Применение магния и его сплавов в авиации и космонавтике. Где взять магний: советы химику-любителю




24.01.2017

Авиация


Магний широко используют в двигателях, корпусах и шасси самолетов. Основными факторами, определяющими использование магния, являются высокая удельная прочность в случае отливок и высокая удельная жесткость в случае деформированных изделий в сочетании с такими факторами, как высокие свойства при повышенных температурах, высокие усталостные и ударные свойства, а также хорошая обрабатываемость резанием. Стоимость здесь не является решающим фактором ввиду того, что каждые 45 кг сэкономленной массы дают дополнительный доход на авиалинии несколько тысяч фунтов стерлингов в год. Самолетостроение является очень важным рынком сбыта для магния и стимулирует разработку литейных сплавов с высоким сопротивлением ползучести, а также сплавов, содержащих цирконий.
Корпуса самолетов и корпуса редукторов. Чтобы проиллюстрировать степень применения отливок из магниевых сплавов в английском самолетостроении, можно воспользоваться примерами конструкций самолетов «Комета», «Британия» и «Трайдент», каждый из которых содержит несколько сот отливок из магниевых сплавов.
Большинство литых деталей, используемых в конструкциях самолетов, получают литьем в землю. Литье в металлические изложницы используется реже.

Деформируемые магниевые сплавы находят в Англии следующее применение. Бомбардировщик «V» содержит около 1 т листов, главным образом из сплава ZW3. Вертолет S55 имеет обшивку из того же сплава (120 кг) (рис. 293). Другие английские вертолеты содержат большое число поковок из сплава ZW3 (рис. 294). Рычаг рулевого управления из сплава AZM, полученный путем ковки, показан на рис. 294, г. Сварные конструкции из листа и труб, изготовленных из сплава ZW1 (рис. 295), были использованы в турбовинтовом самолете «Британия», а также для сидения штурмана-наблюдателя в самолете «Биверли». Самолет «Гнат» имеет панели и обширные воздухопроводы (рис. 296) также из сплава ZW1. Используются также сварные трубчатые сидения в самолетах, например в «Виска-унте».

В США деформируемые магниевые сплавы нашли значительно большее применение. Экспериментальный самолет F80C с монококовой конструкцией крыла в основном сделан из магния (рис. 297). На рис. 298 показано упрощение конструкции фюзеляжа самолета в результате применения магния. Наиболее хорошо иллюстрируется применение магния в конструкциях самолетов США, по-видимому, на примере бомбардировщика В36, На рис. 299 показаны места, в которых применяется магний в самолетах этого типа. На рис. 300 показано использование магния в некоторых других военных самолетах. Бомбардировщик В36 содержит около 3400 кг магниевых листов и около 1100 кг магниевых отливок, прессованных изделий и поковок, не считая двигателей, колес, тормозов и другого вспомогательного оборудования Общее количество магниевых сплавов, примененных в этом самолете, составляет около 8600 кг. Замена магния алюминием увеличила бы общую массу приблизительно на 4,5 т. Другой бомбардировщик В52 содержит 635 кг листов, 90 кг прессованных изделий и свыше 200 кг отливок из магниевых сплавов.
Удачным примером монококовой конструкции из магния является обшивка фюзеляжа экспериментального скоростного самолета «Скайроккет» (рис. 301).

Пол, сделанный из прессованных изделий сплава ZK60, используется в «Глобемастерс» и грузовом «Сьюпер констеллыйшнз».
Следует упомянуть также беспилотный реактивный самолет мишень «Файерби». Около 1/3 его конструкции состоит из листов сплава AZ31-H24 и прессованных изделий из сплава AZ31. Один из этих самолетов сбивали в море, извлекали, промывали, восстанавливали и вновь использовали 21 раз.
В США производятся крупные прессовки, например, для самолета В47 и реактивного двигателя J33.
Двигатели . Типичными деталями из магниевых сплавов в двигателях являются воздухозаборники - отливки из сплавов AS, RZ5 и ZRE1, корпус диффузора и компрессора отливки из сплавов ZRE1, ZT1 и НК31, поковки из сплава ZTY; основные поддерживающие плиты - отливки из сплава ZT1.
Турбовинтовой двигатель «Дарт», используемый в пассажирских самолетах «Вискаунт» и «Газель», содержит около 80 магниевых отливок, что составляет около Vs массы двигателя.
Магниевые сплавы используют также в поршневых двигателях, например для картера двигателя в «Джипси Куин» и для задней крышки двигателя «Сентаурус». В обоих примерах использовался сплав AZ91.
По мере повышения рабочих температур реактивных двигателей создается тенденция к ограничению применения отливок из магниевых сплавов в воздухозаборниках и в деталях компрессора. Однако для изготовления картера компрессора продолжают использовать поковки из сплава ZTY.
Почти все отливки для авиационных двигателей получают литьем в землю. Отливкой в кокиль получают крышки камер сгорания из сплава ZREI и детали турбовинтовых и реактивных двигателей из сплава RZ5.

