, например, изменяются их температуры плавления:

Как видим, жир, образованный предельной кислотой, в обычных условиях твёрдый, непредельной – жидкий. В состав жидких растительных масел (подсолнечного, кукурузного, оливкового и др.) входят остатки преимущественно непредельных кислот, в состав твёрдых животных жиров (говяжьего, бараньего и др.) – остатки предельных кислот.

Жиры легче воды и нерастворимы в ней, но растворяются в органических растворителях.

Жиры наряду с белками и углеводами принадлежат к биологически активным веществам. Они входят в состав клеток растительных и животных организмов и являются для них источником энергии. В результате окисления 1 г жира выделяется

37,7 кДж энергии, вдвое больше, чем при окислении 1 г белка или углевода.

Основное количество жиров, употребляемых человеком, содержится в мясе, рыбе, молочных и зерновых продуктах. В случае когда в организм человека с едой поступает больше энергии, чем используется им, образуются жирообразные вещества, отлагающиеся в тканях организма. Таким образом он аккумулирует энергию.

В соответствии с данными современной медицины чрезмерное употребление жиров, образованных предельными кислотами, то есть животных жиров, может привести к накоплению веществ, затрудняющих ток крови в артериях, в частности тех, которые поставляют кровь в мозг. Более полезными для употребления признаются жиры, образованные непредельными кислотами, то есть растительные масла. В составе, например, подсолнечного масла содержится 91% непредельных карбоновых кислот.

Химические свойства жиров.

В молекулах жидких жиров в отличие от твёрдых имеются двойные углерод – углеродные связи. Как вам уже известно, по месту двойной связи возможна реакция присоединения, в частности водорода. В результате этой реакции непредельное соединение превращается в предельное, а жидкий жир – в твёрдый.

Триолеин Тристеарин

Процесс отвердевания (гидрирования) жиров лежит в основе производства маргарина (от греч. слова, означающего жемчужина). Негидрированные жиры прогоркают, окисляясь по двойным связям, у них появляются неприятные запах и вкус. Гидрирование жиров замедляет эти процессы, кроме того, позволяет из более дешёвых растительных масел получать более ценные твёрдые жиры.

Жиры как сложные эфиры подвергаются гидролизу.

Жиры гидролизируют с образованием трёхатомного спирта глицерина и карбоновых кислот.

Если проводить гидролиз тристеарина в присутствии щёлочи, образуется соль стеариновой кислоты, известная как основа мыла:

Поскольку в результате щёлочного гидролиза жира образуется мыло, то реакция называется омылением жира.

Натриевые соли высших карбоновых кислот – основная составная часть твёрдого мыла, соли калия – жидкого мыла.

Для получения мыла из жира в промышленности вместо щёлочи используют соду Na 2 CO 3 . Мыло, полученное непосредственно в результате этой реакции, называется ядровым и известно как хозяйственное. Туалетное мыло отличается от хозяйственного наличием добавок: красителей, ароматизаторов, антисептиков и др.

Основным компонентом твёрдого мыла является смесь растворимых солей высших жирных кислот. Обычно это натриевые, реже - калиевые и аммониевые соли таких кислот, как стеариновая, пальмитиновая, миристиновая, лауриновая и олеиновая.

Один из вариантов химического состава твёрдого мыла - C17H35COONa (жидкого - C17H35COOK).

Моющее действие мыла – сложный физико-химический процесс. Мыло является посредником между полярными молекулами воды и неполярными частицами загрязнений, нерастворимыми в воде. Если обозначить углеводородный радикал буквой R, то состав мыла можно выразить формулой R – COONa. По химической природе мыло – это соль, ионное соединение. Кроме полярной группы –COONa в его составе имеется неполярный радикал R, в состав которого могут входить 12-17 атомов углерода. Во время мытья молекулы ориентируются на загрязнённой поверхности таким образом, что полярные группы обращены к полярным молекулам воды, а неполярные углеводородные радикалы – к неполярным частицам загрязнения. Последние как бы попадают в окружение молекул мыла и легко смываются с поверхности водой.