Колеса . Колеса шасси из литейных магниевых сплавов применяют в самолетах в течение многих лет Сначала использовали обработанный на твердый раствор сплав А8, затем колеса стали отливать из сплава Z5Z или в небольшом объеме изготавливали из поковок сплава ZW3 (рис. 302). Высокое качество поверхности обода колеса и однородность усталостных свойств в отливке в сочетании с хорошей устойчивостью против ударных нагрузок и малой чувствительностью к надрезу как при ударных, так и при усталостных нагрузках являются важными факторами применения магниевых сплавов для изготовления колес.
Некоторые носовые колеса и колесные фланцы отливают в кокиль из сплава А8.
Бортовое оборудование и груз. Небольшие магниевые детали часто используют в системах навигации, связи, вентиляции и герметизации, внутренней арматуры и распределения и т. д. Из магниевых сплавов изготавливают и такие детали, как телевизионные камеры (рис. 303).
Военно-воздушные силы США используют изготовленные из магниевых сплавов геодезические конструкции очень больших размеров (рис. 304). Одна из них представляет собой полусферу диаметром 15 м, массой всего лишь 550 кг без покрытия из пластика. Другая размером 24x15x10 м весит 680 кг без покрытия и может быть установлена без крана.

Управляемые снаряды и исследование космоса. Некоторые свойства магния, имеющие значение для управляемых снарядов и использования в космосе . В дополнение к высокой прочности и жесткости при минимальной массе в сочетании с хорошей технологичностью к материалам, предназначенным для использования в конструкциях управляемых снарядов и космических аппаратов, предъявляются и другие требования. Условия полета в космосе являются очень жесткими. Они включают в себя аэродинамический нагрев до высоких температур, внезапное попадание в тень, близость некоторых компонентов к ожижженному топливу, наличие озона в верхней атмосфере, бомбардировку жесткой электромагнитной радиацией, частицами высоких энергий и микрометеоритами, вакуум до 10в-11 мм рт. ст. и т. д.

Магний обладает довольно высокими теплопоглотительными свойствами (табл. 83). Так, по температуропроводности магний не уступает ни одному из конкурирующих с ним металлов, вследствие чего температуры, возникающие при передаче на поверхность магния данного количества тепловой энергии, относительно низки. Это иллюстрируется гипотетической кривой нагрева (рис. 305). Кроме того, в связи с тем, что произведение упругого модуля на коэффициент расширения (модуль термического напряжения) является низким, неоднородный нагрев компонентов будет вызывать относительно низкие термические напряжения.

Так как давление паров магния составляет порядка 10в-7 мм при 200° С, то можно ожидать медленной сублимации магниевых сплавов при весьма умеренных температурах на Луне и в межпланетном пространстве. Без сомнения, этот эффект может быть подавлен использованием подходящих нелетучих покрытий, в частности анодирующей обработки НАЕ.
Эмиссионная способность поверхности является важным свойством при космических полетах. Она может контролироваться применением соответствующих покрытий. Так, магниевая сфера спутника «Вангуард» была покрыта наряду с прочими материалами пленкой двуокиси кремния толщиной 6000А для облегчения излучения поглощенной солнечной энергии в диапазоне 10 мкм при 20° С. Контролируемая эмиссионная способность в пределах 0,15-0,96 может быть получена с помощью окрашивающих пленок при соответствующем выборе пигмента. Краски с низкой эмиссионной способностью могут быть использованы для уменьшения радиационной передачи тепла радиолокатору, вычислительному устройству и электронному оборудованию от поверхностей, подверженных аэродинамическому нагреву.

Для некоторых целей, например для изготовления корпусов электронного оборудования, применяют литейные магниевые сплавы с высокой демпфирующей способностью. Так, отливки из сплава ZA (K1A) использовали в контрольном оборудовании на управляемом снаряде «Найк-Геркулес».
Другие ценные качества магния как материала для космоса - хорошие свойства на растяжение в условиях быстрого нагрева и нагружения и отсутствие какого-либо перехода из пластичного в хрупкое состояние при низких температурах.
Исследовательские ракеты и управляемые снаряды. Детали, отлитые в землю, из сплава ZRE1 используют в исследовательских ракетах «Скайларк», впервые запущенных во время Международного геофизического года.
Об английских управляемых снарядах имеется ограниченная информация, тем не менее известно, что отливки из сплавов Z5Z и RZ5 широко используют в качестве элементов конструкций. У одного из снарядов рули и труба корпуса изготовлены из прессованного сплава ZW6. Отливки из сплава MSR и поковки из сплава ZTY, вероятно, найдут широкое применение в будущем.

В США широко распространено применение магния в управляемых снарядах. Некоторые наиболее важные случаи перечислены в табл. 84. На рис. 306 показано, в каких местах используются магниевые сплавы в управляемых снарядах «Титан», «Юпитер», «Тор» и «Поларис». Общее содержание магния в «Титане» составляет около 900 кг, причем около 40% оболочки составляют листы из сплавов НМ21 и НК31. Имеются также прессованные изделия из сплава НМ31. Листы из сплава HM21 могут подвергаться кратковременному нагреву до 375-425° С. Особый интерес среди небольших снарядов представляет «Фалькон» (рис. 307), в котором 90% конструкции состоит из магниевых сплавов. «Мэйс» содержит 435 кг магниевых сплавов. «Бомарк» содержит 90 кг листов магниевоториевых сплавов, образующих ведущие и хвостовые кромки поверхностей крыльев и рулей, и, кроме того, прямоточный реактивный двигатель содержит листы из магниевоториевого сплава и свыше 145 кг отливок из сплавов HK31 и ZRE1. «Снарк» содержит 680 кг листов AZ31 и 140 кг отливок. В «Тэлосе» передний обтекатель изготовлен из листов магниевого сплава НМ21 (рис. 308), а внутренний корпус - из листов и отливок сплава НК31. В этом случае способность магниевых конструкций противостоять без коробления резкому снижению давления делает магниевые сплавы более предпочтительными, чем сплавы на основе титана, алюминия или стали. «Найк-Геркулес» (рис. 309), содержащий 18 кг магниевых листов и 135 кг отливок, представляет особый интерес в связи с используемым в нем подвижным контрольным электронным оборудованием. Данное оборудование включает свыше 1350 кг отливок из магниевых сплавов, в том числе и отливку массой 680 кг.

Национальное управление по аэронавтике и исследованию космического пространства США широко использует магниевые сплавы для изготовления рулей и переходных поверхностей запускаемых с воздуха исследовательских сверхзвуковых ракет, достигающих скоростей вплоть до 15 Маха. Хвостовые рули этих ракет состоят из листов сплава AZ31 с ведущими кромками из полосок сплава Инконель с подкладкой из меди (рис. 310). Магниевые сплавы используют ввиду их малой плотности, высокой теплопоглотительной способности, демпфирующей способности, легкости и экономичности изготовления изделий. Широко использует магниевые сплавы для исследовательских ракет Национальный консультативный комитет по авиации (рис. 311). Третья ступень запускающей спутники ракеты «Скаут» Национального управления по аэронавтике и исследованию космического пространства имеет оболочку из магниевых сплавов.
В ходе выполнения программы США по управляемым снарядам было разработано много методов обработки магниевых сплавов.

Ракеты для запуска искусственных спутников. Выше упоминалось об изготовлении из магниевых сплавов оболочки в ракете «Скаут» Н.А.С.А. В запускающей ракете «Вэнгуард» (рис. 312) магниевые сплавы используют для оболочки второй ступени, для промежуточной секции и для хвостовой камеры сгорания. Об использовании магниевых сплавов в качестве конструкционного материала в ракете «Редстоун» сведений не имеется, однако предполагается, что их используют в наводящей системе. Точно также магниевые сплавы не используют в конструкции «Атласа», но применяют для вычислительного устройства и контрольного отсека и для платформы начального наведения
Вспомогательное оборудование . Магний широко используют в электронном оборудовании, связанном с управляемыми снарядами. Относящиеся к этому случаю отливки для «Найк-Геркулес» уже упоминались. В других случаях применение магниевых сплавов обусловлено требованиями легкости и быстрой сборки оборудования. Отливки из магниевых сплавов используют для изготовления изоляции от вибраций каркасов внутренних конструкций, корпусов редукторов, держателей катодов ламп и т. д. Магниевые сплавы используют также для изготовления трейлеров, контейнеров, катушек лент для самописцев, дисков памяти счетнорешающих приборов, волноводов, параболических антенн. Высокие требования предъявляются к точности изготовления волноводов. Один из волноводов изготавливают точным литьем, другие - из прессованных полуфабрикатов.