В жёсткой воде образуются нерастворимые магниевые и кальциевые соли карбоновых кислот, поэтому мыло теряет своё моющее действие, а соли оседают на поверхности изделия:

2C 17 H 35 COONa + MgSO 4 → (C 17 H 35 COO) 2 Mg↓ + Na 2 SO 4

Синтетические моющие средства, при всём разнообразии их химического состава, имеют подобное мылу строение молекул, в которых есть растворимая в воде полярная часть и нерастворимый углеводородный радикал. Но они, в отличие от мыла, являются солями другой химической природы и в жёсткой воде не образуют нерастворимых соединений. В этом состоит преимущество синтетических моющих средств перед обыкновенным мылом.

Мыло и синтетические моющие средства принадлежат к так называемым поверхностно-активным веществам (ПАВ). Их широкое применение часто связывают с загрязнением окружающей среды, в частности водоёмов. Дело в том, что к синтетическим моющим средствам добавляют фосфаты, которые в водоёмах превращаются в вещества, питающие микроорганизмы, бурное размножение которых может привести к заболачиванию водоёмов. Поэтому современные ПАВ должны химически или биологически разлагаться после использования на безопасные вещества, не загрязняющие стоки.

Свойства жиров определяются качественным составом жирных кислот, их количественным соотношением, процентным содержанием свободных, не связанных с глицерином, жирных кислот, соотношением различных триглицеридов и т.п.

Насыщенные жирные кислоты образуют триглицериды, имеющие при обычной температуре твердую консистенцию. Среди них встречаются как животные (например, говяжий жир), так и растительные (например, масло какао) жиры. Ненасыщенные жирные кислоты образуют триглицериды, имеющие при тех же условиях жидкую консистенцию - животные жиры (например, рыбий жир) и подавляющее большинство растительных масел.

Жиры и масла жирны на ощупь, нанесенные на бумагу, оставляют характерное "жирное" пятно, не исчезающее при нагревании, а, наоборот, еще сильнее расплывающееся. При обыкновенной температуре масла не загораются, но нагретые или в виде паров горят ярким пламенем. Чистые триглицериды бесцветны, но природные жиры более или менее окрашены. Масла обычно желтоватые вследствие присутствия каротиноидов, некоторые из них могут быть окрашены хлорофиллом в зеленый цвет, или, что еще реже, в красно-оранжевый или иной цвет в зависимости от вида липохромов. Запах и вкус свежих жиров специфичны. Запах обусловлен присутствием следов эфирных масел (терпены, алифатические углеводороды и др.). В некоторых жирах содержатся обладающие запахом сложные эфиры низкомолекулярных кислот. Специфический запах рыбьих жиров обусловлен сильно ненасыщенными жирными кислотами или, вернее, продуктами их окисления.

Плотность подавляющего числа жиров находится в пределах 0,910-0,945. Лишь у немногих масел (например, касторового) плотность выше - до 0,970 (при 20°С, по ГФ X).

В воде жиры и масла нерастворимы, но их можно заэмульгировать в воде с помощью поверхностно-активных веществ. В этаноле растворяются трудно (или не растворяются), за исключением касторового масла. Легко растворимы в диэтиловом эфире, хлороформе, сероуглероде, бензине, петролейном эфире, вазелиновом масле. Жиры и масла смешиваются между собой в любых соотношениях. Они являются хорошими растворителями эфирных масел, камфоры, смол, серы, фосфора и ряда других веществ.

Температура плавления твердых жиров возрастает с числом углеродных атомов, входящих в их состав жирных кислот. Поскольку жиры представляют сложные смеси разных триглицеридов, точка плавления их обычно не бывает четко выраженной. Сказанное в равной степени относится и к температуре застывания.

Температура кипения жиров не может быть определена, поскольку при нагревании до 250°С они разрушаются с образованием из глицерина сильно раздражающего слизистые оболочки глаз альдегида акролеина.


Кипят они в высоком вакууме. Жирные масла, состоящие из простых триглицеридов, оптически неактивны, если они не содержат примеси оптически активных веществ. В случае смешанных триглицеридов некоторые жирные масла могут проявлять оптическую активность.

Показатель преломления тем выше, чем больше содержится в жире триглицеридов ненасыщенных кислот. Например, масло какао имеет показетель преломления 1,457, миндальное - 1,470, льняное - 1,482.

Химические свойства жиров проявляются в их способности к омылению, прогорканию, высыханию и гидрогенизации.

Омыление. Триглицериды жирных кислот способны к превращениям, характерным для сложных эфиров. Под влиянием едких щелочей происходит расщепление эфирных связей, в результате чего образуются свободный глицерин и щелочные соли жирных кислот (мыла).

Реакция омыления широко используется для приготовления бытовых и медицинских мыл, а также для выяснения состава жиров и их доброкачественности. С этой целью определяют число омыления , то есть количество миллиграммов едкого калия (KOH), необходимое для нейтрализации свободных и связанных в виде триглицеридов жирных кислот, содержащихся в 1 г жира.

Прогоркание. Этот сложный химический процесс происходит при хранении жира в неблагоприятных условиях (доступ воздуха и влаги, свет, тепло), в результате чего жиры приобретают горьковатый вкус и неприятный запах. Если жиры в этих условиях подвергаются действию фермента липазы, то происходит их разложение, аналогичное реакции омыления. Этот вид порчи жира легко контролируется по величине кислотного числа (КЧ). Под этой константой понимается количество милиграммов едкого калия (KOH), которое необходимо для нейтрализации свободных жирных кислот, содержащихся в 1 г жира. Доброкачественные жиры содержат небольшое количество свободных жирных кислот.

С помощью других констант можно определить природу содержащихся в масле свободных жирных кислот. Так, по числу Рейхерта-Мейсля можно судить о количестве летучих растворимых в воде кислот, а по числу Поленске - о количестве летучих кислот, нерастворимых в воде. Числом Рейхерта-Мейсля называется количество миллилитров 0,1 Мэ раствора едкого калия, необходимое для нейтрализации летучих, растворимых в воде жирных кислот, полученных при строго определенных условиях из 5 г жира. Число Поленске устанавливают вслед за определением летучих кислот в той же навеске жира. Выпавшие жирные кислоты переводят в спиртовой раствор и титруют 0,1 Мэ спиртовым раствором едкого калия.

Для более точного представления о количестве содержащихся в жирах глицеридов из числа омыления вычитают кислотное число и получают так называемое эфирное число (ЭЧ), которое характеризует только связанные жирные кислоты.

Иногда прогоркание жиров зависит от жизнедеятельности микроорганизмов, вызывающих окисление отщепленных жирных кислот в кетоны или альдегиды. Однако чаще всего прогоркание жиров обусловливается окислением ненасыщенных жирных кислот кислородом воздуха. Последний может присоединяться по месту двойных связей, образуя перекиси.

Кислород может присоединяться также и к углеродному атому, соседнему с двойной связью, образуя гидроперекиси.

Образовавшиеся перекиси и гидроперекиси подвергаются разложению с образованием альдегидов и кетонов. Для характеристики окислительного прогоркания жира используется константа, известная под названием перекисное число , которое выражается количеством иода, пошедшего на разрушение перекисей.

Высыхание. Намазанные тонким слоем жидкие жиры ведут себя на воздухе по-разному: одни остаются без изменения жидкими, другие, окисляясь, постепенно превращаются в прозрачную смолоподобную эластичную пленку - линоксин, нерастворимую в органических растворителях. Масла, не образующие пленку, называются невысыхающими. Главной составной частью в таких маслах являются глицериды олеиновой кислоты (с одной двойной связью). Масла, образующие плотную пленку, называются высыхающими. Главной составной частью в таких маслах являются глицериды линоленовой кислоты (с тремя двойными связями). Масла, образующие мягкие пленки, называются полувысыхающими. Главной составной частью в таких маслах являются глицериды линолевой кислоты (с двумя двойными связями). Способность некоторых масел к высыханию широко используется в народном хозяйстве (лакокрасочная промышленность). Для медицины, наоборот, представляют интерес масла невысыхающие, поскольку они используются для парентерального введения лекарственных средств.