Спутники и межпланетные станции . Американские спутники в значительной степени состоят из магния. «Вэнгуард» имеет диаметр 50 см и весит 9,75 кг. Он сделан из двух полусферических листовых оболочек толщиной 0,7 мм, изготовленных из сплава AZ31. Полусферы получают вытяжкой при температуре около 350° С за один удар. Каждую оболочку обкатывают до требуемой формы при 315° С и затем обрабатывают резанием до конечной толщины на точном чугунном шаблоне. После полировки и покрытия обе половинки собирают с помощью крошечных ювелирных винтов. Другая деталь из магниевого сплава на спутнике «Вэнгуард» - это барокамера, получаемая путем обкатки из плоской плиты и свариваемая на месте, а также трубчатый каркас Чтобы получить желаемое сочетание высокой отражательной способности (для легкости слежения) и достаточной эмиссионной способности, на магниевые оболочки после полировки наносят пять слоев Au, Cr, SiO, Al и SiO в указанной последовательности.
Спутник «Дискаверер» имеет длину 5,8 м и диаметр 1,5 м. Он содержит свыше 270 кг магниевоториевых сплавов, что составляет более чем 1/3 общей массы спутника (680 кг). Помимо 90 кг листов сплавов НМ21 и НК31, в спутнике имеется 180 кг отливок и прессованных изделий (20 типов). Оболочка и обтекатели изготовлены из листов сплава НМ21-Т8 толщиной 1,8-3,6 мм с допуском ±0,05 мм с тем, чтобы обеспечить контроль массы. Использование магниевых сплавов в «Дискаверере» дает возможность уменьшить массу по сравнению с использованием титановых сплавов на 25% и даже более в случае использования сталей.
Первый спутник «Эхо», состоящий из пластмассового шара диаметром 30,5 м, содержал магниевую сферу диаметром 5,7 м, весящую 11 кг и изготовленную из магниевых листов, плит и прессованных полуфабрикатов. Запускающая ракета «Тор» содержит значительное количество магния, главным образом в виде отливок.
Спутник связи «Гелстар» содержит около 13,5 кг магния в виде труб из сплава ZK21 (Mg-2% Zn-0,6% Zr), а также листов и прессованных изделий из сплава AZ31 (рис. 313).
У «Эксплорера III» корпуса приборов отлиты из магния. «Пайэнир V» имеет детали из листов и плит магниевых сплавов. Межпланетная станция «Сервэйер», предназначенная для исследования поверхности Луны, будет состоять в основном из магния.
Капсула «Меркурий» сделана из титана и бериллия в связи с тем, что должна возвращаться в плотные слои атмосферы, однако в ней использован магний для вспомогательного оборудования - камеры, ленточных самописцев и катушек.

На вопрос Где используется МАГНИЙ? заданный автором Лерка)) лучший ответ это МАГНИЙ (Magnesium) Mg, химический элемент 2-й (IIa) группы Периодической системы. Атомный номер 12, относительная атомная масса 24,305. Природный магний состоит из трех природных изотопов 24Mg (78,60%), 25Mg (10,11%) и 26Mg (11,29%). Степень окисления +2, очень редко +1.
Распространение магния в природе и его промышленное извлечение.Магний есть в кристаллических горных породах в виде нерастворимых карбонатов или сульфатов, а также (в менее доступной форме) в виде силикатов. Оценка его общего содержания существенно зависит от используемой геохимической модели, в частности, от весовых отношений вулканических и осадочных горных пород. Сейчас используются значения от 2 до 13,3%. Возможно, наиболее приемлемым является значение 2,76%, которое по распространенности ставит магний шестым после кальция (4,66%) перед натрием (2,27%) и калием (1,84%).
Характеристика простого вещества и промышленное получение металлического магния. Магний - серебристо-белый блестящий металл, сравнительно мягкий, пластичный и ковкий. Его прочность и твердость минимальны по распространенности для литых образцов, выше - для прессованных.
В обычных условиях магний устойчив к окислению за счет образования прочной оксидной пленки. Вместе с тем он активно реагирует с большинством неметаллов, особенно при нагревании. Магний воспламеняется в присутствии галогенов (при наличии влаги), образуя соответствующие галогениды, и горит ослепительно ярким пламенем на воздухе
Магний - самый легкий конструкционный материал, используемый в промышленных масштабах. Его плотность (1,7 г см-3) составляет менее двух третей плотности алюминия. Сплавы магния весят вчетверо меньше стали. Кроме того, магний прекрасно обрабатывается и может быть отлит и переделан любыми стандартными методами металлообработки (прокатка, штамповка, волочение, ковка, сварка, пайка, клепка). Поэтому его основная область применения - в качестве легкого конструкционного металла.

Ответ от Валентина Базанова [гуру]
я знаю что в салюте он применяется


Ответ от OlGosh [гуру]
Мне кажется, в сварке должен применяться, для повышения температуры.


Ответ от Ilya O. Volkov [гуру]
В виде сплавов с другими металлами (в первую очередь, с алюминием) -- в самолётах в качестве конструкционного материала (лёгкий и прочный).


Ответ от Анатолий Горный [гуру]
Мы в детстве из него салюты делали!Напилишь его в стружку,разогреешь и каааак бросишь об стенку!Суппер!


Ответ от ! VS [гуру]
В авиации, в частности в тормозных барабанах на колёсах самолёта.
Ещё он используется как легирующий элемент в металлургической промышленности.


Ответ от Jeka [гуру]
Всё о нём это используется в лекарствах например, в изготовлении взрывпакетов, раньше при фотографировании для вспышки!!!


Ответ от Jef [гуру]
В клапанах ЗИЛовских моторов при СССР был чистый магний для лучшего теплоотвода. Сейчас это дорого. Применяется в авиастроении как компоненит сплавов. В чистом виде очень редко. Хороший металл, в детстве в школьный унитаз бросали - разрывало как ромашку


Ответ от Андрей Лубенец [гуру]
Магний, Mg, горючий серебристо-белый металл. Ат. масса 24,32; плотн. 1740 кг/м3; т. плавл. 651 °С; т. кип. 1107 °С; тепл. crop, до MgO -25 104 кДж/кг. На воздухе способен воспламеняться; во влажной среде сгорает со взрывом. Т. гор. 2800 °С; т. само¬воспл.: компактного металла 650 °С, стружки 510 "С, пыли 420- 440 °С; нижн. конц. предел распр. пл. 10-20 г/м3; макс. давл. взрыва 670 кПа; скорость нарастания давл.: средн. 6,8 МПа/с, макс. 12,3 МПа/с; мин. энергия зажигания 20 мДж; скорость горения слоя стружки по поверхности 3-Ю3 м/с; МВСК 3% (об.) для горения аэровзвеси, 9% (об.) для горения стружки; при предва¬рительном подогреве стружки до 600 °С МВСК 2,5% (об.). Горит в атмосфере диоксида углерода, т. самовоспл. 715 °С. В атмосфере чистого сухого азота магний не воспламеняется. При т-ре более 400 °С пыль и порошок энергично взаимодействуют с азотом, выделяя тепло. Поэтому атмосфера азота не может считаться инерт¬ной. Даже в атмосфере аргона, содержащей 0,5% кислорода,
443
магний может воспламеняться с повышением давления до 255 кПа. Средства тушения: фторид кальция, смесь хлоридов и фторидов щелочных и щелочноземельных металлов, сухой песок. Для тушения небольших пожаров пригодны полевой шпат, карбонат натрия, бура, инфузорная земля, борная кислота; необходимо покрывать горящий металл сплошным слоем толщиной не менее 1,5 см .
МагнкЯ фосфорнокислый двузамещенный, MgHPO4-3H2O, него¬рючий белый порошок .
Магний фосфорнокислый трехзамещенный, Mg3(PC4)2, негорю¬чий белый порошок .
Магк^й кальций-кремний, горючее вещество. Состав, % (масс): магний 20, кальций 25, кремний 50, железо 4. Дисперсность образца 42 мкм. Т. самовоспл. 670 °С; нижн. конц. предел распр. пл. 125 г/м3; макс. давл. взрыва 1 МПа; макс, скорость нарастания давл. 21,7 МПа/с . С

Магний не зря называют природным успокоительным: он расслабляет мышцы, способствует снижению давления и оказывает небольшое седативное воздействие на нервную систему . Он является незаменимым участником многих биологических процессов и «работает» вместе с другими важными макро- и микроэлементами.

Содержание магния в продуктах (на 100г):

Орехи кешью 270 мг
Гречка 260 мг
Морская капуста 170 мг
Овсянка 130 мг
Горошек 100 мг
Фасоль 100 мг

Что собой представляет магний?