Олеиновая кислота обладает способностью под влиянием азотистой кислоты переходить в свои стереоизомер - элаидиновую кислоту, которая при комнатной температуре имеет твердую консистенцию. Этой реакцией, известной под названием элаидиновая проба, широко пользуются для определения типа масла: если проба положительная, то, следовательно, исследуемое масло невысыхающее (содержит триглицериды олеиновой кислоты).

Надежным способом выявления высыхаемости масел служит определение йодного числа. Известно, что все непредельные кислоты, в том числе и жирные, способны присоединять по месту двойной связи галогены. Чем больше в жирных кислотах будет двойных связей, тем больше присоединится галогенов. Для аналитических целей обычно используют йод; под йодным числом понимается количество граммов иода, которое поглощается 100 г жира. Таким образом, по величине йодного числа можно легко установить, к какой группе по степени высыхаемости относится то или иное масло.

Химические свойства жиров обусловлены наличием:

1. Сложных эфирных связей,

2. Двойных связей в углеводородных радикалах жирных кислот,

3. Наличием глицерина в составе жира.

1. Обусловленные наличием сложных эфирных связей

Жиры легко подвергаются гидролитическому расщеплению при участии ферментов, образуется глицерин и жирные кислоты.

Ферментативный гидролиз происходит ступенчато. Фермент - липаза содержится во всех жирномасличных растениях. Гидролизу способствует влага и повышенная температура. Происходит гидролитическое прогоркание жира.

Указанное свойство учитывается при хранении жиров.

Жиры расщепляются под действием щелочей с образованием глицерина и солей жирных кислот. Образующиеся соли называют мылами: калиевые мыла – жидкие, натриевые - твердые.

Процесс называют омылением

C 3 H 5 (COOR) 3 + 3 NaOH C 3 H 5 (OH) 3 + 3 R`COONa

Свойство учитывают в анализе жира. Реакция омыления широко используется для приготовления бытовых и медицинских мыл, а также для выяснения состава жиров и их доброкачественности.

Чем больше число омыления, тем меньше молекулярная масса глицеридов.

2. Обусловленные наличием двойных связей в углеводородных радикалах жирных кислот

По двойньм связям жирных кислот может присоединяться водород, галогены, кислород.

1). Присоединение водорода - гидрирование жиров (гидрогенизация жиров) идет при повышенной температуре в присутствии катализатора (трубчатый никель).

Непредельные жирные кислоты переходят в предельные, жидкие масла превращаются в твердые. Получают саломассы, их используют в медицинской практике как мазевые и суппозиторные основы (бутирол) и в пищевой промышленности - производство маргарина.

Реакция гидрогенизации широко используется для получения плотных жиров из растительных масел.

2). Присоединение галогенов – это свойство используют в анализе жиров. При определении химической константы - йодного числа.

Надежным способом выявления высыхаемости масел служит определение йодного числа. Известно, что все непредельные кислоты, в том числе и жирные, способны присоединять по месту двойной связи галогены.

Чем больше в жирных кислотах будет двойных связей, тем больше присоединится галогенов.

По величине йодного числа можно легко установить, к какой группе по степени высыхаемости относится то или иное масло.

Йодное число некоторых масел

Способность некоторых масел к высыханию широко используется в народном хозяйстве (лакокрасочная промышленность).

Для медицины, наоборот, представляют интерес масла невысыхающие, поскольку они используются для парентерального введения лекарственных средств.

Олеиновая кислота обладает способностью под влиянием азотистой кислоты переходить в свои стереоизомер - элаидиновую кислоту, которая при комнатной температуре имеет твердую консистенцию.