Магний входит в состав минералов и живых организмов - растений и животных. Организм человека накапливает порядка 25 г этого металла, который содержится в органах и тканях в виде различных химических соединений.

Большая часть магния сосредоточена в костях, но элемент встречается и в большинстве других тканей.

Продукты питания, богатые магнием

Наиболее богатыми и полноценными источниками магния служат зеленые овощи.

Достаточно много магния содержится в водопроводной воде.

В плодах максимальным содержанием этого минерала отличается кожура.

Суточная потребность в магнии

В сутки человеку требуется дозировка магния до 0,5 грамма.

Увеличение потребности в магнии

Дополнительное применение магния требуется при высоких нервных нагрузках, при повышенном артериальном давлении , а также при интенсивных процессах роста и развития у детей и подростков.

Потребность в минерале также возрастает у спортсменов, людей, которые переносят тяжелые физические нагрузки, у беременных и кормящих женщин.

Усвоение магния из пищи

Магний хорошо усваивается из растительной и животной пищи. При повышенном поступлении кальция , натрия и фосфора усвояемость магния падает.

Чрезмерное увлечение продуктами и напитками, содержащими кофеин (кофе , крепкий чай, шоколад , энергетики) также снижает всасывание магния. Наконец, на этот процесс негативно влияет прием спиртных напитков.

Небольшие количества магния всегда выводятся из организма, не всасываясь, так как связываются пищевыми волокнами растительных продуктов. В целом волокна очень полезны, так что искусственно сокращать их содержание в рационе не стоит, однако постоянно потреблять отруби и клетчатку в больших дозах нежелательно.

Из некоторых продуктов, таких как орехи и отруби, магний усваивается плохо, несмотря на то, что в них присутствует много этого минерала. Они содержат так называемый фитин - вещество, препятствующее всасыванию микроэлементов.

Употребление фруктов и овощей со шкуркой - хороший способ повысить поступление магния в организм.

Биологическая роль магния

Функции магния:

Нужен для здоровья костей, способствует укреплению скелета наряду с фосфором и кальцием
. Принимает участие в обмене глюкозы, выделении и запасании энергии
. Магний в составе ферментов (а он необходим для образования порядка 300 разных ферментов) участвует во многих видах обмена веществ.
. Влияет на метаболизм жиров, при нормальном содержании магния в организме легче поддерживать оптимальную массу тела
. Повышает моторную активность кишечника, препятствует развитию запоров
. Улучшает образование и выделение желчи, что положительно сказывается на качестве пищеварения
. Способствует уменьшению жиров в питании, так как улучшает связывание и выведение холестерина
. Благотворно воздействует на передачу нервных импульсов
. Является частью процесса обмена аминокислот, образования белков
. Позитивно влияет на здоровье сердечно-сосудистой системы, поддерживает нормальный уровень артериального давления, улучшает метаболизм в сердечной мышце
. Отвечает за работу мышц, участвует в их расслаблении
. Оказывает спазмолитическое действие
. Регулирует работу почек, препятствует мочекаменной болезни
. Проявляет успокаивающее действие, способствует улучшению сна
. Улучшает устойчивость к стрессам , перегрузкам, снижает утомляемость
. Повышает позитивные эффекты, оказываемые на организм натрием, калием , витаминами D , В6 , .

Признаки нехватки магния

При недостаточных дозировках магния в составе пищи могут возникать симптомы его дефицита: усталость, ухудшение сна, нервозность, снижение стрессоустойчивости, повышение артериального давления, судороги, спазмы, выпадение волос, боли в мышцах, запоры, нарушения сердечного ритма.

Признаки избытка магния

Избыток минерала встречается редко, главным образом наблюдается при чрезмерно интенсивном применении магния в составе БАДов . Симптомы избытка магния: снижение выделения слюны, тошнота, диарея, сонливость, расстройства равновесия.

Если у Вас есть необходимость по медицинским показаниям в высоких дозах принимать магний, стоит параллельно вести прием препаратов кальция. Это «уравновесит» содержание элементов в организме и позволит избежать передозировки магния.

Факторы, влияющие на содержание в продуктах магния

Кулинарная обработка приводит к уменьшению содержания магния в пище. За рубежом магнием дополнительно обогащают питьевую воду.