Этой реакцией, известной под названием элаидиновая проба , широко пользуются для определения типа масла: если проба положительная, то, следовательно, исследуемое масло невысыхающее (содержит триглицериды олеиновой кислоты).

3). Присоединение кислорода воздуха приводит к окислению и прогорканию жиров. Может быть химическое окисление (альдегидное) и биохимическое при участии микроорганизмов (кетонное). Жиры приобретают специфический вкус и запах и к употреблению непригодны. Изменяется цвет жира - чаще обесцвечиваются; изменяются физические и химические свойства жира: увеличивается плотность и кислотное число, уменьшается йодное число и вязкость.

Различают 3 вида окислительного прогоркания:

1 - неферментативное - кислород присоединяется по месту двойных связей, образуя пероксиды; при разложении пероксидов жирных кислот получаются альдегиды.

R 1 – CH = CH – R 2 R 1 – CH – CH – R 2 R 1 – C = O + R 2 – C = O

«Химия везде, химия во всем:

Во всем, чем мы дышим,

Во всем, что мы пьем,

Во всем, что едим».

Во всем, что мы носим,






Люди давно научились выделять жир из натуральных объектов и использовать его в повседневной жизни. Жир сгорал в примитивных светильниках, освещая пещеры первобытных людей, жиром смазывали полозья, по которым спускали на воду суда. Жиры – основной источник нашего питания. Но неправильное питание, малоподвижный образ жизни приводит к избыточному весу. Животные пустынь запасают жир как источник энергии и воды. Толстый жировой слой тюленей и китов помогает им плавать в холодных водах Северного Ледовитого океана.

Жиры широко распространены в природе. Наряду с углеводами и белками они входят в состав всех животных и растительных организмов и составляют одну из основных частей нашей пищи. Источниками жиров являются живые организмы. Среди животных это коровы, свиньи, овцы, куры, тюлени, киты, гуси, рыбы (акулы, тресковые, сельди). Из печени трески и акулы получают рыбий жир – лекарственное средство, из сельди – жиры, используемые для подкормки сельскохозяйственных животных. Растительные жиры чаще всего бывают жидкими, их называют маслами. Применяются жиры таких растений, как хлопок, лен, соя, арахис, кунжут, рапс, подсолнечник, горчица, кукуруза, мак, конопля, кокос, облепиха, шиповник, масличная пальма и многих других.

Жиры выполняют различные функции: строительную, энергетическую (1 г жира дает 9 ккал энергии), защитную, запасающую. Жиры обеспечивают 50% энергии, требуемой человеку, поэтому человеку необходимо потреблять 70–80 г жиров в день. Жиры составляют 10–20% от массы тела здорового человека. Жиры являются незаменимым источником жирных кислот. Некоторые жиры содержат витамины А, D, Е, К, гормоны.

Многие животные и человек используют жир в качестве теплоизолирующей оболочки, например, у некоторых морских животных толщина жирового слоя достигает метра. Кроме того, в организме жиры являются растворителями вкусовых веществ и красителей. Многие витамины, например витамин А, растворяются только в жирах.

Некоторые животные (чаще водоплавающие птицы) используют жиры для смазки своих собственных мышечных волокон.

Жиры повышают эффект насыщения пищевыми продуктами, т. к. они перевариваются очень медленно и задерживают наступление чувства голода .

История открытия жиров

Еще в 17 в. немецкий ученый, один из первых химиков-аналитиков Отто Тахений (1652–1699) впервые высказал предположение, что жиры содержат «скрытую кислоту».

В 1741 французский химик Клод Жозеф Жоффруа (1685–1752) обнаружил, что при разложении кислотой мыла (которое готовили варкой жира со щелочью) образуется жирная на ощупь масса.

То, что в состав жиров и масел входит глицерин, впервые выяснил в 1779 знаменитый шведский химик Карл Вильгельм Шееле.

Впервые химический состав жиров определил в начале прошлого века французский химик Мишель Эжен Шеврёль , основоположник химии жиров, автор многочисленных исследований их природы, обобщенных в шеститомной монографии " Химические исследования тел животного происхождения" .