Свойства магния


Физико-химические свойства. Температура плавления магния 651 °С, температура кипения 1110 °C. На воздухе чистый магний медленно окисляется, покрываясь тонкой окисной пленкой, которая слабо предохраняет металл от дальнейшей коррозии. При нагревании магния в атмосфере азота до 500 °С образуется нитрид магния Mg3N2 - зеленоватый порошок, устойчивый без плавления до 600 °С. Магний слабо реагирует со щелочами и активно с разбавленными минеральными кислотами, выделяя при этом водород. Магний является химически активным металлом; он энергично восстанавливает менее активные металлы из их соединений.
С увеличением чистоты магния возрастает его устойчивость против коррозии. Хлористые соли и примеси металлов Fe, Si, Cu, Ni, Na, К резко понижают коррозионную стойкость магния в жидких средах. Скорость коррозии магния различной чистоты (марки Mг-1, сублимированного магния и очищенного зонной плавкой) в растворе соляной кислоты и хлорида калия представлена в табл. 9.
Скорость коррозии определялась по количеству водорода, выделившегося за один час с 1 см2 поверхности образца магния. Из табл. 9 следует, что содержание примесей существенно влияет на коррозионную стойкость магния. Магний, очищенный зонной плавкой, по коррозионной устойчивости сравним с магнием, очищенным сублимацией.

Механические свойства. Чистота магния оказывает значительное влияние на его механические свойства. Неметаллические включения, особенно окись магния, а также примеси меди, натрия и калия понижают его пластичность.
Ниже приведены значения предела текучести и прочности, относительного удлинения и микротвердости магния различной чистоты:

Из приведенных данных следует, что с повышением чистоты магния значительно возрастает относительное удлинение и понижаются пределы текучести, прочности, а также микротвердость магния. Магний, очищенный зонной плавкой, по своей прочности не уступает магнию, очищенному сублимацией, а по пластичности превосходит его. Это указывает на меньшее содержание в нем растворенных газов. Расплавленный магний поглощает большее количество водорода (0,26 см3/г), поэтому при кристаллизации металла вследствие выделения избыточного водорода в слитках образуется пористость.

Применение чистого магния


Магний высокой чистоты обладает рядом ценных свойств. Имея малое сечение захвата тепловых нейтронов (0,059 барна), сплавы на основе чистого магния являются хорошим конструкционным материалом в атомных реакторах при изготовлении оболочек тепловыделяющих элементов. Магний высокой чистоты широко применяется и в качестве восстановителя для получения урана из его тетрафторида. При этом резко возрастают требования к содержанию в магнии примесей с большим сечением захвата нейтронов.
Перспективным может быть применение высокочистого магния для синтеза полупроводниковых соединений с элементами IV-VI групп периодической системы Д.И. Менделеева. Ниже приведены свойства полупроводниковых соединений магния с элементами IV группы:

Эти соединения могут использоваться в термогенераторах, способных работать при повышенных температурах.
Магний, применяемый для синтеза полупроводниковых соединений, должен содержать минимальное количество электрически активных примесей, таких как медь, железо, бор, а также растворенных газов. Полупроводниковые свойства Mg2Pb были выявлены только после удаления из магния растворенных газов.
Магний чистотой 99,95% применяется как геттер в газоразрядных лампах с накаленным катодом, наполненным ртутью. Чистый магний применяют для изготовления катодов фотоумножителей и счетчиков Гейгера-Мюллера, предназначенных для регистрации излучений, лежащих в коротковолновой области спектра.
При использовании магния в качестве Конструкционного материала ограничивается содержание примесей, понижающих коррозионную стойкость, например, железа и хлоридов.
Выпускаемый отечественной промышленностью первичный магний, согласно ГОСТ 804-56, должен соответствовать по числу и содержанию примесей маркам магния Mг-1 и Mг-2. Ниже приведены предельно допустимые концентрации примесей, %:

Чистота магния по стандарту определяется по разности с восемью анализируемыми примесями. Полный анализ такого металла позволяет, однако, обнаружить в нем большое число и других примесей, правда в относительно небольших количествах. С помощью чувствительных методов анализа магния, полученного из морской воды, обнаружено в нем в качестве примесей около 60 различных элементов, содержание которых лежит в пределах 2*10в-4% (Al и Ca) - 6*10в-3% Cl. Характерным для магния, полученного из морской воды, является присутствие в нем примеси бора 4*10в-6%.
В магнии, извлеченном из электролизных ванн, всегда присутствуют примеси хлористых солей MgCl2, KCl, NaCl и CaCl2, захватываемых в виде электролита при отсасывании или вычерпывании магния из катодных ячеек ванны. Из неметаллических примесей в магнии часто присутствует окись магния.
Для рафинирования магния от солей и усреднения состава применяют переплавку его с флюсами. Для получения более чистого магния может быть применено несколько методов: возгонка в вакууме, электролитическое рафинирование и зонная плавка. В настоящее время промышленным способом очистки магния является возгонка его в вакууме.