1813 г Э. Шеврёль установил строение жиров, благодаря реакции гидролиза жиров в щелочной среде. Он показал, что жиры состоят из глицерина и жирных кислот, причем это не просто их смесь, а соединение, которое, присоединяя воду, распадается на глицерин и кислоты.


Общая формула жиров (триглицеридов)



Жиры
– сложные эфиры глицерина и высших карбоновых кислот. Общее название таких соединений – триглицериды.


Классификация жиров


Животные жиры содержат главным образом глицериды предельных кислот и являются твердыми веществами. Растительные жиры, часто называемые маслами, содержат глицериды непредельных карбоновых кислот. Это, например, жидкие подсолнечное, конопляное и льняное масла.

Природные жиры содержат следующие жирные кислоты

Насыщенные:

стеариновая (C 17 H 35 COOH)

пальмитиновая (C 15 H 31 COOH)

Масляная (C 3 H 7 COOH)

В СОСТАВЕ

ЖИВОТНЫХ

ЖИРОВ

Ненасыщенные :

олеиновая (C 17 H 33 COOH, 1 двойная связь)

линолевая (C 17 H 31 COOH, 2 двойные связи)

линоленовая (C 17 H 29 COOH, 3 двойные связи)

арахидоновая (C 19 H 31 COOH, 4 двойные связи, реже встречается)

В СОСТАВЕ

РАСТИТЕЛЬНЫХ

ЖИРОВ

Жиры содержатся во всех растениях и животных. Они представляют собой смеси полных сложных эфиров глицерина и не имеют чётко выраженной температуры плавления.

  • Животные жиры (бараний, свиной, говяжий и т.п.), как правило, являются твердыми веществами с невысокой температурой плавления (исключение – рыбий жир). В твёрдых жирах преобладают остатки насыщенных кислот.
  • Растительные жиры – масла (подсолнечное, соевое, хлопковое и др.) – жидкости (исключение – кокосовое масло, масло какао-бобов). Масла содержат в основном остатки ненасыщенных (непредельных) кислот.

Химические свойства жиров

1. Гидролиз, или омыление , жиров происходит под действием воды, с участием ферментов или кислотных катализаторов (обратимо) , при этом образуются спирт - глицерин и смесь карбоновых кислот:

или щелочей (необратимо) . При щелочном гидролизе образуются соли высших жирных кислот, называемые мылами. Мыла получаются при гидролизе жиров в присутствии щелочей:

Мыла - это калиевые и натриевые соли высших карбоновых кислот.

2. Гидрирование жиров – превращение жидких растительных масел в твердые жиры – имеет большое значение для пищевых целей. Продукт гидрогенизации масел – твердый жир (искусственное сало, саломас ). Маргарин – пищевой жир, состоит из смеси гидрогенизированных масел (подсолнечного, кукурузного, хлопкого и др.), животных жиров, молока и вкусовых добавок (соли, сахара, витаминов и др.).

Так в промышленности получают маргарин:

В условиях процесса гидрогенизации масел (высокая температура, металлический катализатор) происходит изомеризация части кислотных остатков, содержащих цис-связи С=С, в более устойчивые транс-изомеры. Повышенное содержание в маргарине (особенно, в дешевых сортах) остатков транс-ненасыщенных кислот увеличивает опасность атеросклероза, сердечно-сосудистых и других заболеваний.


Реакция получения жиров (этерификация)


Применение жиров


    1. Пищевая промышленность
    1. Фармацевтика
    1. Производство мыла и косметических изделий
    1. Производство смазочных материалов

Жиры - продукт питания. Биологическая роль жиров.


Животные жиры и растительные масла, наряду с белками и углеводами – одна из главных составляющих нормального питания человека. Они являются основным источником энергии: 1 г жира при полном окислении (оно идет в клетках с участием кислорода) дает 9,5 ккал (около 40 кДж) энергии, что почти вдвое больше, чем можно получить из белков или углеводов. Кроме того, жировые запасы в организме практически не содержат воду, тогда как молекулы белков и углеводов всегда окружены молекулами воды. В результате один грамм жира дает почти в 6 раз больше энергии, чем один грамм животного крахмала – гликогена. Таким образом, жир по праву следует считать высококалорийным «топливом». В основном оно расходуется для поддержания нормальной температуры человеческого тела, а также на работу различных мышц, поэтому даже когда человек ничего не делает (например, спит), ему каждый час требуется на покрытие энергетических расходов около 350 кДж энергии, примерно такую мощность имеет электрическая 100-ваттная лампочка .

Для обеспечения организма энергией в неблагоприятных условиях в нем создаются жировые запасы, которые откладываются в подкожной клетчатке, в жировой складке брюшины – так называемом сальнике. Подкожный жир предохраняет организм от переохлаждения (особенно эта функция жиров важна для морских животных). В течение тысячелетий люди выполняли тяжелую физическую работу, которая требовала больших затрат энергии и соответственно усиленного питания. Для покрытия минимальной суточной потребности человека в энергии достаточно всего 50 г жира. Однако при умеренной физической нагрузке взрослый человек должен получать с продуктами питания несколько больше жиров, но их количество не должно превышать 100 г (это дает треть калорийности при диете, составляющей около 3000 ккал). Следует отметить, что половина из этих 100 г содержится в продуктах питания в виде так называемого скрытого жира. Жиры содержатся почти во всех пищевых продуктах: в небольшом количестве они есть даже в картофеле (там их 0,4%), в хлебе (1–2%), в овсяной крупе (6%). В молоке обычно содержится 2–3% жира (но есть и специальные сорта обезжиренного молока). Довольно много скрытого жира в постном мясе – от 2 до 33%. Скрытый жир присутствует в продукте в виде отдельных мельчайших частиц. Жиры почти в чистом виде – это сало и растительное масло; в сливочном масле около 80% жира, в топленом – 98%. Конечно, все приведенные рекомендации по потреблению жиров – усредненные, они зависят от пола и возраста, физической нагрузки и климатических условий. При неумеренном потреблении жиров человек быстро набирает вес, однако не следует забывать, что жиры в организме могут синтезироваться и из других продуктов. «Отрабатывать» лишние калории путем физической нагрузки не так-то просто. Например, пробежав трусцой 7 км, человек тратит примерно столько же энергии, сколько он получает, съев всего лишь одну стограммовую плитку шоколада (35% жира, 55% углеводов) .Физиологи установили, что при физической нагрузке, которая в 10 раз превышала привычную, человек, получавший жировую диету, полностью выдыхался через 1,5 часа. При углеводной же диете человек выдерживал такую же нагрузку в течение 4 часов. Объясняется этот на первый взгляд парадоксальный результат особенностями биохимических процессов. Несмотря на высокую «энергоемкость» жиров, получение из них энергии в организме – процесс медленный. Это связано с малой реакционной способностью жиров, особенно их углеводородных цепей. Углеводы, хотя и дают меньше энергии, чем жиры, «выделяют» ее намного быстрее. Поэтому перед физической нагрузкой предпочтительнее съесть сладкое, а не жирное.Избыток в пище жиров, особенно животных, увеличивает и риск развития таких заболеваний как атеросклероз, сердечная недостаточность и др. В животных жирах много холестерина (но не следует забывать, что две трети холестерина синтезируется в организме из нежировых продуктов – углеводов и белков).

Известно, что значительную долю потребляемого жира должны составлять растительные масла, которые содержат очень важные для организма соединения – полиненасыщенные жирные кислоты с несколькими двойными связями. Эти кислоты получили название «незаменимых». Как и витамины, они должны поступать в организм в готовом виде. Из них наибольшей активностью обладает арахидоновая кислота (она синтезируется в организме из линолевой), наименьшей – линоленовая (в 10 раз ниже линолевой). По разным оценкам суточная потребность человека в линолевой кислоте составляет от 4 до 10 г. Больше всего линолевой кислоты (до 84%) в сафлоровом масле, выжимаемом из семян сафлора – однолетнего растения с ярко-оранжевыми цветками. Много этой кислоты также в подсолнечном и ореховом масле.