Магний — широко распространенный в природе металл, имеющий огромное биогенное значение для человека. Он является составной частью большого количества различных минералов, морской воды, гидротермальных вод.

Свойства

Серебристый блестящий металл, очень легкий и пластичный. Немагнитный, обладает высокой теплопроводностью. При нормальных условиях на воздухе покрывается оксидной пленкой. При нагревании свыше 600 °С металл горит с выделением большого количества тепла и света. Горит в углекислом газе и активно реагирует с водой, поэтому его бесполезно тушить традиционными способами.

Магний не взаимодействует со щелочами, реагирует с кислотами с выделением водорода. Устойчив к галогенам и их соединениям; например, не взаимодействует с фтором, плавиковой кислотой, сухим хлором, йодом, бромом. Не разрушается под воздействием нефтепродуктов. Магний малостоек к коррозии, этот недостаток исправляют добавлением в сплав небольших количеств титана, марганца, цинка, циркония.

Магний необходим для здоровья сердечно-сосудистой и нервной систем, для синтеза белов и усвоения организмом глюкозы, жиров и аминокислот. Оротат магния (витамин В13) играет важную роль в обмене веществ, нормализует сердечную деятельность, препятствует отложению холестерина на стенках сосудов, увеличивает работоспособность организма спортсменов, не уступая по эффективности стероидным препаратам.

Получают магний различными способами, из природных минералов и морской воды.

Применение

— Большая часть добываемого магния используется для производства магниевых конструкционных сплавов, востребованных в авиационной, автомобильной, атомной, химической, нефтеперерабатывающей промышленности, в приборостроении. Магниевые сплавы отличаются легкостью, прочностью, высокой удельной жесткостью, хорошей обрабатываемостью. Они немагнитны, отлично отводят тепло, обладают в 20 раз большей устойчивостью к вибрации, чем легированная сталь. Магниевые сплавы применяются для изготовления резервуаров для хранения бензина и нефтепродуктов, деталей атомных реакторов, отбойных молотков, пневмотруб, вагонов; емкостей и насосов для работы с плавиковой кислотой, для хранения брома и йода; корпусов ноутбуков и фотоаппаратов.
— Магний широко используется для получения некоторых металлов методом восстановления (ванадий, цирконий, титан, бериллий, хром и т. д.); для придания стали и чугуну лучших механических характеристик, для очистки алюминия.
— В чистом виде входит в состав многих полупроводников.
— В химической промышленности порошковый магний используют для осушения органических веществ, например, спирта, анилина. Магнийорганические соединения применяются в сложном химическом синтезе (например, для получения витамина А).
— Порошок магния востребован в ракетной технике в качестве высококалорийного горючего. В военном деле — при производстве осветительных ракет, трассирующих боеприпасов, зажигательных бомб.
— Чистый магний и его соединения идут на изготовление химических мощных источников тока.
— Окись магния применяется для изготовления тиглей и металлургических печей, огнеупорного кирпича, при изготовлении синтетической резины.
— Кристаллы фторида магния востребованы в оптике.
— Гидрид магния представляет собой твердый порошок, содержащий большой процент водорода, который легко получить нагреванием. Вещество используется в качестве «хранилища» водорода.
— Сейчас реже, но раньше порошок магния широко использовался в химических фотовспышках.
— Соединения магния используют для отбеливания и протравливания тканей, для изготовления теплоизоляционных материалов, особых сортов кирпича.
— Магний входит в состав многих лекарственных средств, как внутреннего, так и наружного (бишофит) применения. Его используют как противосудорожное, слабительное, седативное, сердечное, противоспазматическое средство, для регуляции кислотности желудочного сока, как антидот при отравлении кислотами, как дезинфицирующее желудочное средство, для лечения травм и суставов.
— Магний стеарат используется в фармацевтической и косметической промышленности как наполнитель таблеток, пудры, кремов, теней; в пищевой промышленности применяется как пищевая добавка Е470, предупреждающая слеживание продуктов.

В химическом магазине «ПраймКемикалсГрупп» вы можете купить химический магний и его различные соединения — магний стеарат, бишофит магний хлористый, магний углекислый и другие, а также широкий спектр хим реактивов , лабораторной посуды и других товаров для лабораторий и производства. Цены и уровень сервиса вам понравятся!