По мнению диетологов, в сбалансированном рационе должно быть 10% полиненасыщенных кислот, 60% мононенасыщенных (в основном это олеиновая кислота) и 30% насыщенных. Именно такое соотношение обеспечивается, если треть жиров человек получает в виде жидких растительных масел – в количестве 30–35 г в сутки. Эти масла входят также в состав маргарина, который содержит от 15 до 22% насыщенных жирных кислот, от 27 до 49% ненасыщенных и от 30 до 54% полиненасыщенных. Для сравнения: в сливочном масле содержится 45–50% насыщенных жирных кислот, 22–27% ненасыщенных и менее 1% полиненасыщенных. В этом отношении высококачественный маргарин полезнее сливочного масла.

Необходимо помнить

Насыщенные жирные кислоты отрицательно влияют на жировой обмен, работу печени и способствуют развитию атеросклероза. Ненасыщенные (особенно линолевая и арахидоновая кислоты) регулируют жировой обмен и участвуют в выведении холестерина из организма. Чем выше содержание ненасыщенных жирных кислот, тем ниже температура плавления жира. Калорийность твердых животных и жидких растительных жиров примерно одинакова, однако физиологическая ценность растительных жиров намного выше. Более ценными качествами обладает жир молока. Он содержит одну треть ненасыщенных жирных кислот и, сохраняясь в виде эмульсии, легко усваивается организмом. Несмотря на эти положительные качества, нельзя употреблять только молочный жир, так как никакой жир не содержит идеального состава жирных кислот. Лучше всего употреблять жиры как животного, так и растительного происхождения. Соотношение их должно быть 1:2,3 (70% животного и 30% растительного) для молодых людей и лиц среднего возраста. В рационе питания пожилых людей должны преобладать растительные жиры.

Жиры не только участвуют в обменных процессах, но и откладываются про запас (преимущественно в брюшной стенке и вокруг почек). Запасы жира обеспечивают обменные процессы, сохраняя для жизни белки. Этот жир обеспечивает энергию при физической нагрузке, если с пищей жира поступило мало, а также при тяжелых заболеваниях, когда из-за пониженного аппетита его недостаточно поступает с пищей.

Обильное потребление с пищей жира вредно для здоровья: он в большом количестве откладывается про запас, что увеличивает массу тела, приводя порой к обезображиванию фигуры. Увеличивается его концентрация в крови, что, как фактор риска, способствует развитию атеросклероза, ишемической болезни сердца, гипертонической болезни и др.

Природные эфиры - жиры и масла , которые образованы трехатомным спиртом глицерином и высшими карбоновыми кислотами неразветвленного состава. Жиры входят в состав растительных и животных организмов и играют важную биологическую роль. Они служат одним из источников энергии живых организмов, которая выделяется при окислении жиров.

Общая формула:

Наиболее часто встречаются следующие жирные кислоты:


Физические свойства жиров и масел.

Делят на жидкие и твердые жиры . Агрегатное состояние определяется природой жирных кислот . Твердые жиры образованы предельными кислотами, а жидкие - непредельными. Температура плавления выше, чем больше у кислоты содержания углеводородной цепи. Также она зависит от длины углеводородной цепи жирной кислоты, температура плавления повышается с ростом углеводородного радикала.

Химические свойства жиров и масел.

1. Гидролиз:

2. Гидрогенизация жиров - присоединение водорода к остатком непредельных кислот. При этом непредельные кислоты переходят в остатки предельных, из жидких превращаются в твердые:


3. Жиры могут прогорать при действии влаги, кислорода воздуха, света и тепла.

Применение жиров и масел.

Жиры широко используются в пищевой, косметической и фармацевтической промышленности.